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We present a lattice QCD calculation of form factors for the decay �b ! p�� ���, which is a promising

channel for determining the Cabibbo-Kobayashi-Maskawa matrix element jVubj at the Large Hadron

Collider. In this initial study we work in the limit of static b quarks, where the number of independent

form factors reduces to two. We use dynamical domain-wall fermions for the light quarks, and perform the

calculation at two different lattice spacings and at multiple values of the light-quark masses in a single large

volume. Using our form factor results, we calculate the �b ! p�� ��� differential decay rate in the range

14 GeV2 � q2 � q2max , and obtain the integral
Rq2max

14 GeV2 ½d�=dq2�dq2=jVubj2 ¼ 15:3� 4:2 ps�1. Combined

with future experimental data, this will give a novel determination of jVubj with about 15% theoretical

uncertainty. The uncertainty is dominated by the use of the static approximation for the b quark, and can be

reduced further by performing the lattice calculation with a more sophisticated heavy-quark action.
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I. INTRODUCTION

A long-standing puzzle in flavor physics is the discrep-
ancy between the extractions of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element jVubj from inclusive and
exclusive B meson semileptonic decays at the B factories
[1–4]. The current average values determined by the
Particle Data Group are [4]

jVubjincl ¼ ð4:41� 0:15þ0:15
�0:17Þ � 10�3; (1)

jVubjexcl ¼ ð3:23� 0:31Þ � 10�3; (2)

where the exclusive determination is based on measure-
ments of �B ! �þ‘� ��‘ decays by the BABAR and Belle
collaborations, and uses �B ! �þ form factors computed in
lattice QCD [5,6]. To address the discrepancy between
Eqs. (1) and (2), new and independent determinations of
jVubj are desirable. At the Large Hadron Collider, measure-
ments of �B ! �þ‘� ��‘ branching fractions are difficult
because of the large pion background; therefore an attractive
possibility is to use instead the baryonic mode �b !
p‘� ��‘, which has a more distinctive final state [7]. In order
to determine jVubj from this measurement, the �b ! p
form factors need to be calculated in nonperturbative QCD.

The �b ! p matrix elements of the vector and axial
vector b ! u currents are parametrized in terms of six
independent form factors (see, e.g., Ref. [8]). In leading-
order heavy-quark effective theory (HQET), which
becomes exact in the limit mb ! 1 and is a good approxi-
mation at the physical value of mb, only two independent
form factors remain, and the matrix element with arbitrary
Dirac matrix � in the current can be written as [8–10]

hNþðp0;s0Þj �u�Qj�Qðv;sÞi¼ �uNðp0;s0Þ½F1þ6vF2��u�Q
ðv;sÞ:
(3)

Above, v is the four-velocity of the �Q baryon, and the

form factors F1, F2 are functions of p0 � v, the energy of
the proton in the�Q rest frame (we denote the heavy quark

defined in HQET by Q, and we denote the proton by Nþ).
Note that in leading-order soft-collinear effective theory,
which applies in the limit of large p0 � v, the form factor F2

vanishes [11–13].
Calculations of �b ! p form factors have been per-

formed using QCD sum rules [14,15] and light-cone sum
rules [16–19]. Light-cone sum rules are most reliable at
low q2 (corresponding to large proton momentum in the�b

rest frame), and even there the uncertainty of the best
available calculations is of order 20% [19]. As we will
see later, the �b ! p‘� ��‘ differential decay rate has its
largest value in the high-q2 (low hadronic recoil) region.
This is also the region where lattice QCD calculations can
be performed with the highest precision.
Lattice QCD determinations of the form factors for the

mesonic decay �B ! �þ‘� ��‘ are already available [5,6],
and several groups are working on new calculations
[20–22]. We have recently published the first lattice QCD
calculation of �Q ! � form factors, which are important

for the rare decay �b ! �‘þ‘� [23]. We performed this
calculation at leading order in HQET, i.e., with static heavy
quarks. The HQET form factors F1 and F2 for the�Q ! �
transition are defined as in Eq. (3), except that the current is
�s�Q and the final state is the � baryon. In the following,
we report the first lattice QCD determination of the�Q!p
form factors defined in Eq. (3), building upon the analysis
techniques developed in Ref. [23]. The calculation uses
dynamical domain-wall fermions [24–26] for the up, down,*smeinel@mit.edu
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and strange quarks, and is based on gauge field ensembles
generated by the RBC/UKQCD Collaboration [27].

In Sec. II, we outline our extraction of the�Q ! p form

factors from ratios of correlation functions, and present the
lattice parameters and form factor results for each data set.
In Sec. III, we present our fits of the lattice-spacing, quark-
mass, and ðp0 � vÞ dependence of these results, and discuss
systematic uncertainties. We compare the �Q ! p form

factors computed here to previous determinations of both
�Q ! p and �Q ! � form factors in Sec. IV. Using our

form factor results, we then calculate the differential decay
rates of �b ! p‘� ��‘ for ‘ ¼ e, �, � in Sec. V. Finally, in
Sec. VI we discuss the impact of our results on future
determinations of jVubj from these decays, and the
prospects for more precise lattice calculations.

II. LATTICE CALCULATION

We performed the calculation of the �Q ! p form

factors with the same lattice actions and parameters as
used in our calculation of the �Q ! � form factors in

Ref. [23]. That is, we are using a domain-wall action for
the up, down, and strange quarks [24–26], the Iwasaki
action [28,29] for the gluons, and the Eichten-Hill action
[30] with Hypercubic-smeared gauge links [31] for the
static heavy quark. The Eichten-Hill action requires that
we work in the�Q rest frame, i.e., with v ¼ ð1; 0; 0; 0Þ. We

compute ‘‘forward’’ and ‘‘backward’’ three-point functions

Cð3Þ
��ð�;p0; t; t0Þ ¼ X

y

e�ip0�ðx�yÞhN�ðx0;xÞJy�ðx0 � tþ t0; yÞ

� ��Q�ðx0 � t; yÞi; (4)

Cð3;bwÞ
�� ð�;p0; t; t� t0Þ ¼ X

y

e�ip0�ðy�xÞh�Q�ðx0 þ t; yÞ

� J�ðx0 þ t0; yÞ �N�ðx0;xÞi; (5)

containing the baryon interpolating fields

�Q� ¼ �abcðC�5Þ	� ~da	~ub�Qc
�; (6)

N� ¼ �abcðC�5Þ	�~ua	 ~db�~uc�; (7)

and the current

J� ¼ Uðmb; a
�1ÞZ

��
1þ cðmaÞ

�

mua

1� ðwMF
0 Þ2

�
�Q�u

þ cðpaÞ� a �Q�� � ru
�
: (8)

In the baryon interpolating fields, the tilde on the up- and
down-quark fields indicates Gaussian gauge-covariant

smearing. The coefficientsZ, cðmaÞ
� , and cðpaÞ� in the current

(8) provide an OðaÞ-improved matching from lattice

HQET to continuum HQET in the MS scheme; they have
been computed in one-loop perturbation theory in

Ref. [32]. The factor Uðmb; a
�1Þ provides two-loop

renormalization-group running in continuum HQET from
the scale � ¼ a�1 (where a is the lattice spacing) to the
desired scale � ¼ mb.
Note that, because Eq. (7) contains two up-quark fields,

the �Q ! p three-point functions contain two different

types of contractions of quark propagators, one of which
is not present in the �Q ! � three-point functions studied

in Ref. [23]. This is also the case for the proton two-point
functions.
We multiply the forward and backward three-point

functions and form the ratio [23]

Rð�;p0; t; t0Þ ¼ 4Tr½Cð3Þð�;p0; t; t0ÞCð3;bwÞð�;p0; t; t� t0Þ�
Tr½Cð2;NÞðp0; tÞ�Tr½Cð2;�QÞðtÞ� ;

(9)

where Cð2;NÞðp0; tÞ and Cð2;�QÞðtÞ are the proton and the �Q

two-point functions, and the traces are over spinor indices.
The ratio is computed using the statistical bootstrap
method. As explained in Ref. [23], we then form the
combinations

Rþðp0; t; t0Þ ¼ 1

4
½Rð1;p0; t; t0Þ þRð�2�3;p0; t; t0Þ

þRð�3�1;p0; t; t0Þ þRð�1�2;p0; t; t0Þ�;
(10)

R�ðp0; t; t0Þ ¼ 1

4
½Rð�1;p0; t; t0Þ þRð�2;p0; t; t0Þ

þRð�3;p0; t; t0Þ þRð�5;p
0; t; t0Þ�; (11)

which, upon inserting Eq. (3) into the transfer matrix
formalism, yield

Rþðp0; t; t0Þ ¼ EN þmN

EN

½F1 þ F2�2 þ � � � ; (12)

R�ðp0; t; t0Þ ¼ EN �mN

EN

½F1 � F2�2 þ � � � : (13)

Here, the ellipses denote excited-state contributions that
decay exponentially with the Euclidean time separations,
and F1, F2 are the form factors at the given values of the
proton momentum p0, the lattice spacing, and the quark
masses. Throughout the remainder of this paper, we will
use the following names for the combinations of form
factors that appear in Eqs. (12) and (13):

Fþ ¼ F1 þ F2; F� ¼ F1 � F2: (14)

For a given value of jp0j2, we further average Eqs. (10)
and (11) over the direction of p0, and we denote the
resulting quantities as R�ðjp0j2; t; t0Þ. As a consequence
of the symmetric form of the ratio (9), at a given source-
sink separation t, the contamination from excited states is
smallest at the midpoint t0 ¼ t=2. We therefore construct
the following functions:

DETMOLD et al. PHYSICAL REVIEW D 88, 014512 (2013)

014512-2



Rþðjp0j2; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EN

EN þmN

Rþðjp0j2; t; t=2Þ
s

; (15)

R�ðjp0j2; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EN

EN �mN

R�ðjp0j2; t; t=2Þ
s

; (16)

which, according to Eqs. (12) and (13), become equal
to the form factors Fþ and F� for large source-sink
separation, t.

We performed the numerical calculations for the six differ-
ent sets of parameters shown in Table I. When evaluating
Eqs. (15) and (16), we used the lattice results for the proton
mass,mN , obtained fromfits to the proton two-point function
in the same data set. These results are also given in Table I.
Unlike in Ref. [23], here we calculated the energies at non-
zero momentum using the relativistic continuum dispersion

relation EN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ jp0j2
q

. The energies calculated in this

way are consistent with the energies obtained directly from
fits to the proton two-point functions at nonzero momentum,
but using the relativistic dispersion relation reduces the
uncertainty. We computed R�ðjp0j2; tÞ for proton momenta
in the range 0�jp0j2�9�ð2�=LÞ2, where L¼Nsa�2:7fm
is the spatial size of the lattice.We performed the calculation
for all source-sink separations from t=a ¼ 4 to t=a ¼ 15 at
the coarse lattice spacing (data sets C14, C24, C54), and for
t=a ¼ 5 to t=a ¼ 20 at the fine lattice spacing (data sets F23,
F43, F63). This wide range of source-sink separations allows

us to reliably extract the ground-state form factors [23].
Because the statistical uncertainties grow exponentially
with t, in practice the upper limit of t=a we can use is
somewhat smaller, especially at larger momentum.

A plot of example numerical results for R�ðjp0j2; tÞ as a
function of the source-sink separation t is shown in Fig. 1.
The results are qualitatively similar to those obtained for
the � final state in Ref. [23] [the t0 dependence of
R�ðjp0j2; t; t0Þ is also similar to that seen in Ref. [23]].
It can be seen that there is excited-state contamination
which decays exponentially with t. At jp0j2 � 0 we
perform fits of the t dependence using the functions

Ri;n
� ðtÞ ¼ Fi;n

� þ Ai;n
� exp ½��i;nt�; (17)

which account for the leading excited-state contamination
[23]. Above, we use an abbreviated notation where n
specifies the squared momentum of the proton [we write
jp0j2 ¼ n � ð2�=LÞ2], and i ¼ C14; C24; . . . ; F63 specifies
the data set. To enforce the positivity of the energy gaps
�i;n, we rewrite them as �i;n=ð1 GeVÞ ¼ exp ðli;nÞ. The fit

parameters in Eq. (17) are then Fi;n
� , Ai;n

� , and li;n. Note that

we perform coupled fits of Ri;n
þ and Ri;n� with common

energy gap parameters, which improves the statistical pre-
cision of the fits [23]. As a check, we have also performed

independent fits with separate energy gap parameters li;nþ
and li;n� and found that li;nþ and li;n� are in agreement within
statistical uncertainties.
At a given momentum-squared n, we perform the fits

using Eq. (17) simultaneously for the six different data sets
i ¼ C14; C24; . . . ; F63. Because the lattice size, L (in physi-
cal units), is equal within uncertainties for all data sets, the
squared momentum jp0j2 ¼ n � ð2�=LÞ2 for a given n is
also equal within uncertainties for all data sets. To improve

TABLE I. Lattice parameters. The data sets C14, C24 and C54 all correspond to the same ‘‘coarse’’ ensemble of gauge fields with gauge

coupling	 ¼ 6=g2 ¼ 2:13 and sea-quarkmasses amðseaÞ
s ¼ 0:04,amðseaÞ

u;d ¼ 0:005; these data sets differ only in the values of the valence-

quark mass, amðvalÞ
u;d , used for the domain-wall propagators. At the ‘‘fine’’ lattice spacing, the propagators in the F23 and F43 data sets are

from one common ensemble of gauge fields, but the F63 data set is obtained from a different ensemble with heavier sea-quark masses.

In each case, we also list the valence pion and proton masses,mðvalÞ
� andmðvalÞ

N , and the number of light-quark propagators,Nmeas, used for

our analysis. The ensembles of gauge fields have been generated by the RBC/UKQCD Collaboration; see Ref. [27] for further details.

Set 	 N3
s � Nt � N5 am5 amðseaÞ

s amðseaÞ
u;d a (fm) amðvalÞ

u;d mðvalÞ
� (MeV) mðvalÞ

N (MeV) Nmeas

C14 2.13 243 � 64� 16 1.8 0.04 0.005 0.1119(17) 0.001 245(4) 1090(21) 2672

C24 2.13 243 � 64� 16 1.8 0.04 0.005 0.1119(17) 0.002 270(4) 1103(20) 2676

C54 2.13 243 � 64� 16 1.8 0.04 0.005 0.1119(17) 0.005 336(5) 1160(19) 2782

F23 2.25 323 � 64� 16 1.8 0.03 0.004 0.0849(12) 0.002 227(3) 1049(25) 1907

F43 2.25 323 � 64� 16 1.8 0.03 0.004 0.0849(12) 0.004 295(4) 1094(18) 1917

F63 2.25 323 � 64� 16 1.8 0.03 0.006 0.0848(17) 0.006 352(7) 1165(23) 2782

FIG. 1 (color online). Example of numerical results for
R�ðjp0j2; tÞ, plotted as a function of the source-sink separation
t, along with a fit using Eq. (17). The data shown here are from
the C54 set and at jp0j2 ¼ 4 � ð2�=LÞ2. As explained in Ref. [23],
at each value of jp0j2, the fit is performed simultaneously for the
six data sets.
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the stability of the fits, we augment the 
2 function by
adding a term that limits the variation of li;n across the data
sets to reasonable values [23].

At p0 ¼ 0, we can only compute Ri;0
þ ðtÞ, and we find that

the t dependence of Ri;0
þ ðtÞ is weak. In this case we are

unable to perform exponential fits, and we instead perform
constant fits, excluding a few points at the shortest t.

The numerical results for the form factors Fi;n
� are listed

in Tables II and III. The uncertainties shown there are
the quadratic combination of the statistical uncertainty
and an estimate of the systematic uncertainty associated
with the choice of fit range for Eq. (17). To estimate
this systematic uncertainty, we calculated the changes in

the fitted Fi;n
� when excluding the data points with the

shortest source-sink separation [23]. These changes
fluctuate as a function of the momentum, and here we

conservatively took the maximum of the change over all
momenta as the systematic uncertainty for each data set.
In Tables IV and V, we additionally list the corresponding

results for Fi;n
1 ¼ðFi;n

þ þFi;n� Þ=2 and Fi;n
2 ¼ðFi;n

þ �Fi;n� Þ=2,
where the uncertainties take into account the correlations

between Fi;n
þ and Fi;n� .

III. FITS OF THE FORMFACTORS AS FUNCTIONS
OF EN � mN, mu;d, AND a

In this section we present fits that smoothly interpolate
the EN dependence of our �Q ! p form factor results,

including corrections to account for the dependence on the
lattice spacing and the light-quark mass. In principle, the
form of this dependence can be predicted in a low-energy
effective field theory combining heavy-baryon chiral

TABLE III. Lattice results for the form factor F�.

jp0j2=ð2�=LÞ2 FC14� FC24� FC54� FF23� FF43� FF63�
1 1.80(12) 1.861(98) 1.874(66) 1.70(18) 1.709(93) 1.755(99)

2 1.60(11) 1.615(91) 1.625(63) 1.52(17) 1.540(89) 1.541(98)

3 1.46(12) 1.502(10) 1.513(71) 1.48(18) 1.433(90) 1.415(99)

4 1.17(11) 1.181(85) 1.265(62) 1.29(17) 1.281(89) 1.270(96)

5 1.07(10) 1.110(86) 1.169(63) 1.15(17) 1.177(88) 1.179(95)

6 1.00(11) 1.046(87) 1.101(65) 1.02(17) 1.079(88) 1.115(96)

8 0.82(11) 0.878(88) 0.915(65) 0.89(18) 0.955(90) 0.965(97)

9 0.80(11) 0.814(90) 0.863(69) 0.84(17) 0.93(10) 0.94(10)

TABLE II. Lattice results for the form factor Fþ.

jp0j2=ð2�=LÞ2 FC14þ FC24þ FC54þ FF23þ FF43þ FF63þ
0 1.148(53) 1.126(39) 1.119(39) 1.125(74) 1.117(52) 1.069(62)

1 1.030(50) 1.026(37) 1.023(38) 1.037(68) 1.027(48) 0.993(61)

2 0.926(51) 0.923(38) 0.924(38) 0.922(67) 0.921(47) 0.892(64)

3 0.828(53) 0.843(39) 0.842(39) 0.843(69) 0.845(48) 0.814(64)

4 0.776(51) 0.775(38) 0.772(39) 0.795(70) 0.792(49) 0.761(63)

5 0.693(51) 0.719(38) 0.716(39) 0.754(70) 0.747(50) 0.710(63)

6 0.648(52) 0.673(39) 0.664(39) 0.702(72) 0.700(51) 0.673(64)

8 0.578(56) 0.606(41) 0.610(40) 0.632(75) 0.621(55) 0.624(65)

9 0.549(60) 0.568(45) 0.573(42) 0.604(77) 0.590(59) 0.605(67)

TABLE IV. Lattice results for the form factor F1.

jp0j2=ð2�=LÞ2 FC14
1 FC24

1 FC54
1 FF23

1 FF43
1 FF63

1

1 1.417(64) 1.444(56) 1.448(41) 1.368(98) 1.368(47) 1.374(67)

2 1.263(61) 1.269(53) 1.274(41) 1.220(90) 1.231(43) 1.216(69)

3 1.144(62) 1.172(58) 1.177(44) 1.160(92) 1.139(44) 1.115(69)

4 0.975(56) 0.978(50) 1.018(39) 1.041(90) 1.037(43) 1.016(68)

5 0.879(55) 0.914(50) 0.942(40) 0.951(89) 0.962(42) 0.944(67)

6 0.824(56) 0.860(51) 0.883(41) 0.861(91) 0.890(43) 0.894(67)

8 0.699(59) 0.742(51) 0.763(40) 0.760(95) 0.788(46) 0.795(68)

9 0.672(63) 0.691(52) 0.718(41) 0.722(96) 0.760(52) 0.770(71)
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perturbation theory for the proton [33,34] with heavy-
hadron chiral perturbation theory [35,36] for the �Q.

However, there are a number of issues that limit the use-
fulness of this approach for our work. One limitation is that
chiral perturbation theory breaks down for momenta jp0j
comparable to or larger than the chiral symmetry breaking
scale. Another limitation is that the effective theory also
needs to include the �Q and � baryons in the chiral loops,

which is expected to lead to additional unknown low-
energy constants associated with the matching of the
Q ! u current to the �Q ! p, �Q ! �, and �Q ! �
currents in the effective theory. Finally, some of the data
sets used here are partially quenched (with valence-quark
masses lighter than the sea-quark masses), which further
increases the complexity of the effective theory. As in
Ref. [23], we therefore use a simple model that success-
fully describes the dependence of the form factors on EN ,
mu;d, and a, at the present level of uncertainty. It is given by

Fi;n
� ¼ Y�

ðXi� þ Ei;n
N �mi

NÞ2
� ½1þ d�ðaiEi;n

N Þ2�; (18)

where the position of the pole depends on the pion mass,

Xi� ¼ X� þ c� � ½ðmi
�Þ2 � ðmphys

� Þ2�; (19)

and the term ½1þ d�ðaiEi;n
N Þ2� models the lattice discreti-

zation artifacts, which are assumed to increase with the
proton energy. As discussed above, we calculate the proton

energies using the relativistic dispersion relation Ei;n
N ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmi
NÞ2 þ n � ð2�=LÞ2

q
, where mi

N is the lattice proton

mass for the data set i. The free fit parameters in Eq. (18)
are Y�, X�, d�, and c�. Note that here we do not include
dependence on the strange-quark mass, because none of
the hadrons involved contain a valence strange quark. The

fits of Fi;n
� using Eq. (18) are shown in Fig. 2, and give the

results listed in Table VI. We have also performed inde-

pendent fits of the data for Fi;n
1 ¼ ðFi;n

þ þ Fi;n� Þ=2 and

Fi;n
2 ¼ ðFi;n

þ � Fi;n� Þ=2, using the functions

Fi;n
1;2 ¼

Y1;2

ðXi
1;2 þ Ei;n

N �mi
NÞ2

� ½1þ d1;2ðaiEi;n
N Þ2�; (20)

with Xi
1;2 ¼ X1;2 þ c1;2 � ½ðmi

�Þ2 � ðmphys
� Þ2�. These fits are

shown in Fig. 3, and the resulting values of the parameters
are given in Table VII.
By construction, Eqs. (18) and (20) reduce to

F� ¼ Y�
ðX� þ EN �mNÞ2

; (21)

F1;2 ¼ Y1;2

ðX1;2 þ EN �mNÞ2
(22)

in the continuum limit and at the physical pion mass. These
functions are shown at the bottom of Figs. 2 and 3. In the
range of EN �mN considered here, the numerical results
for Eqs. (21) and (22) are consistent with the relations
Fþ ¼ F1 þ F2 and F� ¼ F1 � F2 within the statistical
uncertainties, as expected. In the plots at the bottom of
Figs. 2 and 3, the statistical/fitting uncertainty is indicated
using the inner error bands. The outer error bands addi-
tionally include estimates of the total systematic uncer-
tainty, arising from the following sources: the matching of
the lattice HQET to continuum HQET current, the finite
lattice volume, the unphysical light-quark masses, and the
nonzero lattice spacing. We discuss these uncertainties
below.
As explained in Sec. II, the lattice HQET to continuum

HQET matching is performed using one-loop perturbation
theory at the scale � ¼ a�1, followed by a two-loop
renormalization-group evolution from � ¼ a�1 to the
scale of the b-quark mass. To estimate the uncertainty
resulting from this use of perturbation theory, we vary
the scale from � ¼ a�1 to � ¼ 2a�1. For the �Q ! p
form factors, this results in a change by 7% at the coarse
lattice spacing, and 6% at the fine lattice spacing [these
relative changes are approximately the same as for�Q!�
[23]; any difference in the size of the effect has to come
from the OðaÞ-improvement terms, but their contribution
is small]. Thus, we take the matching uncertainty for the
continuum-extrapolated form factors to be 6%. Finite-
volume effects are also estimated in the same way as in
Ref. [23]; based on the values of exp ð�m�LÞ for each data
set we estimate the finite-volume effects in the extrapolated
form factors to be of order 3%. The extrapolations to the

TABLE V. Lattice results for the form factor F2.

jp0j2=ð2�=LÞ2 FC14
2 FC24

2 FC54
2 FF23

2 FF43
2 FF63

2

1 �0:387ð60Þ �0:418ð43Þ �0:425ð29Þ �0:332ð86Þ �0:341ð47Þ �0:381ð37Þ
2 �0:337ð56Þ �0:346ð38Þ �0:350ð27Þ �0:297ð82Þ �0:309ð46Þ �0:325ð34Þ
3 �0:316ð59Þ �0:330ð44Þ �0:335ð31Þ �0:317ð86Þ �0:294ð48Þ �0:300ð35Þ
4 �0:199ð54Þ �0:203ð36Þ �0:247ð27Þ �0:247ð85Þ �0:245ð48Þ �0:254ð34Þ
5 �0:186ð54Þ �0:196ð37Þ �0:226ð28Þ �0:197ð82Þ �0:215ð48Þ �0:235ð34Þ
6 �0:176ð55Þ �0:187ð37Þ �0:219ð29Þ �0:159ð82Þ �0:190ð48Þ �0:221ð35Þ
8 �0:121ð57Þ �0:136ð41Þ �0:153ð31Þ �0:128ð85Þ �0:167ð50Þ �0:171ð36Þ
9 �0:124ð60Þ �0:123ð43Þ �0:145ð35Þ �0:117ð82Þ �0:170ð59Þ �0:165ð39Þ
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physical pion mass and the continuum limit using our
simple fit models (18) and (20) with a small number of
parameters cannot be expected to completely remove the
errors associated with the unphysical light-quark masses
and nonzero lattice spacing. As discussed above, we did
not use chiral perturbation theory, and we ignored the fact
that some of our lattice results are partially quenched.
Similarly, our fit models assume a particular EN depen-
dence of the lattice-spacing errors, which was not derived
from effective field theory. Following Ref. [23], we esti-
mate the resulting systematic uncertainties by comparing

the form factor results from our standard fits to those
from fits with the parameters c�, c1;2 or d�, d1;2 set to

zero. In the energy range 0 � EN �mN � 0:7 GeV, the
maximum changes when setting c� ¼ 0, c1;2 ¼ 0 are 3%

for Fþ, 3% for F�, 1% for F1, and 13% for F2. In the
same range, the maximum changes when setting d� ¼ 0,
d1;2 ¼ 0 are 2% for Fþ, 2% for F�, 3% for F1, and 4% for

F2. None of these changes are statistically significant;
nevertheless we add these percentages in quadrature to
the uncertainties from the current matching and from the
finite-volume effects.

FIG. 2 (color online). Fits of the form factor data for Fþ and F� using Eq. (18). In the upper six plots, we show the lattice results
together with the fitted functions evaluated at the corresponding values of the pion mass and lattice spacing. In the lower plot, we show
the fitted functions evaluated at the physical pion mass and in the continuum limit. There, the inner shaded bands indicate
the statistical/fitting uncertainty, and the outer shaded bands additionally include the estimates of the systematic uncertainty given
in Eqs. (23) and (24).
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In summary, we obtain the following estimates of
the total systematic uncertainties (valid for 0 �
EN �mN � 0:7 GeV):

Fþ:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6%Þ2 þ ð3%Þ2 þ ð3%Þ2 þ ð2%Þ2

q
� 8%; (23)

F�:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6%Þ2 þ ð3%Þ2 þ ð3%Þ2 þ ð2%Þ2

q
� 8%; (24)

F1:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6%Þ2 þ ð3%Þ2 þ ð1%Þ2 þ ð3%Þ2

q
� 7%; (25)

F2:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6%Þ2 þ ð3%Þ2 þ ð13%Þ2 þ ð4%Þ2

q
� 15%: (26)

Note that in contrast to Ref. [23], here we choose to only
evaluate the form factors in the energy region where we
have lattice data, and Eqs. (18) and (20) interpolate this
data in EN �mN . While we have investigated extrapola-
tions into the large-energy region, such extrapolations
necessarily introduce model dependence (similar to that
seen in Ref. [23]) and will not aid in a precision extraction
of jVubj from experiment.

IV. COMPARISON WITH OTHER FORM
FACTOR RESULTS

It is interesting to compare our results for the �Q ! p
form factors to the corresponding results for the �Q ! �
transition obtained in Ref. [23]. This comparison is shown
for F1 and F2 in Fig. 4, where we plot the form factors vs
EN �mN and E� �m� as before. This choice of variables
on the horizontal axis ensures that the points of zero spatial
momentum of the final-state hadron (in the �Q rest frame)

coincide. As can be seen in the figure, when compared in
this way, the�Q ! p form factors have a larger magnitude

than the �Q ! � form factors. This difference is statisti-

cally most significant at zero recoil, and becomes less well
resolved at higher energy, where our relative uncertainties
grow. For the ratio F2=F1, we are unable to resolve any

difference between�Q ! p and�Q ! �, as shown on the

right-hand side of Fig. 4.
It is also interesting to compare our QCD calculation of

the�Q ! p form factors with calculations using sum rules

[14,15] or light-cone sum rules [16–19]. However, most of
these studies worked with the relativistic form factors,
and focused on the region of high proton momentum
(low q2), where our results would involve extrapolation
and hence model dependence. Only Ref. [14] explicitly
includes results for the HQET form factors F1 and F2 in
an energy region that overlaps with the region where we
have lattice data. For example, at EN �mN ¼ 0:7 GeV,
the results obtained in Ref. [14] for three different values
of the Borel parameter used in that work are F1 �
ð0:46; 0:47; 0:50Þ and F2 � ð�0:13;�0:18;�0:27Þ, while
our lattice QCD calculation gives

F1ðEN �mN ¼ 0:7 GeVÞ¼ 0:703�0:045�0:049; (27)

F2ðEN �mN ¼ 0:7 GeVÞ ¼ �0:124� 0:025� 0:019;

(28)

where the first uncertainty is statistical and the second
uncertainty is systematic.

V. THE DECAY �b ! p‘� ��‘

In this section, we use the form factors determined above
to calculate the differential decay rates of �b ! p‘� ��‘

with ‘ ¼ e, �, � in the Standard Model. The effective
weak Hamiltonian for b ! u‘� ��‘ transitions is

H eff ¼ GFffiffiffi
2

p Vub �u��ð1� �5Þb�l��ð1� �5Þ�; (29)

with the Fermi constant GF and the CKM matrix element
Vub [37–39]. Higher-order electroweak corrections are
neglected. The resulting amplitude for the decay �b !
p‘� ��‘ can be written as

M ¼ �ihNþðp0; s0Þ‘�ðp�; s�Þ ��ðpþ; sþÞjH effj�bðp; sÞi
¼ �i

GFffiffiffi
2

p VubA� �u‘ðp�; s�Þ��ð1� �5Þv ��ðpþ; sþÞ;

(30)

where A� is the hadronic matrix element

A� ¼ hNþðp0; s0Þj �u��ð1� �5Þbj�bðp; sÞi: (31)

Because we have computed the form factors in HQET, we
need to match the QCD current �u��ð1� �5Þb in Eq. (31)

to the effective theory. This gives (at leading order in
1=mb)

A� ¼ ffiffiffiffiffiffiffiffiffi
m�b

p hNþðp0; s0Þjðc� �u��Qþ cv �uv�Q

� c� �u���5Qþ cv �uv��5QÞj�Qðv; sÞi; (32)

TABLE VI. Results for the form factor normalization and
shape parameters Y� and X� from fits of the lattice QCD results
for Fi;n

� , using Eq. (18). The covariances of the parameters needed
in Eq. (21) are CovðYþ; XþÞ ¼ 0:090 GeV3 and CovðY�; X�Þ ¼
0:080 GeV3. The results for the parameters describing the
quark-mass and lattice-spacing dependence are cþ¼
0:38ð35ÞGeV�1, dþ¼�0:031ð81Þ, c�¼�0:22ð35ÞGeV�1, and
d� ¼ �0:025ð94Þ.
Parameter Result

Yþ 3:24� 0:62 GeV2

Xþ 1:66� 0:15 GeV
Y� 2:92� 0:62 GeV2

X� 1:19� 0:13 GeV
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whereQ is the static heavy-quark field, and to one loop, the
matching coefficients are given by [40]

c� ¼ 1� �sð�Þ
�

�
4

3
þ ln

�
�

mb

��
; (33)

cv ¼ 2

3

�sð�Þ
�

: (34)

Here we set� ¼ mb. We can now use Eq. (3) to express the
matrix element A� in terms of the form factors F1 and F2:

A� ¼ �uNðp0; s0ÞðF1 þ 6vF2Þðc��� þ cvv� � c����5

þ cvv��5Þ ffiffiffiffiffiffiffiffiffi
m�b

p
u�Q

ðv; sÞ: (35)

The factor of
ffiffiffiffiffiffiffiffiffi
m�b

p
in Eqs. (32) and (35) results from the

HQET convention for the normalization of the state
j�Qðv; sÞi and the spinor u�Q

ðv; sÞ. We can make the

replacement
ffiffiffiffiffiffiffiffiffi
m�b

p
u�Q

ðv; sÞ ¼ u�b
ðp; sÞ, where p ¼

m�b
v, and the spinor u�b

ðp; sÞ has the standard relativistic
normalization. A straightforward calculation then gives the
following differential decay rate:

FIG. 3 (color online). Fits of the form factor data for F1 and F2 using Eq. (20). In the upper six plots, we show the lattice results
together with the fitted functions evaluated at the corresponding values of the pion mass and lattice spacing. In the lower plot, we show
the fitted functions evaluated at the physical pion mass and in the continuum limit. There, the inner shaded bands indicate
the statistical/fitting uncertainty, and the outer shaded bands additionally include the estimates of the systematic uncertainty given
in Eqs. (25) and (26).
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d�

dq2
¼ jVubj2G2

F

768�3q6m5
�b

ðq2�m2
‘Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððm�b

þmNÞ2�q2Þððm�b
�mNÞ2�q2Þ

q
�½ð4c2�þ4c�cvþ2c2vÞm2

‘FIþð2c2�ðIþ3q2m2
�b
Þ

þcvð2c�þcvÞðI�3q2m2
�b
ÞÞq2Fþ4c�ðc�þcvÞK�;

(36)

where we have defined the combinations

F ¼ ððm�b
þmNÞ2 � q2ÞF2þ þ ððm�b

�mNÞ2 � q2ÞF2�;

(37)

I ¼ m4
�b

� 2m2
Nðm2

�b
þ q2Þ þ q2m2

�b
þm4

N þ q4;

(38)

K ¼ ð2m2
‘ þ q2Þððm�b

þmNÞ2 � q2Þððm�b
�mNÞ2 � q2Þ

� ðm2
�b

�m2
N þ q2ÞFþF�; (39)

and, as before, F� ¼ F1 � F2. To evaluate this, we use Fþ
and F� from the fits to our lattice QCD results, which are
parametrized by Eq. (18) with the parameters in Table VI.
At a given value of q2, we evaluate the form factors at

EN �mN ¼ p0 � v�mN ¼ m2
�b

þm2
N � q2

2m�b

�mN; (40)

with the physical values of the baryon masses (which we
take from Ref. [4]).
In Fig. 5, we show plots of jVubj�2d�=dq2 for the decays

�b ! p�� ��� and �b ! p�� ��� in the kinematic range

where we have lattice QCD results (in this range, the
results for the electron final state look identical to the
results for the muon final state and are therefore not
shown). The inner error bands in Fig. 5 originate from
the total uncertainty (statistical plus systematic) in the
form factors Fþ and F�. The use of leading-order HQET
for the b quark introduces an additional systematic uncer-
tainty in the differential decay rate, which is included in the
outer error band in Fig. 5. At zero hadronic recoil, this
uncertainty is expected to be of order �QCD=mb. At non-

zero hadronic recoil, one further expects an uncertainty of
order jp0j=mb, because the proton momentum constitutes a
new relevant scale. We add these two uncertainties in
quadrature, and hence estimate the systematic uncertainty
in jVubj�2d�=dq2 that is caused by the use of leading-order
HQET to be ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
QCD

m2
b

þ jp0j2
m2

b

vuut ; (41)

where we take �QCD ¼ 500 MeV.
We also provide the following results for the integrated

decay rate in the kinematic range of our lattice calculation,
14 GeV2 � q2 � q2max [where q2max ¼ ðm�b

�mNÞ2]:
1

jVubj2
Z q2max

14 GeV2

d�ð�b ! p‘� ��‘Þ
dq2

dq2

¼

8>><
>>:
15:3� 2:4� 3:4 ps�1 for ‘ ¼ e;

15:3� 2:4� 3:4 ps�1 for ‘ ¼ �;

12:5� 1:9� 2:7 ps�1 for ‘ ¼ �:

(42)

FIG. 4 (color online). Left: Comparison of the form factors F1 and F2 for the�Q ! p transition to the analogous form factors for the
�Q ! � transition [23], all calculated using the same actions and parameters in lattice QCD. Right: Comparison of the ratio jF2=F1j.
Only the statistical error bands are shown here for clarity.

TABLE VII. Results for the form factor normalization and
shape parameters Y1;2 and X1;2 from fits of the lattice QCD

results for Fi;n
1;2, using Eq. (20). The covariances of the parame-

ters needed in Eq. (22) are CovðY1; X1Þ ¼ 0:057 GeV3 and
CovðY2; X2Þ ¼ �0:018 GeV3. The results for the parameters
describing the quark-mass and lattice-spacing dependence are
d1 ¼ �0:038ð70Þ, c1 ¼ �0:04ð30Þ GeV�1, d2 ¼ 0:05ð22Þ, and
c2 ¼ �0:53ð54Þ GeV�1.

Parameter Result

Y1 2:97� 0:50 GeV2

X1 1:36� 0:12 GeV
Y2 �0:28� 0:11 GeV2

X2 0:81� 0:17 GeV
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Here, the first uncertainty originates from the form factors,
and the second uncertainty originates from the use of the
static approximation for the b quark. With future experi-
mental data, Eq. (42) can be used to determine jVubj.

VI. DISCUSSION

We have obtained precise lattice QCD results for the
�Q ! p form factors defined in the heavy-quark limit.

These results are valuable in their own right, as they can
be compared to model-dependent studies performed in the
same limit, and eventually to future lattice QCD calcula-
tions at the physical b-quark mass. For the �b ! p‘� ��‘

differential decay rate, the static approximation introduces
a systematic uncertainty that is of order �QCD=mb � 10%

at zero recoil and grows as the momentum of the proton in
the�b rest frame is increased. The total uncertainty for the
integral of the differential decay rate from q2 ¼ 14 GeV2

to q2max ¼ ðm�b
�mNÞ2, which is the kinematic range

where we have lattice data, is about 30%. Using future
experimental data, this will allow a novel determination of
the CKM matrix element jVubj with about 15% theoretical
uncertainty (the experimental uncertainty will also contrib-
ute to the overall extraction). The theoretical uncertainty is
already smaller than the difference between the values of
jVubj extracted from inclusive and exclusive B meson
decays [Eqs. (1) and (2)], and can be reduced further by
performing lattice QCD calculations of the full set of
�b ! p form factors at the physical value of the b-quark
mass. In such calculations, the b quark can be implemented
using for example a Wilson-like action [41–43], lattice

nonrelativistic QCD [44], or higher-order lattice HQET

[45]. Once the uncertainty from the static approximation
is eliminated, other systematic uncertainties need to be
reduced. In the present calculation, the second-largest
source of systematic uncertainty is the one-loop matching
of the lattice currents to the continuum current; ideally, in
future calculations this can be replaced by a nonperturba-
tive method. We expect that after making these improve-
ments, the theoretical uncertainty in the value of jVubj
extracted from �b ! p‘� ��‘ decays will be of order 5%,
and comparable to the theoretical uncertainty for the
analogous �B ! �þ‘� ��‘ decays.
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FIG. 5 (color online). Our predictions for the differential decay rates of �b ! p�� ��� (left) and �b ! p�� ��� (right), divided by
jVubj2. We only show the kinematic region where we have lattice QCD results for the form factors Fþ and F�. The inner error band
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