Parallelogram-Free Distance-Regular Graphs

Yuh-jeng Liang and Chih-wen Weng

Department of Applied Mathematics, National Chiao Tung University, Taiwan, Republic of China

Received November 7, 1996

Let $\Gamma=(X,R)$ denote a distance-regular graph with distance function ∂ and diameter $d\geqslant 4$. By a parallelogram of length i $(2\leqslant i\leqslant d)$, we mean a 4-tuple xyzu of vertices in X such that $\partial(x,y)=\partial(z,u)=1$, $\partial(x,u)=i$, and $\partial(x,z)=\partial(y,z)=\partial(y,u)=i-1$. We prove the following theorem. Theorem. Let Γ denote a distance-regular graph with diameter $d\geqslant 4$, and intersection numbers $a_1=0$, $a_2\neq 0$. Suppose Γ is Q-polynomial and contains no parallelograms of length 3 and no parallelograms of length 4. Then Γ has classical parameters (d,b,α,β) with b<-1. By including results in [3], [9], we have the following corollary. Corollary. Let Γ denote a distance-regular graph with the Q-polynomial property. Suppose the diameter $d\geqslant 4$. Then the following (i)—(ii) are equivalent. (i) Γ contains no parallelograms of any length. (ii) One of the following (iia)—(iic) holds. (iia) Γ is bipartite. (iib) Γ is a generalized odd graph. (iic) Γ has classical parameters (d,b,α,β) and either b<-1 or Γ is a Hamming graph or a dual polar graph.

1. INTRODUCTION

It is well known that a distance-regular graph with classical parameters has the Q-polynomial property [2, Theorem 8.4.1]. For the converse, Brouwer, Cohen, Neumaier proved that a Q-polynomial regular near polygon with diameter $d \ge 3$ and intersection number $a_1 \ne 0$ has classical parameters [2, Theorem 8.5.1]. In [8], we proved a generalized version of above result.

In this paper, we consider a Q-polynomial distance-regular graph with $a_1=0,\ a_2\neq 0$ and prove that it has classical parameters if its diameter is at least 4 and if it contains no 4-vertex configurations of a certain type (parallelograms). See Theorem 2.11 for details. By including some results in [3, 9], we give a classification of parallelogram-free Q-polynomial distance-regular graphs in Corollary 2.12.

For the rest of this section, we review some definitions and basic concepts. See Bannai and Ito [1] or Terwilliger [5] for more background information

Throughout this paper, $\Gamma = (X, R)$ will denote a finite, connected, undirected graph without loops, or multiple edges, and with vertex set X, edge set R, path length distance function ∂ , and diameter $d := \max\{\partial(x, y) \mid x, y \in X\}$. Γ is said to be *distance-regular* whenever for all integers h, i, $j \in A$, and all vertices x, $y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = |\{z \in X \mid \partial(x, z) = i, \partial(y, z) = j\}|$$

is independent of x, y. The constants p_{ij}^h $(0 \le h, i, j \le d)$ are known as the *intersection numbers* of Γ . For convenience, set $c_i := p_{1:i-1}^i$ $(1 \le i \le d)$, $a_i := p_{1:i}^i$ $(0 \le i \le d)$, $b_i := p_{1:i+1}^i$ $(0 \le i \le d-1)$, and put $b_d := 0$, $c_0 := 0$, $k = b_0$. It is immediate from the definition that $b_i \ne 0$ $(0 \le i \le d-1)$, $c_i \ne 0$ $(1 \le i \le d)$, and

$$k = b_0 = a_i + b_i + c_1$$
 $(1 \le i \le d)$. (1.1)

We refer to k as the valency of Γ .

A distance-regular graph Γ is called *bipartite* whenever $a_1 = a_2 = \cdots = a_d = 0$. Γ is called a *generalized odd graph* whenever $a_1 = a_2 = \cdots = a_{d-1} = 0$, $a_d \neq 0$.

From now on, we fix a distance-regular graph with diameter $d \ge 3$. Let $p_{ij}^h (0 \le h, i, j \le d)$ denote the intersection numbers of Γ .

Let $\operatorname{Mat}_X(\mathbb{R})$ denote the algebra of all the matrices over the real number field with the rows and columns indexed by the elements of X. The *distance matrices* of Γ are the matrices $A_0, A_1, ..., A_d \in \operatorname{Mat}_X(\mathbb{R})$, defined by the rule

$$(A_i)_{xy} = \begin{cases} 1 & \text{if} \quad \partial(x, y) = i \\ 0 & \text{if} \quad \partial(x, y) \neq i \end{cases} (x, y \in X).$$

Then

$$A_0 = I, (1.2)$$

$$A_0 + A_1 + \dots + A_d = J$$
 (*J* = all 1's matrix), (1.3)

$$A_i^t = A_i \qquad (0 \leqslant i \leqslant d), \tag{1.4}$$

$$A_i A_j = \sum_{h=0}^{d} p_{ij}^h A_h \qquad (0 \le i, j \le d), \tag{1.5}$$

$$A_i A_i = A_i A_i \qquad (0 \le i, j \le d). \tag{1.6}$$

Let M denote the subspace of $\operatorname{Mat}_X(\mathbb{R})$ spanned by $A_0, A_1, ..., A_d$. Then M is a commutative subalgebra of $\operatorname{Mat}_X(\mathbb{R})$, and is known as the

Bose-Mesner algebra of Γ . By [1, p. 59, p. 64], M has a second basis $E_0, E_1, ..., E_d$ such that

$$E_0 = |X|^{-1} J, (1.7)$$

$$E_i E_j = \delta_{ij} E_i \qquad (0 \leqslant i, j \leqslant d), \tag{1.8}$$

$$E_0 + E_1 + \dots + E_d = I, \tag{1.9}$$

$$E_i^t = E_i \qquad (0 \leqslant i \leqslant d). \tag{1.10}$$

The $E_0, E_1, ..., E_d$ are known as the *primitive idempotents* of Γ , and E_0 is known as the *trivial* idempotent. Let E denote any primitive idempotent of Γ . Then we have

$$E = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i$$
 (1.11)

for some θ_0^* , θ_1^* , ..., $\theta_d^* \in \mathbb{R}$, called the *dual eigenvalues* associated with E. Let \circ denote entry-wise multiplication in $\mathrm{Mat}_X(\mathbb{R})$. Then

$$A_i \circ A_j = \delta_{ij} A_i \qquad (0 \leqslant i, j \leqslant d),$$

so M is closed under \circ . Thus there exists $q_{ij}^k \in \mathbb{R} \ (0 \le i, j, k \le d)$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^d q_{ij}^k E_k \qquad (0 \le i, j \le d).$$

 Γ is said to be *Q-polynomial* with respect to the given ordering E_0 , E_1 , ..., E_d of the primitive idempotents, if for all integers h, i, j ($0 \le h$, i, $j \le d$), $q_{ij}^h = 0$ (resp. $q_{ij}^h \ne 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. Let E denote any primitive idempotent of Γ . Then Γ is said to be Q-polynomial with respect to E whenever there exists an ordering E_0 , $E_1 = E$, ..., E_d of the primitive idempotents of Γ , with respect to which Γ is Q-polynomial. If Γ is Q-polynomial with respect to E, then the associated dual eigenvalues are distinct [5, p. 384].

Set $V = \mathbb{R}^{|X|}$ (column vectors), and view the coordinates of V as being indexed by X. Then the Bose-Mesner algebra M acts on V by left multiplication. We call V the *standard module* of Γ . For each vertex $x \in X$, set

$$\hat{x} = (0, 0, ..., 0, 1, 0, ..., 0)^{t}, \tag{1.12}$$

where the 1 is in coordinate x. Also, let \langle , \rangle denote the dot product

$$\langle u, v \rangle = u^t v \qquad (u, v \in V).$$
 (1.13)

Then referring to the primitive idempotent E in (1.11), we compute from (1.10)–(1.13) that

$$\langle E\hat{x}, \, \hat{y} \rangle = |X|^{-1} \, \theta_i^* \qquad (x, y \in X), \tag{1.14}$$

where $i = \partial(x, y)$.

2. MAIN THEOREM

Throughout this section, we will use the following notations.

DEFINITION 2.1. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \ge 3$. For all $x, y \in X$, and all integers i, j, define

$$p_{ij}(x, y) := \sum_{\substack{z \in X \\ \partial(x, z) = i \\ \partial(y, z) = j}} \hat{z},$$

where the \hat{z} notation is from (1.12). Further define

$$x_y^- := p_{1h-1}(x, y),$$

 $x_y^0 := p_{1h}(x, t),$
 $x_y^0 := p_{1h+1}(x, y),$

where

$$h = \partial(x, y)$$
.

Our work is based on the following two theorems of Leonard [4], Terwilliger [6, Theorem 3.3] and Terwilliger [7, Theorem 2.6 and Theorem 2.7].

THEOREM 2.2. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \ge 3$, and suppose Γ is a Q-polynomial with respect to the primitive idempotent

$$E_1 = |X|^{-1} \sum_{h=0}^{d} \theta_h^* A_h.$$

Then the following (i)–(ii) hold.

$$\theta_{i-2}^* - \theta_{i-1}^* = \sigma(\theta_{i-3}^* - \theta_i^*) \qquad (3 \le i \le d)$$
 (2.1)

for appropriate $\sigma \in \mathbb{R} \setminus \{0\}$.

(ii) ([6]) For all integers h, i, j ($1 \le h \le d$), ($0 \le i, j \le d$), and all x, $y \in X$ such that $\partial(x, y) = h$, the vector

$$p_{ij}(x, y) - p_{ji}(x, y) - r_{ii}^{h}(\hat{x} - \hat{y})$$
 (2.2)

is orthogonal to $E_0V + E_1V$, where

$$r_{ij}^h = p_{ij}^h \left(\frac{\theta_i^* - \theta_j^*}{\theta_0^* - \theta_i^*} \right). \tag{2.3}$$

THEOREM 2.3. ([7]) Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \geqslant 3$, and suppose Γ is Q-polynomial with respect to the primitive idempotent

$$E_1 = |X|^{-1} \sum_{h=0}^{d} \theta_h^* A_h.$$

Then for all integers h, i, j $(0 \le h, i, j \le d)$, and all $x, y \in X$ such that $\partial(x, y) = h$, the vector

$$p_{ij}(x, y) + p_{ji}(x, y) - s_{ij}^{h}(\hat{x} + \hat{y}) - t_{ij}^{h-1}(x_{y}^{-} + y_{x}^{-})$$
$$-t_{ij}^{h}(x_{y}^{0} + y_{x}^{0}) - t_{ij}^{h+1}(x_{y}^{+} + y_{x}^{+})$$
(2.4)

is orthogonal to $E_0V + E_1V$, where

(a)
$$t_{ij}^{-1} = t_{ij}^{0} = t_{ij}^{d+1} = 0$$
 $(0 \le i, j \le d),$ (2.5)

(b)
$$p_{ij}^{h} = s_{ij}^{h} + c_h t_{ij}^{h-1} + a_h t_{ij}^{h} + b_h t_{ij}^{h+1}$$
 $(0 \le h, i, j \le d),$ (2.6)
(c) $p_{ii}^{h}(\theta_i^* + \theta_i^*) = s_{ii}^{h}(\theta_0^* + \theta_h^*) + c_h t_{ii}^{h-1}(\theta_1^* + \theta_{h-1}^*) + a_h t_{ii}^{h}(\theta_1^* + \theta_h^*)$

$$+b_h t_{ij}^{h+1}(\theta_1^* + \theta_{h+1}^*) \qquad (0 \leqslant h, i, j \leqslant d),$$

$$(\theta_{-1}^*, \theta_{d+1}^* \text{ are indeterminants}). \tag{2.7}$$

Lemma 2.4. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \ge 4$, and suppose Γ is Q-polynomial with respect to the primitive idempotent

$$E_1 = |X|^{-1} \sum_{h=0}^{d} \theta_h^* A_h.$$

Then

$$\theta_0^* - \theta_1^* + \theta_2^* - \theta_3^* \neq 0.$$

Proof. Suppose

$$\theta_0^* - \theta_1^* + \theta_2^* - \theta_3^* = 0. \tag{2.8}$$

Setting i = 3 in (2.1), we find $\sigma = 1$. Evaluating (2.1) with $\sigma = 1$ and i = 4, we find

$$\theta_1^* - \theta_2^* + \theta_3^* - \theta_4^* = 0. \tag{2.9}$$

Combining (2.8), (2.9), we readily obtain $\theta_0^* = \theta_4^*$, a contradiction. This proves Lemma 2.4.

LEMMA 2.5. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \ge 4$. Suppose Γ is Q-polynomial with respect to the primitive idempotent

$$E_1 = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i,$$

and let the scalars s_{ij}^h , t_{ij}^h be as in (2.5)–(2.7). Then

$$s_{ii-2}^0 = 0, (2.10)$$

$$s_{i\,i-2}^1 = 0, (2.11)$$

$$s_{i\,i-2}^2 = -p_{i\,i-2}^2 \left(\frac{\theta_1^* + \theta_3^* - \theta_{i-2}^* - \theta_i^*}{\theta_3^* - \theta_1^* + \theta_2^* - \theta_2^*} \right),\tag{2.12}$$

$$t_{ii-2}^1 = 0, (2.13)$$

$$t_{ii-2}^2 = 0, (2.14)$$

$$t_{ii-2}^{3} = b_{2}^{-1} p_{ii-2}^{2} \left(\frac{\theta_{0}^{*} + \theta_{2}^{*} - \theta_{i-2}^{*} - \theta_{i}^{*}}{\theta_{0}^{*} - \theta_{1}^{*} + \theta_{2}^{*} - \theta_{3}^{*}} \right)$$
(2.15)

for all integers i $(2 \le i \le d)$.

Proof. From (2.6), (2.7) (with h = 0 and j = i - 2), and since $p_{i\,i-2}^0 = 0$, $c_0 = 0$, $a_0 = 0$, we find

$$0 = s_{i\,i-2}^0 + b_0 t_{i\,i-2}^1,$$

$$0 = s_{i,i-2}^0 \theta_0^* + b_0 t_{i,i-2}^1 \theta_1^*.$$

Lines (2.10), (2.13) follow since $\theta_0^* \neq \theta_1^*$ and $b_0 \neq 0$. From (2.6), (2.7) (with h=1 and j=i-2), and since $p_{ii-2}^1=0$, $t_{ii-2}^0=0$, $t_{ii-2}^1=0$ by (2.5), (2.13), we find

$$0 = s_{ii-2}^{1} + b_{1}t_{ii-2}^{2},$$

$$0 = s_{ii-2}^{1}(\theta_{0}^{*} + \theta_{1}^{*}) + b_{1}t_{ii-2}^{2}(\theta_{1}^{*} + \theta_{2}^{*}).$$

Lines (2.11), (2.14) follow since $\theta_0^* \neq \theta_2^*$ and $b_1 \neq 0$. From (2.6), (2.7) (with h = 2 and j = i - 2), and since $t_{ii-2}^0 = 0$, $t_{ii-2}^1 = 0$, $t_{ii-2}^2 = 0$ by (2.13), (2.14), we find

$$\begin{split} p_{ii-2}^2 &= s_{ii-2}^2 + b_2 t_{ii-2}^3, \\ p_{ii-2}^2(\theta_i^* + \theta_{i-2}^*) &= s_{ii-2}^2(\theta_0^* + \theta_2^*) + b_2 t_{ii-2}^3(\theta_1^* + \theta_3^*). \end{split}$$

Since $b_2 \neq 0$, and since $\theta_0^* + \theta_2^* \neq \theta_1^* + \theta_3^*$ by Lemma 2.4, we may solve these equations to obtain (2.12), (2.15). This proves the lemma.

Lemma 2.6. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \ge 4$, and suppose Γ is Q-polynomial with respect to the primitive idempotent

$$E_1 = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i.$$

Then for any vertices $x, y \in X$ with $\partial(x, y) = 2$, and any integer $i \ (3 \le i \le d)$, the vector

$$\begin{split} &(p_{i\,i-2}^2)^{-1}\,p_{i\,i-2}(x,\,y) - \hat{x}\,\frac{(\theta_2^*-\theta_3^*)(\theta_0^*-\theta_{i-2}^*) - (\theta_0^*-\theta_1^*)(\theta_2^*-\theta_i^*)}{(\theta_0^*-\theta_2^*)(\theta_0^*-\theta_1^*+\theta_2^*-\theta_3^*)} \\ &+ \hat{y}\,\frac{(\theta_1^*-\theta_2^*)(\theta_3^*-\theta_i^*) + (\theta_0^*-\theta_3^*)(\theta_1^*-\theta_{i-2}^*)}{(\theta_0^*-\theta_2^*)(\theta_0^*-\theta_1^*+\theta_2^*-\theta_3^*)} \\ &- b_2^{-1}y_x^+\,\frac{\theta_0^*+\theta_2^*-\theta_{i-2}^*-\theta_i^*}{\theta_0^*-\theta_1^*+\theta_2^*-\theta_3^*} \end{split}$$

is orthogonal to $E_0 V + E_1 V$.

Proof. From (2.4) (with h=2 and j=i-2), and since $t_{i,i-2}^1=0$, $t_{i,i-2}^2=0$ by (2.13), (2.14), respectively, we find the vector

$$p_{ii-2}(x, y) + p_{i-2i}(x, y) - s_{ii-2}^2(\hat{x} + \hat{y}) - t_{ii-2}^3(x_y^+ + y_x^+)$$
 (2.16)

is orthogonal to $E_0V + E_1V$, where s_{ii-2}^2 , t_{ii-2}^3 are from (2.12), (2.15), respectively. From (2.2) (with h = 2 and j = i - 2) we find the vector

$$p_{ii-2}(x, y) - p_{i-2i}(x, y) - r_{ii-2}^2(\hat{x} - \hat{y})$$
 (2.17)

is orthogonal to $E_0V + E_1V$, where r_{ii-2}^2 is from (2.3). Setting i=3 in (2.17) we find the vector

$$y_x^+ - x_y^+ - r_{31}^2(\hat{x} - \hat{y}) \tag{2.18}$$

is orthogonal to $E_0V + E_1V$. Eliminating $p_{i-2i}(x, y)$, x_y^+ in (2.16) using (2.17)–(2.18), we find the vector

$$\begin{split} 2p_{ii-2}(x,\,y) - (r_{ii-2}^2 + s_{ii-2}^2 - t_{ii-2}^3 r_{31}^2)\,\hat{x} \\ + (r_{ii-2}^2 - s_{ii-2}^2 - t_{ii-2}^3 r_{31}^2)\,\hat{y} - 2t_{ii-2}^3\,y_x^+ \end{split}$$

is orthogonal to $E_0V + E_1V$. The result is now obtained by evaluating the coefficients in the above line using (2.3), (2.12), (2.15), and simplifying.

Theorem 2.7. Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $d \ge 4$. Suppose the intersection number $a_2 \ne 0$. Pick any 3-tuple xyz of vertices in Γ with $\partial(x, y) = \partial(x, z) = 2$, $\partial(y, z) = 1$, and set

$$f_i(xyz) := (p_{ii-2}^2)^{-1} | \{ u | u \in X, \partial(x, u) = i, \\ \partial(y, u) = \partial(z, u) = i - 2 \} | \qquad (3 \le i \le d).$$

Suppose Γ is Q-polynomial with respect to the primitive idempotent

$$E_1 = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i.$$

Then

$$f_i(xyz) = \alpha_i f_3(xyz) - \beta_i \qquad (3 \le i \le d), \tag{2.19}$$

where

$$\alpha_{i} = \frac{(\theta_{0}^{*} + \theta_{2}^{*} - \theta_{i-2}^{*} - \theta_{i}^{*})(\theta_{1}^{*} - \theta_{2}^{*})}{(\theta_{0}^{*} - \theta_{1}^{*} + \theta_{2}^{*} - \theta_{3}^{*})(\theta_{i-2}^{*} - \theta_{i-1}^{*})} \qquad (3 \leqslant i \leqslant d), \tag{2.20}$$

$$\beta_{i} = \frac{\theta_{1}^{*} - \theta_{2}^{*}}{\theta_{0}^{*} - \theta_{2}^{*}} \frac{(\theta_{1}^{*} - \theta_{2}^{*})(\theta_{0}^{*} - \theta_{i}^{*}) + (\theta_{0}^{*} - \theta_{3}^{*})(\theta_{2}^{*} - \theta_{i-2}^{*})}{(\theta_{0}^{*} - \theta_{1}^{*} + \theta_{2}^{*} - \theta_{3}^{*})(\theta_{i-2}^{*} - \theta_{i-1}^{*})} - \frac{\theta_{2}^{*} - \theta_{i-1}^{*}}{\theta_{2}^{*} - \theta_{3}^{*}}$$
(3 \leq i \leq d). (2.21)

Proof. To get (2.19)–(2.21), compute the inner product of $E_1\hat{z}$ and the vector in Lemma 2.6, and set the result equal 0. The computation is readily carried out once we observe by (1.14) that

$$\begin{split} |X| \left\langle E_{1} \hat{z}, \, p_{i\,i-2}(x, \, y) \right\rangle &= p_{i\,i-2}^{2}(f_{i}(xyz)(\theta_{i-2}^{*} - \theta_{i-1}^{*}) + \theta_{i-1}^{*}), \\ |X| \left\langle E_{1} \hat{z}, \, \hat{x} \right\rangle &= \theta_{2}^{*}, \\ |X| \left\langle E_{1} \hat{z}, \, \hat{y} \right\rangle &= \theta_{1}^{*}, \\ |X| \left\langle E_{1} \hat{z}, \, y_{+}^{*} \right\rangle &= b_{2}(f_{3}(xyz)(\theta_{1}^{*} - \theta_{2}^{*}) + \theta_{2}^{*}). \end{split}$$

DEFINITION 2.8. A distance-regular graph Γ is said to have *classical* parameters (d, b, α, β) whenever the diameter of Γ is $d \ge 2$, and the intersection numbers of Γ satisfy

$$c_{i} = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right) \qquad (0 \le i \le d), \tag{2.22}$$

$$b_i \!=\! \left(\! \begin{bmatrix} d \\ 1 \end{bmatrix} \!-\! \begin{bmatrix} i \\ 1 \end{bmatrix} \!\right) \!\! \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \qquad (0 \!\leqslant\! i \!\leqslant\! d), \tag{2.23}$$

where

$$\begin{bmatrix} i \\ 1 \end{bmatrix} := 1 + b + b^2 + \dots + b^{i-1}. \tag{2.24}$$

LEMMA 2.9. Let Γ denote a distance-regular graph with diameter $d \ge 4$. Then the following (i)–(ii) are equivalent.

- (i) Γ has classical parameters (d, b, α, β) .
- (ii) Γ is Q-polynomial with respect to a primitive idempotent

$$E_1 = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i$$

and $\beta_4 = 0$, where β_4 is defined in (2.21).

Proof. (i) \Rightarrow (ii). Suppose Γ has classical parameters (d, b, α, β) . Then Γ is Q-polynomial with respect to a primitive idempotent

$$E_1 = |X|^{-1} \sum_{i=0}^{d} \theta_i^* A_i,$$

where

$$\theta_i^* - \theta_0^* = (\theta_1^* - \theta_0^*) \begin{bmatrix} i \\ 1 \end{bmatrix} b^{1-i} \qquad (0 \le i \le d)$$
 (2.25)

[2, p. 250]. Now $\beta_4 = 0$ is obtained by eliminating θ_2^* , θ_3^* , θ_4^* in (2.21) for i = 4 and simplifying.

(ii) \Rightarrow (i). Suppose $\beta_4 = 0$. Then by setting i = 4 in (2.21),

$$(\theta_0^* - \theta_1^* + \theta_2^* - \theta_3^*)(\theta_0^* - \theta_2^*)(\theta_2^* - \theta_3^*) - (\theta_1^* - \theta_2^*)^2(\theta_0^* - \theta_4^*) = 0. \quad (2.26)$$

Set

$$b := \frac{\theta_1^* - \theta_0^*}{\theta_2^* - \theta_1^*}. (2.27)$$

Then

$$\theta_2^* = \theta_0^* + \frac{(\theta_1^* - \theta_0^*)(b+1)}{b}.$$
 (2.28)

Eliminating θ_2^* , θ_3^* , θ_4^* in (2.26) using (2.27) and (2.1) for i = 3, 4, we have

$$\frac{(\theta_0^* - \theta_1^*)^3 (-1 + \sigma)(\sigma b^2 + \sigma b + \sigma - b)}{-b^3 \sigma^2} = 0$$
 (2.29)

for appropriate $\sigma \in \mathbb{R} \setminus \{0\}$. Note that $\theta_0^* \neq \theta_1^*$, and observe that by Lemma 2.4 and by setting i = 3 in (2.1), $\sigma \neq -1$. Hence

$$\sigma b^2 + \sigma b + \sigma - b = 0, \tag{2.30}$$

so

$$\sigma^{-1} = \frac{b^2 + b + 1}{b}. (2.31)$$

To prove Γ has classical parameters, in view or Terwilliger [6, Theorem 4.2(iii)], it suffices to prove that

$$\theta_i^* - \theta_0^* = (\theta_1^* - \theta_0^*) \begin{bmatrix} i \\ 1 \end{bmatrix} b^{1-i} \qquad (0 \le i \le d).$$
 (2.32)

We prove (2.32) by induction on *i*. The cases i = 0, 1 are trivial and the case i = 2 is from (2.28). Now suppose $i \ge 3$. Then (2.1) implies

$$\theta_i^* = \sigma^{-1}(\theta_{i-1}^* - \theta_{i-2}^*) + \theta_{i-3}^*. \tag{2.33}$$

Evaluate (2.33) using (2.31) and the induction hypothesis, we find $\theta_i^* - \theta_0^*$ is as in (2.32). This proves Lemma 2.9.

DEFINITION 2.10. Let $\Gamma = (X, R)$ denote a distance-regular graph with distance function ∂ and diameter d. By a parallelogram of length i ($2 \le i \le d$), we mean a 4-tuple xyzu of vertices in X such that $\partial(x, y) = \partial(z, u) = 1$, $\partial(x, u) = i$, and $\partial(x, z) = \partial(y, z) = \partial(y, u) = i - 1$.

Theorem 2.11. Let $\Gamma = (X,R)$ denote a distance-regular graph with diameter $d \geqslant 4$ and intersection numbers $a_1 = 0$, $a_2 \neq 0$. Suppose Γ is Q-polynomial and contains no parallelograms of length 3 and no parallelograms of length 4. Then Γ has classical parameters (d, b, α, β) with b < -1.

Proof. Pick any 3-tuple xyz in Γ with $\partial(x, y) = \partial(x, z) = 2$, $\partial(y, z) = 1$, and let $f_i(xyz)$ be as in Theorem 2.7. Since $a_1 = 0$, we find

$$f_3(xyz) = 0. (2.34)$$

Claim 1. $f_4(xyz) = 0$.

Proof of Claim 1. Suppose $f_4(xyz) \neq 0$, and pick u such that $\partial(y, u) = \partial(z, u) = 2$ and $\partial(x, u) = 4$. Now pick $w \in X$ with $\partial(u, w) = \partial(y, w) = 1$. Observe $\partial(w, z) \neq 1$, otherwise $a_1 \neq 0$. Hence $\partial(w, z) = 2$. Now pick $v \in X$ with $\partial(x, v) = \partial(z, v) = 1$. Observe $\partial(u, v) = 3$, and $2 \leq \partial(v, w) \leq 3$. Suppose $\partial(v, w) = 2$. Then the 4-tuple uwzv is a parallelogram of length 3, contradicting our assumption. Hence $\partial(v, w) = 3$. But now the 4-tuple uvzv is a parallelogram of length 4, also a contradiction. Hence $\int_a (xyz) = 0$.

Claim 2. Γ has classical parameters (d, b, α, β) with b < -1.

Proof of Claim 2. Setting i = 4 in (2.19) we find $\beta_4 = 0$ by (2.34) and by Claim 1. Hence Γ has classical parameters (d, b, α, β) by Lemma 2.9. Now from (1.1), (2.22), (2.23), and since $a_1 = 0$, $a_2 \neq 0$,

$$-\alpha(b+1)^{2} = a_{2} - (b+1) a_{1}$$

$$= a_{2}$$

$$> 0.$$
(2.35)

Hence

$$\alpha < 0. \tag{2.36}$$

By direct calculation from (2.22), we get

$$(c_2 - b)(b^2 + b + 1) = c_3 > 0.$$
 (2.37)

Since b is an integer and $b \neq 0, -1$ [2, p. 195], we have

$$b^2 + b + 1 > 0$$
.

Then from (2.37), we get

$$c_2 > b. \tag{2.38}$$

By using (2.22), (2.38), we get

$$\alpha(1+b) = c_2 - b - 1 \ge 0.$$

Hence b < -1, by (2.36) and since $b \neq -1$.

COROLLARY 2.12. Let Γ denote a distance-regular graph with the Q-polynomial property. Suppose the diameter $d \geqslant 4$. Then the following (i)–(ii) are equivalent.

- (i) Γ contains no parallelograms of any length.
- (ii) One of the following (iia)-(iic) holds.
 - (iia) Γ is bipartite.
 - (iib) Γ is a generalized odd graph.
- (iic) Γ has classical parameters (d, b, α, β) and either b < -1 or Γ is a Hamming graph or a dual polar graph.

(see [2] for the definitions and basic properties of Hamming graphs and dual polar graphs).

Proof. (ii) \Rightarrow (i). It is clear that a bipartite graph and a generalized odd graph contain no parallelograms of any length. It is well known that the hamming graphs and the dual polar graphs contain no parallelograms of any length [9, Lemma 7.3]. Suppose Γ has classical parameters (d, b, α, β) with b < -1. Then Γ contains no parallelograms of any length by [7, Theorem 2.12] and [9, Lemma 7.3].

(i) \Rightarrow (ii). If $a_2 = 0$ then (iia) or (iib) holds by [3, Lemma 2.3]. If $a_1 \neq 0$, then (iic) holds by [8, Theorem 2.6], [9, Lemma 7.3]. Suppose $a_2 \neq 0$, $a_1 = 0$. Then Γ has classical parameters (d, b, α, β) with b < -1 by Theorem 2.11.

REFERENCES

 E. Bannai and T. Ito, "Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings Lecture Note 58." Menlo Park. 1984.

- A. Brouwer, A. Cohen, and A. Neumaier, "Distance-Regular Graphs," Springer-Verlag, New York, 1989.
- G. Dickie, Twice Q-polynomial distance-regular graphs are thin, Eur. J. Comb. 16 (1995), 555–560.
- 4. D. A. Leonard, Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal. 13 (1982), 656–663.
- P. Terwilliger, The subconstituent algebra of an association scheme, I, J. Alg. Combin. 1 (1992), 363–388.
- 6. P. Terwilliger, A new inequality for distance-regular graphs, *Discrete Math.* 137 (1995), 319–332.
- 7. P. Terwilliger, Kite-free distance-regular graphs, Eur. J. Comb. 16 (1995), 405-414.
- 8. C. Weng, Kite-free *P* and *Q*-polynomial schemes, *Graphs Combinatorics* 11 (1995), 201–207.
- C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, Graphs Combinatorics, to appear.