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Let 1=(X, R) denote a distance-regular graph with distance function � and
diameter d�4. By a parallelogram of length i (2�i�d ), we mean a 4-tuple xyzu
of vertices in X such that �(x, y)=�(z, u)=1, �(x, u)=i, and �(x, z)=�( y, z)=
�( y, u)=i&1. We prove the following theorem. Theorem. Let 1 denote a distance-
regular graph with diameter d�4, and intersection numbers a1=0, a2 {0. Suppose
1 is Q-polynomial and contains no parallelograms of length 3 and no
parallelograms of length 4. Then 1 has classical parameters (d, b, :, ;) with b<&1.
By including results in [3], [9], we have the following corollary. Corollary. Let
1 denote a distance-regular graph with the Q-polynomial property. Suppose the
diameter d�4. Then the following (i)�(ii) are equivalent. (i) 1 contains no
parallelograms of any length. (ii) One of the following (iia)�(iic) holds. (iia) 1 is
bipartite. (iib) 1 is a generalized odd graph. (iic) 1 has classical parameters
(d, b, :, ;) and either b<&1 or 1 is a Hamming graph or a dual polar graph.
� 1997 Academic Press

1. INTRODUCTION

It is well known that a distance-regular graph with classical parameters
has the Q-polynomial property [2, Theorem 8.4.1]. For the converse,
Brouwer, Cohen, Neumaier proved that a Q-polynomial regular near
polygon with diameter d�3 and intersection number a1 {0 has classical
parameters [2, Theorem 8.5.1]. In [8], we proved a generalized version of
above result.

In this paper, we consider a Q-polynomial distance-regular graph with
a1=0, a2 {0 and prove that it has classical parameters if its diameter is at
least 4 and if it contains no 4-vertex configurations of a certain type
( parallelograms). See Theorem 2.11 for details. By including some results in
[3, 9], we give a classification of parallelogram-free Q-polynomial distance-
regular graphs in Corollary 2.12.

For the rest of this section, we review some definitions and basic
concepts. See Bannai and Ito [1] or Terwilliger [5] for more background
information.
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Throughout this paper, 1=(X, R) will denote a finite, connected, undi-
rected graph without loops, or multiple edges, and with vertex set X, edge
set R, path length distance function �, and diameter d :=max[�(x, y) |
x, y # X]. 1 is said to be distance-regular whenever for all integers h, i, j
(0�h, i, j�d ), and all vertices x, y # X with �(x, y)=h, the number

ph
ij=|[z # X | �(x, z)=i, �( y, z)= j]|

is independent of x, y. The constants ph
ij (0�h, i, j�d ) are known as

the intersection numbers of 1. For convenience, set ci :=pi
1 i&1 (1�i�d ),

ai :=pi
1 i (0�i�d ), bi :=pi

1 i+1(0�i�d&1), and put bd :=0, c0 :=0,
k=b0 . It is immediate from the definition that bi {0 (0�i�d&1), ci {0
(1�i�d ), and

k=b0=ai+bi+c1 (1�i�d ). (1.1)

We refer to k as the valency of 1.
A distance-regular graph 1 is called bipartite whenever a1=a2= } } } =

ad=0. 1 is called a generalized odd graph whenever a1=a2= } } } =
ad&1=0, ad {0.

From now on, we fix a distance-regular graph with diameter d�3. Let
ph

ij (0�h, i, j�d ) denote the intersection numbers of 1.
Let MatX (R) denote the algebra of all the matrices over the real number

field with the rows and columns indexed by the elements of X. The distance
matrices of 1 are the matrices A0 , A1 , ..., Ad # MatX (R), defined by the rule

(Ai)xy={1 if �(x, y)=i
0 if �(x, y){i

(x, y # X).

Then

A0=I, (1.2)

A0+A1+ } } } +Ad=J (J=all 1's matrix), (1.3)

At
i=Ai (0�i�d), (1.4)

AiAj= :
d

h=0

ph
ijAh (0�i, j�d), (1.5)

AiAj=AjAi (0�i, j�d ). (1.6)

Let M denote the subspace of MatX (R) spanned by A0 , A1 , ..., Ad . Then
M is a commutative subalgebra of MatX (R), and is known as the
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Bose-Mesner algebra of 1. By [1, p. 59, p. 64], M has a second basis
E0 , E1 , ..., Ed such that

E0=|X | &1 J, (1.7)

Ei Ej=$ijEi (0�i, j�d ), (1.8)

E0+E1+ } } } +Ed=I, (1.9)

Et
i =Ei (0�i�d ). (1.10)

The E0 , E1 , ..., Ed are known as the primitive idempotents of 1, and E0 is
known as the trivial idempotent. Let E denote any primitive idempotent
of 1. Then we have

E=|X |&1 :
d

i=0

%i*Ai (1.11)

for some %0* , %1* , ..., %d* # R, called the dual eigenvalues associated with E.
Let b denote entry-wise multiplication in MatX (R). Then

Ai b Aj=$ijAi (0�i, j�d ),

so M is closed under b . Thus there exists qk
ij # R (0�i, j, k�d ) such that

Ei b Ej=|X |&1 :
d

k=0

qk
ijEk (0�i, j�d ).

1 is said to be Q-polynomial with respect to the given ordering E0 , E1 , ..., Ed

of the primitive idempotents, if for all integers h, i, j (0�h, i, j�d ), qh
ij=0

(resp. qh
ij {0) whenever one of h, i, j is greater than (resp. equal to) the sum

of the other two. Let E denote any primitive idempotent of 1. Then 1 is
said to be Q-polynomial with respect to E whenever there exists an ordering
E0 , E1=E, ..., Ed of the primitive idempotents of 1, with respect to which
1 is Q-polynomial. If 1 is Q-polynomial with respect to E, then the
associated dual eigenvalues are distinct [5, p. 384].

Set V=R |X | (column vectors), and view the coordinates of V as being
indexed by X. Then the Bose-Mesner algebra M acts on V by left multi-
plication. We call V the standard module of 1. For each vertex x # X, set

x̂=(0, 0, ..., 0, 1, 0, ..., 0)t, (1.12)

where the 1 is in coordinate x. Also, let ( , ) denote the dot product

(u, v) =utv (u, v # V ). (1.13)
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Then referring to the primitive idempotent E in (1.11), we compute from
(1.10)�(1.13) that

(Ex̂, ŷ)=|X |&1 %i* (x, y # X), (1.14)

where i=�(x, y).

2. MAIN THEOREM

Throughout this section, we will use the following notations.

Definition 2.1. Let 1=(X, R) denote a distance-regular graph with
diameter d�3. For all x, y # X, and all integers i, j, define

pij (x, y) := :

�( y, z)= j

z # X
�(x, z)=i

ẑ,

where the ẑ notation is from (1.12). Further define

x&
y :=p1 h&1(x, y),

x0
y :=p1 h(x, t),

x+
y :=p1 h+1(x, y),

where

h=�(x, y).

Our work is based on the following two theorems of Leonard [4], Terwilliger
[6, Theorem 3.3] and Terwilliger [7, Theorem 2.6 and Theorem 2.7].

Theorem 2.2. Let 1=(X, R) denote a distance-regular graph with diameter
d�3, and suppose 1 is a Q-polynomial with respect to the primitive idempotent

E1=|X |&1 :
d

h=0

%h*Ah .

Then the following (i)�(ii) hold.

(i) ([4], [6])

%*i&2&%*i&1=_(%*i&3&%i*) (3�i�d ) (2.1)

for appropriate _ # R"[0].
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(ii) ([6]) For all integers h, i, j (1�h�d ), (0�i, j�d ), and all
x, y # X such that �(x, y)=h, the vector

pij (x, y)& pji(x, y)&rh
ij (x̂& ŷ) (2.2)

is orthogonal to E0 V+E1 V, where

rh
ij= ph

ij \%i*&%j*
%0*&%h*+ . (2.3)

Theorem 2.3. ([7]) Let 1=(X, R) denote a distance-regular graph with
diameter d�3, and suppose 1 is Q-polynomial with respect to the primitive
idempotent

E1=|X |&1 :
d

h=0

%h*Ah .

Then for all integers h, i, j (0�h, i, j�d ), and all x, y # X such that
�(x, y)=h, the vector

pij (x, y)+ pji (x, y)&sh
ij (x̂+ ŷ)&th&1

ij (x&
y + y&

x )

&th
ij (x

0
y+ y0

x)&th+1
ij (x+

y + y+
x ) (2.4)

is orthogonal to E0 V+E1 V, where

(a) t&1
ij =t0

ij=td+1
ij =0 (0�i, j�d ), (2.5)

(b) ph
ij=sh

ij+ch th&1
ij +ah th

ij+bhth+1
ij (0�h, i, j�d ), (2.6)

(c) ph
ij (%i*+%j*)=sh

ij (%0*+%h*)+chth&1
ij (%1*+%*h&1)+ah th

ij (%1*+%h*)

+bhth+1
ij (%1*+%*h+1) (0�h, i, j�d ),

(%*&1 , %*d+1 are indeterminants). (2.7)

Lemma 2.4. Let 1=(X, R) denote a distance-regular graph with diameter
d�4, and suppose 1 is Q-polynomial with respect to the primitive idempotent

E1=|X |&1 :
d

h=0

%h*Ah .

Then

%0*&%1*+%2*&%3* {0.
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Proof. Suppose

%0*&%1*+%2*&%3*=0. (2.8)

Setting i=3 in (2.1), we find _=1. Evaluating (2.1) with _=1 and i=4,
we find

%1*&%2*+%3*&%4*=0. (2.9)

Combining (2.8), (2.9), we readily obtain %0*=%4* , a contradiction. This
proves Lemma 2.4.

Lemma 2.5. Let 1=(X, R) denote a distance-regular graph with diameter
d�4. Suppose 1 is Q-polynomial with respect to the primitive idempotent

E1=|X |&1 :
d

i=0

%i*Ai ,

and let the scalars sh
ij , th

ij be as in (2.5)�(2.7). Then

s0
i i&2=0, (2.10)

s1
i i&2=0, (2.11)

s2
i i&2=& p2

i i&2 \%1*+%3*&%*i&2&%i*
%0*&%1*+%2*&%3* + , (2.12)

t1
i i&2=0, (2.13)

t2
i i&2=0, (2.14)

t3
i i&2=b&1

2 p2
i i&2 \%0*+%2*&%*i&2&%i*

%0*&%1*+%2*&%3* + (2.15)

for all integers i (2�i�d ).

Proof. From (2.6), (2.7) (with h=0 and j=i&2), and since p0
i i&2=0,

c0=0, a0=0, we find

0=s0
i i&2+b0t1

i i&2 ,

0=s0
i i&2%0*+b0t1

i i&2%1* .
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Lines (2.10), (2.13) follow since %0* {%1* and b0 {0. From (2.6), (2.7) (with
h=1 and j=i&2), and since p1

i i&2=0, t0
i i&2=0, t1

i i&2=0 by (2.5), (2.13),
we find

0=s1
i i&2+b1 t2

i i&2 ,

0=s1
i i&2(%0*+%1*)+b1 t2

i i&2(%1*+%2*).

Lines (2.11), (2.14) follow since %0* {%2* and b1 {0. From (2.6), (2.7)
(with h=2 and j=i&2), and since t0

i i&2=0, t1
i i&2=0, t2

i i&2=0 by (2.13),
(2.14), we find

p2
i i&2=s2

i i&2+b2 t3
i i&2 ,

p2
i i&2(%i*+%*i&2)=s2

i i&2(%0*+%2*)+b2 t3
i i&2(%1*+%3*).

Since b2 {0, and since %0*+%2* {%1*+%3* by Lemma 2.4, we may solve
these equations to obtain (2.12), (2.15). This proves the lemma.

Lemma 2.6. Let 1=(X, R) denote a distance-regular graph with diameter
d�4, and suppose 1 is Q-polynomial with respect to the primitive idempotent

E1=|X | &1 :
d

i=0

%i*Ai .

Then for any vertices x, y # X with �(x, y)=2, and any integer i (3�i�d ),
the vector

( p2
i i&2)&1 pi i&2(x, y)&x̂

(%2*&%3*)(%0*&%*i&2)&(%0*&%1*)(%2*&%i*)
(%0*&%2*)(%0*&%1*+%2*&%3*)

+ ŷ
(%1*&%2*)(%3*&%i*)+(%0*&%3*)(%1*&%*i&2)

(%0*&%2*)(%0*&%1*+%2*&%3*)

&b&1
2 y+

x

%0*+%2*&%*i&2&%i*
%0*&%1*+%2*&%3*

is orthogonal to E0 V+E1 V.

Proof. From (2.4) (with h=2 and j=i&2), and since t1
i i&2=0,

t2
i i&2=0 by (2.13), (2.14), respectively, we find the vector

pi i&2(x, y)+ pi&2 i (x, y)&s2
i i&2(x̂+ ŷ)&t3

i i&2(x+
y + y+

x ) (2.16)
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is orthogonal to E0V+E1V, where s2
i i&2 , t3

i i&2 are from (2.12), (2.15),
respectively. From (2.2) (with h=2 and j=i&2) we find the vector

pi i&2(x, y)& pi&2 i (x, y)&r2
i i&2(x̂& ŷ) (2.17)

is orthogonal to E0 V+E1 V, where r2
i i&2 is from (2.3). Setting i=3 in

(2.17) we find the vector

y+
x &x+

y &r2
31(x̂& ŷ) (2.18)

is orthogonal to E0 V+E1 V. Eliminating pi&2 i (x, y), x+
y in (2.16) using

(2.17)�(2.18), we find the vector

2pi i&2(x, y)&(r2
i i&2+s2

i i&2&t3
i i&2r2

31) x̂

+(r2
i i&2&s2

i i&2&t3
i i&2r2

31) ŷ&2t3
i i&2 y+

x

is orthogonal to E0V+E1 V. The result is now obtained by evaluating the
coefficients in the above line using (2.3), (2.12), (2.15), and simplifying.

Theorem 2.7. Let 1=(X, R) denote a distance-regular graph with
diameter d�4. Suppose the intersection number a2 {0. Pick any 3-tuple xyz
of vertices in 1 with �(x, y)=�(x, z)=2, �( y, z)=1, and set

fi (xyz) :=( p2
i i&2)&1 |[u | u # X, �(x, u)=i,

�( y, u)=�(z, u)=i&2]| (3�i�d ).

Suppose 1 is Q-polynomial with respect to the primitive idempotent

E1=|X | &1 :
d

i=0

%i*Ai .

Then

fi (xyz)=:i f3(xyz)&;i (3�i�d ), (2.19)

where

:i=
(%0*+%2*&%*i&2&%i*)(%1*&%2*)

(%0*&%1*+%2*&%3*)(%*i&2&%*i&1)
(3�i�d ), (2.20)

;i=
%1*&%2*
%0*&%2*

(%1*&%2*)(%0*&%i*)+(%0*&%3*)(%2*&%*i&2)
(%0*&%1*+%2*&%3*)(%*i&2&%*i&1)

&
%2*&%*i&1

%*i&2&%*i&1

(3�i�d ). (2.21)
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Proof. To get (2.19)�(2.21), compute the inner product of E1 ẑ and the
vector in Lemma 2.6, and set the result equal 0. The computation is readily
carried out once we observe by (1.14) that

|X | (E1 ẑ, pi i&2(x, y))=p2
i i&2( fi (xyz)(%*i&2&%*i&1)+%*i&1),

|X | (E1 ẑ, x̂)=%2* ,

|X | (E1 ẑ, ŷ)=%1* ,

|X | (E1 ẑ, y+
x )=b2( f3(xyz)(%1*&%2*)+%2*).

Definition 2.8. A distance-regular graph 1 is said to have classical
parameters (d, b, :, ;) whenever the diameter of 1 is d�2, and the intersection
numbers of 1 satisfy

ci=_ i
1&\1+: _i&1

1 &+ (0�i�d ), (2.22)

bi=\_d
1&&_ i

1&+\;&: _ i
1&+ (0�i�d ), (2.23)

where

_ i
1& :=1+b+b2+ } } } bi&1. (2.24)

Lemma 2.9. Let 1 denote a distance-regular graph with diameter d�4.
Then the following (i)�(ii) are equivalent.

(i) 1 has classical parameters (d, b, :, ;).

(ii) 1 is Q-polynomial with respect to a primitive idempotent

E1=|X | &1 :
d

i=0

%i*Ai

and ;4=0, where ;4 is defined in (2.21).

Proof. (i) O (ii). Suppose 1 has classical parameters (d, b, :, ;). Then 1
is Q-polynomial with respect to a primitive idempotent

E1=|X |&1 :
d

i=0

%i*Ai ,

239PARALLELOGRAM-FREE DR GRAPHS



File: DISTIL 178710 . By:DS . Date:27:10:97 . Time:11:28 LOP8M. V8.0. Page 01:01
Codes: 2279 Signs: 922 . Length: 45 pic 0 pts, 190 mm

where

%i*&%0*=(%1*&%0*) _ i
1& b1&i (0�i�d) (2.25)

[2, p. 250]. Now ;4=0 is obtained by eliminating %2* , %3* , %4* in (2.21) for
i=4 and simplifying.

(ii) O (i). Suppose ;4=0. Then by setting i=4 in (2.21),

(%0*&%1*+%2*&%3*)(%0*&%2*)(%2*&%3*)&(%1*&%2*)2 (%0*&%4*)=0. (2.26)

Set

b :=
%1*&%0*
%2*&%1*

. (2.27)

Then

%2*=%0*+
(%1*&%0*)(b+1)

b
. (2.28)

Eliminating %2* , %3* , %4* in (2.26) using (2.27) and (2.1) for i=3, 4, we have

(%0*&%1*)3 (&1+_)(_b2+_b+_&b)
&b3_2 =0 (2.29)

for appropriate _ # R"[0]. Note that %0* {%1* , and observe that by
Lemma 2.4 and by setting i=3 in (2.1), _{ &1. Hence

_b2+_b+_&b=0, (2.30)

so

_&1=
b2+b+1

b
. (2.31)

To prove 1 has classical parameters, in view or Terwilliger [6,
Theorem 4.2(iii)], it suffices to prove that

%i*&%0*=(%1*&%0*) _ i
1& b1&i (0�i�d). (2.32)

We prove (2.32) by induction on i. The cases i=0, 1 are trivial and the
case i=2 is from (2.28). Now suppose i�3. Then (2.1) implies

%i*=_&1(%*i&1&%*i&2)+%*i&3. (2.33)
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Evaluate (2.33) using (2.31) and the induction hypothesis, we find
%i*&%0* is as in (2.32). This proves Lemma 2.9.

Definition 2.10. Let 1=(X, R) denote a distance-regular graph with
distance function � and diameter d. By a parallelogram of length i (2�i�d ),
we mean a 4-tuple xyzu of vertices in X such that �(x, y)=�(z, u)=1,
�(x, u)=i, and �(x, z)=�( y, z)=�( y, u)=i&1.

Theorem 2.11. Let 1=(X, R) denote a distance-regular graph with
diameter d�4 and intersection numbers a1=0, a2 {0. Suppose 1 is Q-polynomial
and contains no parallelograms of length 3 and no parallelograms of length 4.
Then 1 has classical parameters (d, b, :, ;) with b<&1.

Proof. Pick any 3-tuple xyz in 1 with �(x, y)=�(x, z)=2, �( y, z)=1,
and let fi (xyz) be as in Theorem 2.7. Since a1=0, we find

f3(xyz)=0. (2.34)

Claim 1. f4(xyz)=0.

Proof of Claim 1. Suppose f4(xyz){0, and pick u such that �( y, u)=
�(z, u)=2 and �(x, u)=4. Now pick w # X with �(u, w)=�( y, w)=1.
Observe �(w, z){1, otherwise a1 {0. Hence �(w, z)=2. Now pick v # X
with �(x, v)=�(z, v)=1. Observe �(u, v)=3, and 2��(v, w)�3. Suppose
�(v, w)=2. Then the 4-tuple uwzv is a parallelogram of length 3, contradic-
ting our assumption. Hence �(v, w)=3. But now the 4-tuple xvwu is a
parallelogram of length 4, also a contradiction. Hence f4(xyz)=0.

Claim 2. 1 has classical parameters (d, b, :, ;) with b<&1.

Proof of Claim 2. Setting i=4 in (2.19) we find ;4=0 by (2.34) and by
Claim 1. Hence 1 has classical parameters (d, b, :, ;) by Lemma 2.9. Now
from (1.1), (2.22), (2.23), and since a1=0, a2 {0,

&:(b+1)2=a2&(b+1) a1

=a2

>0. (2.35)

Hence

:<0. (2.36)

By direct calculation from (2.22), we get

(c2&b)(b2+b+1)=c3>0. (2.37)
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Since b is an integer and b{0, &1 [2, p. 195], we have

b2+b+1>0.

Then from (2.37), we get

c2>b. (2.38)

By using (2.22), (2.38), we get

:(1+b)=c2&b&1�0.

Hence b<&1, by (2.36) and since b{&1.

Corollary 2.12. Let 1 denote a distance-regular graph with the
Q-polynomial property. Suppose the diameter d�4. Then the following
(i)�(ii) are equivalent.

(i) 1 contains no parallelograms of any length.

(ii) One of the following (iia)�(iic) holds.

(iia) 1 is bipartite.

(iib) 1 is a generalized odd graph.

(iic) 1 has classical parameters (d, b, :, ;) and either b<&1 or 1
is a Hamming graph or a dual polar graph.

(see [2] for the definitions and basic properties of Hamming graphs and
dual polar graphs).

Proof. (ii) O (i). It is clear that a bipartite graph and a generalized odd
graph contain no parallelograms of any length. It is well known that the
hamming graphs and the dual polar graphs contain no parallelograms of
any length [9, Lemma 7.3]. Suppose 1 has classical parameters (d, b, :, ;)
with b<&1. Then 1 contains no parallelograms of any length by [7,
Theorem 2.12] and [9, Lemma 7.3].

(i) O (ii). If a2=0 then (iia) or (iib) holds by [3, Lemma 2.3]. If
a1 {0, then (iic) holds by [8, Theorem 2.6], [9, Lemma 7.3]. Suppose
a2 {0, a1=0. Then 1 has classical parameters (d, b, :, ;) with b<&1 by
Theorem 2.11.
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