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This study presents the seismic performance of steel moment connections using internal flange stiffeners
(IFSs) welded at the face of the wide-flange column and inner side of the beam flange. The objective is to
develop a steel moment connection that can achieve good seismic performance with low-damage capability
during a large earthquake loading and minimize the repair cost. Four large-scale moment connections were
tested to validate the cyclic performance. One connection which represented a welded-unreinforced flange-
bolted web connection failed before finishing cyclic tests at a drift of 4%. Three IFS moment connections
showed excellent performance and low damage after experiencing the AISC seismic load twice up to the
target drift of 4%, without strength reduction. The specimens were also modeled using the computer
program ABAQUS to further verify the effectiveness of the IFS in transferring beam moment to the column
and to investigate potential sources of connection failure.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The widespread damage of welded steel moment connections after
the 1994 Northridge earthquake and 1995 Hyogoken-Nanbu (Kobe)
earthquake initiates extensive research aimed at improving connection
seismic performance. Many traditional steel moment connections,
which were fabricated following pre-Northridge construction practices
with a low notch toughness E70T-4 electrode, show minimal plastic
deformation (e.g., 1% drift) before weld fracture at the beam-to-column
interface [1–4]. By using a high notch toughness electrode for connection
welds, strengthening or reducing the beam end section [5–10] are also
needed for most qualified moment connections to reach a required
seismic performance. FEMA 350 [11] lists some prequalified moment
connections for the special moment frame (SMF). These moment con-
nections are capable of sustaining an interstory drift of at least 4% with
sufficient flexural resistance [12]. However, high damage in the beam
(e.g., buckling) after seismic loading leads to a large cost for repair.

Adding a pair of full-depth side plates or separate internal flange
stiffeners (IFSs) between the column face and beam flange inner side
has been demonstrated as an alternative to achieve good seismic per-
formance of moment connections [13,14]. This scheme not only mini-
mizes the interference from the composite slab but also reduces story
height requirements in the building. Test results showed that the IFS
moment connection experiences very minor beam local buckling (e.g.,
low damage) during the code-specified cyclic loading [12] in excess of
: +886 2 2739 6752.
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a 4% drift. The connection requires minor repair and has the capability
to sustain the same cyclic loading again to a drift of 4% without failure,
showing repeatable seismic performance as observed in the first test.
However, previous studies focused only on the IFS moment connection
with a steel built-up box column and a wide flange beam, which are
commonly used in Asian countries to resist seismic loads in SMFs. The
use of a wide-flange column is also very popular in SMFs, but the
load-transfer from IFSs to the box column is more effective than that
to the wide-flange column due to two web plates in the box column.
Moreover, previous specimens used the ASTM A36 steel beam, which
produces smaller stresses in connection welds than the ASTM A572
Gr. 50 steel beam. Therefore, the specific connection configuration in
this study uses a wide-flange column and a beamwith various material
properties. To design a moment connection with low-damage capabili-
ty under seismic loading, four IFSs, each of which is a rectangular or tri-
angular flat plate, are welded at the column face and beam flange inner
side to help transfer some beam flange force to the column. The objec-
tive of the study is to examine alternative technique for the moment
connection with a wide-flange column and beam to improve the frac-
ture resistance through strengthening of connections.

A total of four large-scale exterior moment connections were tested.
Test parameterswere IFS sizes andmaterial properties of the beam. One
welded-unreinforced flange-bolted web connection was tested as a
benchmark. Three moment connections with different IFSs and beam
materials were tested to validate their cyclic performances. The study
showed that all IFS moment connection specimens performed much
better than a non-stiffened moment connection specimen, even being
tested twice up to a 5% drift. These specimens were also modeled
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Fig. 1. Moment capacity and demand of the beam.
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using the computer program ABAQUS [15] to further verify the effec-
tiveness of the IFS in transferring beam moment to the column and to
investigate potential sources of connection failure. This paper presents
experimentally and analytically the cyclic behavior of the IFS moment
connection, and provides recommendations for seismic design of such
connections.
2. IFS moment connection

2.1. Connection design

Fig. 1 shows a moment connection with IFSs. The purpose in using
IFSs is to transfer some not all beam flange force to the column be-
able 1
ember sizes and properties.

(a) Specimen sizes

Specimen Column size Beam size IFS size (ts × ds × Ls) ∑M�
pc

∑M�
pb

UR H428 × 407 × 20 × 35
(A572 Gr. 50)

H702 × 254 × 16 × 28
(A36)

– 1.72
IFS1 R25 × 308 × 300 1.53
IFS2 T20 × 308 × 300 1.47
IFS3 H702 × 254 × 16 × 28

(A572 Gr.50)
T28 × 308 × 300 1.19

∑ Mpc
⁎ = sum of the column nominal moments at the top and bottom of the panel zone.

∑ Mpb
⁎ = sum of the beam moments resulting from the beam plastic hinge moment.

(b) Material properties

Specimen Column strength (MPa) Beam strength (MPa) IFS strength (MPa)

Flange Web Flange Web

σy σu σy σu σy σu σy σu σy σu

UR 357 521 390 510 251 463 285 453 –

IFS1 409 528
IFS2 272 469 275 440 421 527
IFS3 388 531 417 564 388 531

y = Yield strength; σu = Ultimate strength.
T
M

σ

cause existing beam flange groove welded joints conducted by the
high toughness electrode can sustain modest inelastic deformation
before fractures. Moment demand, Mdem, along the beam is shown
in the figure, assuming that a plastic hinge is located at a quarter
beam depth from the IFS end. This location is used based on
previous connection test results [13,14]. The moment at the column
face, determined by projecting moment capacity MPH at the plastic
hinge section, is

Mdem ¼ Lb
Lb− Ls þ db=4ð ÞMPH ¼ Lb

Lb− Ls þ db=4ð Þ βRyσynZb

� �
ð1Þ

where Lb is the distance from the actuator to the column face; Ls is the
IFS length, which assumes half the beam depth in initial design; db is
the beam depth; Zb is the plastic section modulus of the beam; σyn is
the specified yield strength of the steel; Ry is the material over-
strength coefficient, and coefficient β accounts for strain hardening [11].

Moment capacity near the beam-to-column interface increases
due to presence of IFSs. The flexural capacity of the stiffened beam,
Mcap, is the summation of flexural strengths of the beam, Mpb, and
the IFSs, Mps [13]:

Mcap ¼ Mpb þMps ¼ ZbRyσyn þ 2 2

ffiffiffi
1
2

r
−1

 !
db−2tf
� �

Ryσyndsts ð2Þ

where tf is the beam flange thickness; ds is the IFS depth, and ts is the
IFS thickness. Assuming that the stiffened beam moment capacity–
demand ratio, α (=Mcap/Mdem), is larger than 1.05, the IFS size can
be determined by:

dsts ≥
αMdem−Mpb

2 2
ffiffi
1
2

q
−1

� �
db−2tf
� �

Ryσyn

: ð3Þ

Since the force in the IFS, PSI, is transferred through shear on the
groove welded joint between the IFS and beam flange inner side,
the length of the IFS, Ls, is determined based on shear strength of
the IFS:

Ls ≥
PSI

0:9 0:6Ryσyn

� �
ts

¼
2

ffiffi
1
2

q
−1

� �
Ryσyntsds

0:9 0:6Ryσyn

� �
ts

¼ 0:77ds: ð4Þ
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The IFS size can be determined based on Eqs. (3) and (4). Iterate
over a new Ls by returning to Eq. (1) if Eq. (4) is not satisfied.

3. Test program

3.1. Specimens

The experimental program consisted of tests of four specimens.
Each specimen represented an exterior moment connection with
one steel beam (H702 × 254 × 16 × 28) and one wide-flange
column (H428 × 407 × 20 × 35). Table 1 shows specimen sizes and
material properties obtained from coupon tensile tests. ASTM A572
Gr. 50 steel was utilized for all columns and internal flange stiffeners.
ASTM A36 steel was utilized for the beams of Specimens UR, IFS1, and
IFS2; ASTM A572 Gr. 50 steel was utilized for the beam of Specimen
IFS 3. These two types of steel were manufactured in Taiwan,
conforming to chemical and mechanical properties of ASTM stan-
dards [16]. All connections were welded using the ER70S-G electrode,
which is similar to the high-toughness E71T-8 or E70TG-K2
electrodes and provides a minimum specified Charpy V-Notch value
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of 27 J at −29 °C (20 ft-lb at −20 °F). The steel backing bars
projected 30 mm beyond both sides of the beam flange and no weld
tabs were used. The steel backing bar was left in place and a fillet
weld, helping to reduce the notch effect of a left in place backing
bar [11], was not made between the backing bar and column. Each
pass of flange groove welds was initiated and terminated at a point
outside the flange. This was done to prevent poor-quality welds,
which normally occur at the initiation of the weld. All specimens
were made by a fabrication shop welder, using weld positions typical
to field welding. More specifically, beam flange groove welds were
made with the specimen oriented to permit flat position welding.
Ultrasonic tests (UT) were conducted for all flange groove welds, and
they all satisfied the prescribed acceptance criteria [17]. Only A490
high-strength bolts were used to connect the column shear tab and
beam web.

Specimen UR used a welded-unreinforced flange-bolted web
connection (Fig. 2(a)). Specimen IFS1 was identical to Specimen UR,
except that the 25-mm thick rectangular IFSs were used at the beam
flange edges of Specimen IFS1 [Fig. 2(b)]. Specimen IFS2 was identical
to Specimen IFS1, except that the 20-mm thick triangular IFSs were
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Table 2
Beam moment capacity–demand ratio.

Specimen Mpb Mps Mcap Mdem MPH α β

(kN-m)

IFS1 1679 1685 3364 2810 2457 1.20 1.46
IFS2 1763 1388 3151 2983 2608 1.06 1.48
IFS3 2556 1791 4347 3663 3203 1.19 1.25

Note: Moment is calculated based on the actuator force at an interstory drift of 4%.
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used at the beam flange edges of Specimen IFS2 [Fig. 2(c)]. Thinner IFSs
in Specimen IFS2 leaded to less welding and smaller beam moment
capacity–demand ratio, α, as listed in Table 2. Specimen IFS3 [Fig. 2(d)]
was identical to Specimen IFS2, except that Specimen IFS3 had the
ASTM A572 Gr. 50 steel beam and thick triangular IFSs (Table 1(a)).
The beam moment capacity–demand ratio, α (=Mcap/Mdem), ranged
from 1.06 to 1.20 (Table 2) to study the effects of IFSs on the connection
behavior. Doubler plates were added in the column to maintain a strong
panel zone; in otherwords, the panel zone shear computed based on the
beam plastic hinge moment, MPH, was less than 60% panel zone shear
strength, Vp, [12]:

Vp ¼ 0:6σyndcttotal
� �

1þ 3bcf t
2
cf

dhdcttotal

" #
ð5Þ

where tcf is the column flange thickness; bcf is the column flange width;
dh is the panel zone depth; dc is the column depth, and ttotal is the total
thickness of the column web and doubler plates.

3.2. Test setup and loading protocol

The exterior connection specimens were tested as shown in Fig. 3.
Restraint to lateral-torsional buckling of the beam was provided near
the actuator and at a distance of 2000 mm from the column center-
line. Displacements were imposed on the beam by actuators at a
distance of 4000 mm from the column centerline. The AISC cyclic dis-
placement history [12] was used and run under displacement control.
The intersory drift, which was computed by the actuator displacement
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divided by the distance to the column centerline, was used as the con-
trol variable. Specimens were tested until connection failure occurred.

4. Test results

4.1. Welded-unreinforced flange-bolted web connection

Fig. 4(a) shows the global response of Specimen UR; the moment
computed at the column face is normalized by the nominal plastic
moment of the beam, Mnp (=Zbσyn). Whitewash flaking was ob-
served in the beam flange at an interstory drift of 0.75%, indicating
beam yield. A minor fracture occurred in the beam top flange groove
weld at an interstory drift of −2%, but the peak strength was
maintained at this drift level. A significant reduction in strength
occurred toward the second cycle of an interstory drift of −4% due to
beam top flange fracture (Fig. 5). No yielding of the column or panel
zonewas observed throughout the test. Although Specimen UR utilized
the ASTM A36 beam, the connection failed before finishing cyclic
tests at a drift of 4%.

4.2. Internal flange stiffened moment connection

All IFS connections performed well under the first cyclic test,
exhibiting no groove-weld failures at an interstory drift of 4%. The
low damage (e.g., minor buckling) in the beam did not need repair
after the first test, so all IFS specimens were tested again using the
same loading protocol, exhibiting similar cyclic performances as ob-
served in the first test up to an interstory drift of 4% [Fig. 4(b)–(d)].

Specimens IFS1 and IFS2 were identical to Specimen UR, except
that (1) the 25-mm thick rectangular IFSs were used for Specimen
IFS1, and (2) the 20-mm thick triangular IFSs were used for Specimen
IFS2. Specimens IFS1 and IFS2, which had beam capacity–demand
ratios of 1.2 and 1.06, respectively, were used to evaluate the effects
of IFS sizes on the connection behavior. Two specimens showed
similar cyclic behaviors during the first test. Yielding, observed by
whitewash flaking, occurred at an interstory drift of 0.75%, concen-
trated outside the IFS. After finishing 4% drift cycles, yielding extend-
ed more than 1000 mm from the column face with sign of minor
flange buckling (Figs. 6(a) and 7(a)). A minor fracture occurred at
the end of welds between the IFS and beam top flange. The weld
crack was repaired before conducting the second test. For subsequent
loading cycles, Specimen IFS1 achieved a maximum interstory drift of
5% with beam local buckling (Fig. 6(b)) and no groove weld fracture.
For Specimen IFS2 in the second test, a minor crack occurred in the
beam top flange near groove welds at a drift of−1%, but it did not af-
fect the connection performance after finishing the first cycle of 5%
drift [Fig. 7(b)]. The beam top flange fractured when the connection
moved toward the second cycle of −5% drift. This indicates that the
connection with thicker IFSs can provide better cyclic performance
in the second cyclic test.

Specimen IFS3 used the ASTM A572 Gr. 50 steel beam, so its IFS
size was thicker than other specimens with the ASTM A36 beams
to maintain similar beam capacity–demand ratios (Table 2). Since
beam local buckling was minor and no strength degradation was
observed after the first cyclic test (Fig. 8(a)), Specimen IFS3 was
also retested using the same AISC loading protocol [12]. Beam local
buckling became obvious at an interstory drift of 3%, but the peak
strength was maintained after finishing two cycles of 5% drift without
failure (Fig. 4(d)). Beam buckling accompanied by twisting resulted
in a small reduction in beam flexural strength at a first cycle of 6%
drift [Figs. 8(b) and 4(d)]. Meanwhile, a minor fracture in the groove
weld was observed near the beam bottom flange to the column face.
A significant reduction in strength occurred toward a second cycle of
6% drift due to beam bottom flange fracture (Fig. 8(c) and 4(d)). No
yielding of the column or panel zone was observed throughout the
test. The performance of Specimen IFS3 in the second cyclic test also
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exceeds stringent requirements based on AISC seismic provisions
[12]. The test results indicate that as long as the IFS is designed
properly, it can reduce stress concentration in groove welds and
delay weld fractures to a drift level much higher than 4%. Specimens
IFS1 and IFS3 with a similar beam capacity demand ratio, α = 1.2
(Table 2), showed comparable deformation capacities irrespective
of shapes of the IFS and beam material properties. The maximum
moment developed at the assumed plastic hinge location was 1.25–
1.48 times the beam's actual plastic moment (Table 2); the value of
strain hardening, β, was larger for the ASTM A36 beam (Specimens
IFS1 and IFS2) than for the ASTM A572 Gr. 50 beam (Specimen
IFS3). The strain hardening of around 1.5 for the ASTM A36 beam
exceeded that calculated based on FEMA 350 [11] due to minor
beam local buckling at the plastic hinge location in the test.

4.3. Beam flange strains

The effectiveness of the IFS in decreasing beam flange tensile strain
can be observed from the measured strain at a distance of 60 mm from
the column face (Fig. 9(a)). At an interstory drift of 4%, the tensile
Fig. 5. Specimen UR beam top flange fracture (first test).
strains in the beam top flange of Specimen UR range from 6 to 12%,
much higher than those of the IFS moment connections. The maximum
tensile strain of Specimens IFS1-3 at an interstory drift of 4% was about
(b) Second Test to -5% Drift (Second Cycle) 

Fig. 6. Specimen IFS1 observed performance.
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1%, indicating that the IFS was effective in reducing strain demand
and thereby delayed brittle fracture of the connection to a drift higher
than 4%.

Fig. 9(b) shows flange strains along the beam axis of all specimens.
Maximum tensile strains of Specimens UR and IFS1-3 occurred near
the column face and beyond the end of the IFS, respectively. At
an interstory drift of 4%, maximum strain at the assumed location
of the beam plastic hinge in IFS connections, which was about
476 mm (=Ls + db/4) away from the column face, was about 9εy in
tension and 6εy in compression, demonstrating successful relocation
of the plastic hinge away from the column face.

4.4. Internal flange stiffener strains

Fig. 10 presents the measured longitudinal strains along the stiff-
ener depth, 35 mm from the column face. Experimental observations
were that (1) longitudinal strains beyond the neutral axis of the IFS
have values opposite those of the IFS side connecting the beam flange,
and (2) longitudinal strains near the beam flange are greater than
yield strain at a drift of 4%. Because Specimen IFS2 had weaker stiff-
eners than Specimen IFS1, the tensile strain in the IFS near the
beam flange was higher in Specimen IFS2 than in Specimen IFS1.
For Specimen IFS3 with the ASTM A572 Gr. 50 beam, much higher
tensile strain could be observed as compared to Specimens IFS1 and
IFS2 with the ASTM A36 beam. The maximummeasured tensile strain
at an interstory drift of 4% was 1.5εy in Specimen IFS3.

5. Analytical study

The finite element models were prepared for Specimens UR, IFS1,
IFS2, and IFS3 using the finite element analysis program ABAQUS [15]
to study the effectiveness of the IFS in transferring beam moment
to the column and sources of potential failure mode. Fig. 11(a)
shows the finite element model consisting of eight-node brick ele-
ments C3D8R that use standard integration. The groove welds joining
the beam flange and column were also modeled (Fig. 11(b)). The
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Fig. 10. IFS strain profiles (35 mm away from the column face).

Fig. 11. Finite element model.
geometry of beam flange groove welds in the model was considered
based on the flange bevel angle and gap between the beam flange
and the column. The steel backing was not modeled. Coordinates
common to components joined by the shear tab and beam web
were constrained such that they had identical displacements. Materi-
al properties used for the models were taken from coupon tensile
tests (Table 1(b)). The stress–strain curve was approximated by a
bi-linear relationship. No residual stresses of groove welds were
taken into account in the modeling. The analyses accounted for mate-
rial nonlinearities, using the von Mises yield criterion. Combined
isotropic and kinematic hardening was assumed for the cyclic analy-
sis; the parameters for modeling were obtained based on previous
research [18].

Fig. 12 shows comparisons of beam moment-deflection hysteretic
responses from the test and analysis. Both initial stiffness and
post-yield results show reasonable agreement with test data. Fig. 13
shows longitudinal strains in the IFS from the test and analysis, indi-
cating that the force transfer from the IFS to the column can be corre-
lated well from the finite element model. Moment, Ms, transferred
through the IFS to the column was computed from longitudinal
stresses along the IFS depth, the respective sectional area, and dis-
tance to beam web centerline. The ratio of Ms to connection moment,
MABA, computed at the column face, increased with drift (Fig. 14).
Specimen IFS1 showed higher moment resistance of the IFS than
Specimen IFS2 because a stiffener with increased thickness helps
transfer a larger moment from the beam flange to the column. At an
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Fig. 12. Comparison of hysteresis responses from the first test and ABAQUS analysis.
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interstory drift of 4%, this moment ratio was about 20–25%, lower
than that obtained from the IFS moment connections with a steel
built-up box column and beam. It suggests that the web plate located
at both sides of the box column is more effective than that located in
the center of the wide-flange column to transfer the IFS moment from
the beam to the column.

The rupture index (RI) is computed at different locations of the
connection from ABAQUS results to assess the possible source of frac-
ture. The RI equals the product of a material constant and the PEEQ
(plastic equivalent strain) divided by the strain at the ductile fracture,
εr, which is given by Hancock and Mackenzie [19]:

RI ¼ aPEEQ
εr

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3 ε

p
ijε

p
ij

q
=εy

exp −1:5 σm
σ eff

� � ð6Þ

where εijp is the plastic strain components; σm is the hydrostatic stress,
and σeff is the von Mises stress. Therefore, locations in a connection
with high RI values have a high potential for fracture. Fig. 15(a)
shows three possible fracture locations observed in the tests: the
beam flange top surface located 60 mm from the column face (Line
A), the groove-weld top surface near the column face (Line B), and
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Fig. 13. Comparison of IFS strain profil
the beam flange inner side along the weld between the IFS and
beam flange (Line C). The RI values can be significantly reduced at
the beam flange near the column face by providing the IFS
[Fig. 15(b)]. The maximum RI value for Specimens IFS1-3 at both
ends of the beam flange groove weld is higher than that for Specimen
UR [Fig. 15(c)] because the IFSs are positioned at both edges of the
beam flange to transfer beam flange force to the column. Moreover,
Specimen IFS3 with the ASTM A572 Gr. 50 beam has flexural capacity
much higher than other specimens with the ASTM A36 beam, so it has
the highest RI value among all specimens. Although the RI value at the
IFS location increases, it is still lower than the fracture limit due to no
weld fractures before an interstory drift of 5% in the test. The RI value
at the end of the IFS-to-beam flange also increases [Fig. 15(d)], indi-
cating another possible source of fracture as observed in the first
test of Specimens IFS1 and IFS2.

6. Conclusions

Four large-scale exterior moment connection specimens, each
composed of the ASTM A572 Gr. 50 H428 × 407 × 20 × 35 column
and the H702 × 254 × 16 × 28 beam, were tested and analyzed to
verify their seismic performance. The objective was to evaluate the
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IFS moment connection with low-damage capability under the code-
specified loading protocol [12]. Test parameters were IFS sizes and
material properties of the beam, made by either the ASTM A572 Gr.
50 or A36 steel. The ER70S-G electrode, which is similar to the
high-toughness E71T-8 or E70TG-K2 electrodes, was used to make
beam flange groove welds in all specimens. Ultrasonic tests (UT)
were conducted for all flange groove welds, and they all satisfied
the prescribed acceptance criteria [17]. Steel backing was left in
place for the top and bottom flanges and no fillet welds were made
between the steel backing and column face. Web joints were made
with only slip-critical, high-strength bolts connecting the beam
web to a shear tab welded to the column face. Finite element
models of specimens were prepared using solid elements to verify
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Fig. 15. Comparison of rupture
IFS effectiveness and identify the possible sources of failure mode.
The following conclusions are based on experimental results and
associated analytical studies.

1. Specimen UR used a welded-unreinforced flange-bolted web con-
nection. Although Specimen UR utilized the ASTM A36 beam and
high-toughness flange groove welds, brittle fracture of the beam
flange occurred before finishing the second cycle of 4% drift under
the first cyclic test. It is expected that if the welded-unreinforced
flange-bolted web connection had the ASTM A572 Gr. 50 beam,
the connection failure would have occurred at a low drift.

2. Three IFS connection specimens, which had beam capacity–
demand ratios larger than 1.05, experienced excellent perfor-
mance and minor beam local buckling (e.g., low damage) under
the first cyclic loading test up to a drift of 4%. These specimens
were retested using the same loading protocol [12] and also expe-
rienced low damage in the beam up to a drift of 4%, leading to sim-
ilar hysteretic responses as observed in the first cyclic test. Minor
strength degradation due to beam buckling was noticed in the sec-
ond test beyond drift of 4%. As long as the beam capacity–demand
ratio, α (Table 2), was near 1.2 (e.g., Specimens IFS1 and IFS3), the
IFS moment connection performed well in the second cyclic test
up to a drift of 5–6%, irrespective of the ASTM A36 or A572 Gr. 50
steel beam.

3. Maximum moment developed at a quarter beam depth from the
IFS end (plastic hinge location) was 1.25 and 1.48 times the actual
plastic moment of the ASTM A572 Gr. 50 and A36 beams, respec-
tively. The factor of around 1.5 for the ASTM A36 beam accounted
for strain hardening that was accompanied by large inelastic
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deformations with minor beam buckling, and this value was
higher than that calculated based on FEMA 350 [11].

4. Finite element analyses showed that the IFSs transferred about
20–25% connection moment to the column, lower than that
obtained from the IFS moment connection with the built-up box
column andwide-flange beam. The IFSs were effective in reducing
the RI demands on the beam flange and groove-welded joint of
the beam flange excluding both ends.
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