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Abstract—A recently developed pseudospectral frequency-do-
main (PSFD) method employing a penalty scheme is further
incorporated with stretched coordinate perfectly matched layers
(PMLs) in order to solve waveguide leaky modes. Several standard
leaky-mode slab and circular waveguides, including the W-type
and M-type ones, are examined first by solving their complex
effective indexes and field profiles, showing that the PSFD method
achieves computational accuracy on the order of . Then,
this high-accuracy solver is used to analyze waveguide structures
with more complicated geometries, such as the leaky six-air-hole
fiber, for which self convergence of accuracy in calculated effective
indexes is demonstrated to be on the orders of , and two
rectilineal waveguides with sharp corners, i.e., the rib waveguide
and the photonic wire. Comparison of the PSFD method obtained
results for these more complicated waveguide structures with
those from other methods in the literature is presented and dis-
cussed.

Index Terms—Leaky waveguide modes, optical waveguide anal-
ysis, pseudospectral frequency domain (PSFD) method.

I. INTRODUCTION

G ENERALLY, optical wave-guiding mechanisms based
on total internal reflection [1], photonic band gap effect

[2]–[4], and antiresonant reflection [5]–[7] have been mostly
adopted. However, imperfect field confinement in the guiding
region might occur in certain waveguide structures functioned
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by these mechanisms, resulting in leaky modes with confine-
ment losses. Physically, leaky modes are known not members
of a complete set of orthogonal basis functions, and behave
analogy to the tunneling effect in quantum physics [8], [9] that
most wave powers are longitudinally guided inside the core but
portions are laterally propagating in the outermost layer. The
most specific characteristics of the leaky mode are therefore
its complex propagation constant and infinite field magnitude
at the infinite transverse spatial limit [9], because longitudinal
decay would lead to increase of fields in the transverse direc-
tion according to the relationship between wavenumber and
propagation constant [10]. Therefore, an accurate computa-
tional method implemented with well-functioning absorbing
mechanism such as using the perfectly matched layers (PMLs)
[11] is essential for solving waveguide leaky modes with such
field profiles.
In analyzing waveguides, modal characteristics including

field profiles, propagation constants, effective indexes, modal
(confinement) losses, and dispersion curve are mainly con-
cerned, and the effective index which is defined as the propaga-
tion constant divided by the free-space wavenumber is usually
chosen as an indicator for assessing the computation accuracy
of a method. Optical waveguide leaky-mode solvers have been
developed, in particular after the invention of holey fibers or
photonic crystal fibers [2]–[4], based on different numerical
methods, such as the finite difference method [12]–[14], the fi-
nite element method [15], [16], the multipole method [17], [18],
the boundary integral equation method [19], the pseudospectral
frequency-domain (PSFD) method [20], [21], etc. This paper
concerns further development of the pseudospectral method
which is based on the high-order Legendre or Chebyshev inter-
polation basis and can then provide exponentially converged
computation accuracy with respect to the grid resolution [22],
[23]. Prior PSFD mode solvers have been formulated using
second-order Helmholtz equations [20]–[23] and demonstrated
to provide excellent numerical accuracy in eigenmode analysis.
Recently, an alternate PSFD method with a penalty scheme

was developed [24], which shows accuracy in solving
the modal effective indexes for standard metallic and fiber
waveguides. Different from above-mentioned Helmholtz equa-
tions-based methods, this newly reported PSFD method is
formulated on the first-order differential equations written
from both curl and divergence laws in Maxwell equations
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[26]. Besides, the multidomain scheme is employed in the
formulation, with which the computational domain is divided
into suitable number of curvilinear sub-domains [25] such
that the shapes of the waveguide structure interfaces can fit
the sub-domain boundaries, facilitating accurate fulfillment
of the field continuity conditions across the interfaces. In this
paper, this new method is adopted and implemented with the
stretched coordinate PML [27], [28], which is quite suitable for
first-order equations, for solving waveguide leaky modes with
high accuracy. We will show in the numerical examples that
the inclusion of the stretched coordinate PML still maintains
high accuracy of the PSFD method, and the position where the
PML region is placed has negligible effect on the computa-
tion accuracy, even for waveguides with no need in effective
indexes of the PML like the fiber waveguide. It will be shown
that this PSFD solver can achieve – numerical
accuracy for solving leaky-mode waveguide structures without
singular-field corners. In comparison of our PSFD solution for
a leaky six-air-hole fiber [17] with that from a recently reported
new high-order boundary-integral-equation (BIE) method [19]
which was shown to achieve exponential convergence and
extremely high accuracy, it is found that the agreement in the
calculated effective index is to the order of for both
the real and imaginary parts. The PSFD analysis will then be
applied to the conventional rib waveguide [29] and the more
complicated photonic wire [30] for which the application of the
BIE method would become more difficult.
The rest of this paper is organized as follows. The governing

Maxwell’s equations with the penalty scheme, the implementa-
tion of the stretched coordinate PML, and the eigenmode solver
formulation are described in Section II. The Legendre pseu-
dospectral method is introduced in Section III. Then, numer-
ical examples are given and discussed in Section IV, where
several one-dimensional (1-D) (slab) and 2-D (circular) leaky-
mode waveguides, including W-type [9], [31] and M-type [5],
[6] waveguides, are analyzed first, followed by the examina-
tion of the more complicated 2-D structures such as the six-air-
hole fiber and the photonic wire. The conclusion is drawn in
Section V.

II. PHYSICAL EQUATIONS, PML, AND PENALTY-SCHEME
FORMULATION

In a source-free and linear isotropic medium with permit-
tivity and permeability , the time-harmonic Maxwell’s curl
and divergent equations for frequency-domain computation are
written as

(1a)

(1b)

(1c)

(1d)

where is the angular frequency. Without loss of generality,
waves are considered to propagate along the -axis in the wave-
guide, i.e., no structural variations along the direction. There-
fore, spatial derivative with respect to becomes ,

where is the modal propagation constant. For convenience,
we normalize the magnetic field to .
Traditionally, waveguide modes are solved by second order

Helmholtz equations, like in [23]. A new PSFDmethod has been
recently developed in [24] using first order formulations instead,
which we adopt in this paper as well. In brief, two of the eight
equations in (1) without terms are removed, i.e.,

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

These six equations lead to an eigen-problem in the form,
, for solving waveguide modes, with containing the differ-

ential operators, the eigenvalue equal to to be searched,
and the eigenvector composed of the electric and magnetic
fields of the corresponding mode. This eigen-problem can be
solved using efficient iterative algorithms such as the bi-con-
jugate gradient (BiCG) method along with the shifted inverse
power method (SIPM).
For handling boundary conditions between materials, the

penalty scheme as utilized in [24] is also adopted here. First,
(2) can be rewritten as

(3)

where
, and the elements of the

matrices , and are simply 0, 1, and depending
on the presence of fields in (2). Next, the penalty term

is added into (2). The di-
agonal matrix is composed of the eigenvalues of the matrix

, the matrix is composed of the eigenvectors of ,
with , in which and are defined
below, and the characteristic state vectors are defined as

as in [24]. Con-
sidering boundary conditions at the interface between two adja-
cent sub-domains and in the multidomain approach, with
the unit normal vector perpendicular to the
interface with the relationship , where the su-
perscripts and specify the sub-domains where the vectors
are defined at the interface, we add to and add to
with the aids of physical boundary conditions [24] and ob-

tain

(4a)

(4b)
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Equations (4a) and (4b) lead to and ,
respectively, i.e., and , which
means that if we want to add considerations of physical
boundary conditions into (2) or (3) at material interfaces of
two adjacent sub-domains, we can simply place characteristic
state vectors of (4) into the penalty terms. Then, after matrix
multiplications of , and in the
penalty term , the six first-order Maxwell’s equations in
(2) for sub-domain , with the added and straightforward
manipulations, will become

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

where is unity when the grid point is at the boundary edge,
and is zero otherwise, and is the quadrature weight on the
interface which will be defined in the next section.
For solving waveguide leaky modes, a suitable perfectly

matched layer (PML) [11] is required to be implemented. The
stretched coordinate PML [27], [28] is chosen in this paper be-
cause of its ease of implementation on first order equations and
its outstanding ability of absorbing outward propagating waves.
According to [27] and [28], the stretched coordinate PML can
be implemented by simply changing partial derivatives as

and . Similarly,
the vector differential operator in the stretched coordinate
becomes . The absorptive
variables and are defined as and

[27], [28], where and are the
electric conductivities. To reduce possible undesired reflection
waves, we choose suitable profiles for and such as,
for example, along the
-axis, with the parameters and being free variables for
adjusting performance of the PML, is the distance
of the th grid point away from the innermost interface of the
PML, and is the length of the PML region. This is a
gradually growing profile and thus its strength of absorption
as the grids get deeper into the PML region. Therefore, in the
PML region, (5) will become

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

Generally, the PML is designed to absorb waves in a single di-
rection, therefore similar profile along the direction is used
by replacing the variable with in , and both and
will be needed at the corner region of the PML.

III. THE LEGENDRE PSEUDOSPECTRALMETHOD FORMULATION

Now we discuss the Legendre pseudospectral method for nu-
merically treating the spatial derivatives in the above governing
equations. Under the multidomain scheme, each curvilinear
quadrilateral sub-domain region in Cartesian coordinates
can be mapped onto a square region in
curvilinear coordinates by using the transfinite blending
function described in [25] to construct and

. Applying the chain rule, derivatives of a 2-D
function will then become

(7a)

(7b)

Some properties of Legendre polynomials, which we use as the
basis for the interpolation of a function, will be given below.
In the Legendre pseudospectral method, spatial arrangement

of grid points is defined by the Legendre-Gauss-Lobatto (LGL)
quadrature points arranged in the interval , which are
the roots of the polynomial [23], [24] with the
prime denoting derivative and being the Legendre polyno-
mial of degree defined by

(8)

Associated with these LGL quadrature points are a set of
quadrature weights for . If is a
polynomial of degree at most , we have the quadrature
rule [23], [24]

(9)
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where the quadrature weights are defined by

(10)

Based on these LGL collocation points, one can use the de-
gree- Lagrange interpolation polynomials as the bases
to approximate an arbitrary function such that

(11)

where

(12)

Then, the derivative of the function at the LGL quadrature
point can also be approximated as

(13)

The differential coefficient is defined in [23] and [24] by

(14)

The so-called differential matrix operator with elements can
thus be substituted into the spatial derivative in (13) as

...
...

...
...

(15)

This is the key feature of the Legendre PSFD method, i.e., for
the 1-D example, the derivative of at an LGL point in
the region can be approximated in terms of values
at the LGL points in the same region. Therefore, spatial
derivatives of fields in (5) and (6) can be simply replaced by this
differential matrix operator in the eigen-problem
system, and the resultant eigen-problem becomes a sparse ma-
trix having penalty, PML, and repeatedly appearing terms in
the matrix. Note that matrix sparsity will give better compu-
tational behavior, including less memory usage and faster com-
putation. Besides, for solving huge computations of matrix mul-
tiplication by parallel computations, we adopt hardware accel-
eration using the graphic processing unit (GPU) that each of
multi-processors can handel one row of matrix multiplication at
the same time.
In the 2-D waveguide structures to be discussed in the next

section, the grid meshes based on the LGL points in each sub-
domain will be plotted for a given . In the figures,
the curved structure and the whole computational region can be
seen being partitioned into curvilinear sub-domains, and

Fig. 1. 2-D waveguide geometries. (a) Circular fiber. (b) W-type fiber. (c)
M-type fiber. (d) Six-air-hole fiber. (e) Rib waveguide. (f) Photonic wire.

LGL grid points are not uniformly distributed
but somewhat following the outline of the domain edges. Please
note that the LGL grid points at each edge side of a sub-domain
are co-located with the LGL grid points at one edge side of its
adjacent sub-domain. These co-located grid points are counted
as distinct sets of points, and the penalty scheme is applied on
the two sets for exchanging information of boundary conditions.

IV. NUMERICAL RESULTS

In this section, we will apply our PSFDmethod with stretched
coordinate PML to solve several standard optical waveguides.
1-D slab waveguides will be examined first, and then their corre-
sponding 2-D fiber structures, which have circular symmetries,
will be analyzed. Next, optical waveguides with more com-
plicated structures will be analyzed, including the six-air-hole
fiber [17], [18], the rib waveguide [29], and the photonic wire
waveguide [30]. The latter two are with sharp dielectric corners
at which electric-field singularities might exist, and how such
sharp corners would affect the accuracy of computation will be
discussed. The cross-sections of the 2-D structures to be dis-
cussed in this section are depicted in Fig. 1.

A. W-Type Slab Waveguide

In traditional slab waveguide with higher-index core
squeezed by lower-index cladding layers, optical fields can be
well guided inside the core region and exponentially decay
outside. The propagation constant is valued between the
wavenumbers of the structure, i.e., , where

and are the wavenumbers of the cladding and the
core, respectively. Under this restriction of physics, waves are
not allowed to propagate laterally in the cladding layers, be-
cause their transverse propagation constant
is imaginary. Therefore, a simplest leaky-mode waveguide can
be constructed by simply introducing a secondary (infinite)
cladding region, outside the inner finite-thickness cladding
layer, with structural wavenumber higher than , forming the
so-called W-type waveguide [9], [31], with its refractive-index
profile shown in Fig. 2(a). This structure can, therefore, support
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Fig. 2. (a) Structural refractive-index profile and Re[ ] distribution showing
leaky-wave characteristic for the W-type slab waveguide. (b) Domain partition
(dashed lines for sub-domain edges) and LGL grid distributions (solid circles)
for . (c) field and leaky wave with the structural refractive index. (b)
Absorption characteristics of Re[ ] in the outer cladding layer for different
distances, , and 6 m, from PML to the inner cladding layer.

waves evanescently decaying in the inner cladding layer and
sinusoidally propagating in the outer cladding layer. This be-
havior is similar to the tunneling effect of a finite-width energy
barrier in quantum physics [8], [9].
The W-type waveguide of Fig. 2(a) is structured by

2- m-thick core with refractive index and 0.5- m-thick
inner cladding layer with . For supporting leaky
waves, the material of the outer cladding layer is chosen
to be the same as the core layer. This W-type leaky
mode can be solved analytically [9], [31], and the ob-
tained exact complex effective index of the fundamental
transverse-electric (TE) mode on the given structure is

, when
the operating wavelength is m. Table I lists the PSFD
computed complex effective indexes for different grid resolu-
tion or s, which apparently shows that the accuracy in
reaches as is used. The sub-domain partitioning
and unevenly distributed LGL mesh grids are illustrated in
Fig. 2(b) for , where seven sub-domains are depicted
including the PML ones. Only one PML sub-domain on each
side is shown in Fig. 2(b) although each PML region has been
actually composed of three sub-domains in the modeling. The
loss of this W-type structure is about 143.02 dB/m, which can
be further reduced by simply increasing the width of the inner
cladding layer, where the fields exponentially decay.
Wave absorption in the PML region can be observed in

Fig. 2(a), in which the Re[ ] distribution is plotted. For better
view of the magnitudes of the main field and the leaky field,
we normalize the maximum field value in Fig. 2(a) to 1.0.
The PML is placed in the regions m, where the
absorption coefficient of the PML material is growing with
increasing . Transversely propagating leaky waves can be
found in the outer cladding layers, and they become weaker as
going deeper into the PML region, which will finally become
zero as shown. To examine the effect of the PML position on
the accuracy and the field profile, we take the W-type structure
mentioned with as an example and change the width

TABLE I
PSFD COMPUTED EFFECTIVE INDEXES FOR THE FUNDAMENTAL TE MODE

OF THE M-TYPE SLAB WAVEGUIDE

of the outer cladding layer, that is, vary the distance from
PML to the inner cladding layer as shown in Fig. 2(c). Four
distances, and 6 m, are tested, and the resultant
Re[ ] profiles in the outer cladding layer and PML region are
shown in the figure. Note that the PML widths are fixed with
8 m, and the vertical dashed lines indicate the start points
of the PML region for different ’s. The PSFD computed
complex effective indexes of these four cases with are
listed in Table I and all of them are seen to be with accuracy
on the order of 10 , which means that the position where
the PML is placed has negligible effects on the computational
accuracy.

B. M-Type Anti-Resonant Reflecting Optical Waveguide
(ARROW)

In addition to guiding by the principle of total internal re-
flection (TIR), anti-resonance in a Fabry-Perot layer was also
known to be capable of being utilized as wave-guiding mecha-
nism [5]–[7]. It is well known that a layer of Fabry-Perot struc-
ture can be used as a cavity of wave transmission such that
waves can be highly transmitted at resonance or reflected at
anti-resonance. Taking advantage of high reflection at anti-res-
onance, two face-to-face Fabry-Perot layers operated under the
anti-resonance condition can support wave-guiding in between,
resulting in the so-called anti-resonant reflecting optical wave-
guide (ARROW). From the transmission spectrum of a Fabry-
Perot layer, we know that portion of waves will penetrate the
Fabry-Perot layers and outward propagate because the reflec-
tivity of each dielectric Fabry-Perot layer cannot reach 100%.
Therefore, the ARROW is a leaky waveguide as well. Besides,
since the Fabry-Perot layers have higher refractive index than
the core and the outer cladding layers, as shown in Fig. 3, this
ARROW can also be regarded as anM-type structure, compared
to the W-type waveguide in Fig. 2(a).
Two proposed ARROW structures are analyzed here to ex-

amine the ability and accuracy of the PSFD method treating
such kind of leaky-mode waveguide with multiple interference
mechanism. The first M-type structure, case-A, is the one con-
sidered in [5]. The core and the outer cladding layers are made
of SiO with , and the Fabry-Perot layers are made
of TiO with higher index . The operating wavelength
is m, and the waveguide widths of the core and
the Fabry-Perot layers are 4 m and 0.089 m, respectively.
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TABLE II
PSFD COMPUTED EFFECTIVE INDEXES FOR THE FUNDAMENTAL TE MODE OF THE M-TYPE SLAB WAVEGUIDE

Fig. 3. Structural refractive-index profiles and Re[ ] profiles showing leaky-
wave characteristic for the M-type slab waveguide. (a) case-A. (b) case-B.

The second structure, case-B, was proposed in [6], which is an
air-core pipe waveguide. Here we consider its 1-D slab struc-
ture version first, and the circular structure will be discussed in
Subsection IV.E., which has for the core and the outer
cladding layers, and for the Fabry-Perot layers. The
widths for the core and the Fabry-Perot layer are 9 m and 1 m,
respectively, and the operating wavelength is m.
The PSFD calculated complex effective indexes for the

fundamental TE mode for both cases are shown in Table II for
different s. The leaky modes on this M-type waveguide can
also be solved analytically [9], [31], and the obtained exact
complex effective indexes for the case-A and case-B structures
are and

, respectively.
Apparently, the PSFD accuracy reaches the order of
for both cases. The Re[ ] profiles for case-A and case-B are
shown in Fig. 3(a) and (b), respectively, along with their re-
fractive-index profiles. The modal fields are seen to be mainly
distributed between the two Fabry-Perot layers, with those
in the outer claddings laterally propagating to both ends. In
case-A, the PML regions are defined to be m,
within which the propagating waves gradually decay to zero as
shown in Fig. 3(a). Similarly, the PML regions for case-B are
taken to be m, and the laterally going waves are
seen to be well absorbed in Fig. 3(b). Notice that the maximum
of Re[ ] is normalized to 1.0 in both figures.

C. Circular Fiber Waveguide

We have shown above that the PSFD method with stretched
coordinate PML can accurately solve 1-D leaky waveguide
modes with the mechanism of total internal reflection or
anti-resonance. We shall then discuss the application of this
PSFD method to solve 2-D waveguides. Before studying leaky

Fig. 4. Electric-field distributions of the mode of the circular fiber wave-
guide. (a) Re[ ] profile along the -axis, structural refractive-index profile,
and in the inset sub-domain division and grid mesh. (b) profile for the case
with 0.4- m-radius cladding layer. (c) profile for the case with 1.9- m-ra-
dius cladding layer. (d) profile for the case with 0.4- m-cladding layer and
PML.

waveguides, the accuracy of the PSFD analysis of 2-D struc-
tures and the effect of PML will be examined first. Circular
fiber is a suitable example for examination, and an air-cladded
fiber with core radius of 0.6 m and is considered.
Because of its structural symmetry, we can analyze just one
quarter of the whole structure for acceleration of computation,
as shown in the inset of Fig. 4(a), with perfect electric con-
ductor (PEC) or perfect magnetic conductor (PMC) placed at
the left and bottom edges, respectively. The inset shows the
mesh division using and the one-quarter computa-
tional domain is partitioned into curvilinear sub-domains, with
the shape of the material interface being well fitted with the
boundaries of corresponding sub-domains. For this fiber, the
analytical effective index for the fundamental mode is

when the operating wavelength
is m [1].
Three structures are examined. The first one has an air

cladding layer of 0.4- m thickness as shown in Fig. 4(b),
the second one has air cladding layer of 1.9- m thickness as
depicted in Fig. 4(c), and the third one is similar to the first
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TABLE III
PSFD COMPUTED EFFECTIVE INDEXES FOR THE MODE OF THE CIRCULAR FIBER (THE ANALYTICAL )

one but with PML layers added as shown in Fig. 4(d). Note
that PEC boundary condition is placed at the outermost edge of
the cladding layer, where mode fields are supposed to decay to
almost zero there. The PSFD calculated effective indexes with
varied from 4 to 14 are shown in Table III for these three

structures. Apparently, the first case with air cladding layer of
0.4- m thickness is seem to have only accuracy, but the
second case with air cladding layer of 1.9- m thickness has

accuracy, instead. This is because the fields exponen-
tially decay in the cladding layer, but not quite close to zero
at the outer PEC for the first case since the cladding layer is
not thick enough. For the third structure, which is designed
with additional PML layers added outside the air cladding of
the first case, the accuracy of the PSFD computed effective
index is achieved, again, on the order of when .
This result reveals that although the PML is placed close to the
core-cladding interface with the mode fields not yet decaying to
zero at m, such PML arrangement is found to have
negligible effects on the calculation accuracy, just like those
tests done for the 1-D W-type waveguide in Fig. 2(b). Notice
that the imaginary parts of in the third case in Table III
come from the introduction of PML. These non-zero values are
not physically meaningful since they are comparatively much
smaller than the values of the real parts and can be considered
as computation noises. They actually become almost zero as
is large enough, as seen in Table III.
The profiles are shown in Fig. 4(b), (c), and (d) for the

three cases, and the Re[ ] versus curve of Fig. 4(c) is shown
in Fig. 4(a) along with the structural refractive-index profile.
Here we show the 1-D field along the -axis, because it
maintains tangential continuity across different materials. The
field profiles, in the format of either the absolute value or the
real part, shown in the following are all normalized to 1.0, and
the profiles of Fig. 4(b), (c), and (d) should be indistinguishable
since the field solution differences among them are on the order
of .

D. W-Type Circular Waveguide

The first 2-D leaky-mode waveguide to be discussed here
is, again, the simplest W-type structure, which has the same
guiding mechanism as the 1-D ones. This 2-D W-type wave-
guide has a circularly symmetric index profile with its radially
dependent profile the same as the profile of the 1-D W-type
structure in Fig. 2(a), as shown in Fig. 5(a). That is, the core has a
radius of 1 m and , and the lower-index inner cladding
layer has 0.5- m thickness with , and the outer cladding
layer is of the same material as the core for supporting wave

Fig. 5. (a) Structural refractive-index profile and Re[ ] of the mode
versus distribution for the W-type circular waveguide with the enlarged
Re[ ] profile for m in the inset showing the leaky-wave
characteristic. (b) Sub-domain arrangement and grid mesh in the computational
region.

TABLE IV
PSFD COMPUTED EFFECTIVE INDEXES FOR THE MODE OF THE W-TYPE

CIRCULAR WAVEGUIDE

leakage. The sub-domain division in one quarter of the struc-
tural cross-section is illustrated in Fig. 5(b) for . The
absorptive PML region is set at m and m,
occupying the three rectangular sub-domains in Fig. 5(b). The
PSFD computed complex effective indexes for the fundamental

mode for different s are listed in Table IV, which shows
self-converged accuracy as well. The obtained loss is

about 351.6 dB/m, which is larger than that of the 1-D structure
and can be reduced by increasing the width of the inner cladding
layer.
The Re[ ] profile along the -axis is depicted in Fig. 5(a),

which shows wave-guiding in the core region, exponentially
decaying in the inner cladding layer, sinusoidally propagating
in the outer cladding layer, and being absorbed in the PML
region. The leaky waves can be seen to be well absorbed in
the PML region in the expanded plot shown in the inset of
Fig. 5(a). We have found that the position of the PML region
has negligible effect on the numerical accuracy. The PSFD
computed electric and magnetic mode-field distributions are
shown in Fig. 6(a)–(f). It shows that the and profiles
are similar, and so are the and profiles, while the
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TABLE V
PSFD COMPUTED EFFECTIVE INDEXES FOR THE MODE OF THE M-TYPE FIBER WAVEGUIDE

Fig. 6. Field profiles of the mode of the W-type fiber waveguide. (a)
. (b) . (c) . (d) . (e) . (f) .

Fig. 7. Structural refractive-index profile and Re[ ] of the mode
versus distribution for the M-type circular waveguide with the inset showing
the sub-domain arrangement and the grid mesh. (a) case-A. (b) case-B.

and profiles have rotated similarity. Comparing with the
standard fiber waveguide, the field patterns are almost similar,
except the W-type fiber possesses leaky waves in the outer
cladding layer.

E. M-Type Circular Waveguide (ARROW Structure)

As in the 1-D case, the 2-DM-type waveguide is an ARROW
structure. Again, we consider two circularly symmetric index
profiles with their radially dependent profiles the same as those
of the 1-D ARROWs plotted in Fig. 3(a) (case-A) and (b)
(case-B), respectively, as shown in Fig. 7(a) and (b). In the
case-A structure, both the core and the outer cladding are with

, the core radius is 2 m, and the Fabry-Perot layer is
with and 0.089- m thickness. The case-B structure is
a pipe waveguide studied in [6] with the following parameters:

core radius of 9 m, Fabry-Perot layer of thickness 1 m and
, and the core and the cladding are simply air. The field

confinement and leakage property of the 2-D ARROW depends
critically on the operating wavelength due to the Fabry-Perot
resonant condition. Take case-B as an example, the relationship
between the attenuation constant and the operating frequency
can be seen in [6], which correlates with the Fabry-Perot wave
transmission/reflection spectrum. Here, we choose m
at which a Fabry-Perot-layer transmission minimum or an
anti-resonance occurs, resulting in better field confinement in
the waveguide.
The computational sub-domain partitioning and grid meshes

for both cases are shown in the insets of Fig. 7(a) and (b), re-
spectively. The PMLs, not shown in the insets, are located in
the region ( m and m) for the case-A structure
in Fig. 7(a) and in the region ( m and m)
for the case-B structure in Fig. 7(b). The PSFD computed com-
plex refractive indexes for the fundamental mode for both
structures are listed in Table V for different s, which shows
self-convergence of accuracy on the order of in both
ones. To examine the wave leakage and PML absorption, we
plot in Figs. 7(a) and (b) the respective Re[ ] profiles along
the -axis. Apparently, the leaky waves can be well absorbed in
both cases since it is seen the fields decrease gradually in the
PML region and approach zero at the edge of the computational
domain.
The PSFD computed electric and magnetic mode-field distri-

butions are shown in Fig. 8(a)–(f) for case-A and in Fig. 9(a)–(f)
for case-B, respectively, for comparison. From Table V, we see
that Im[ ] for case-B at the considered wavelength is larger
than that for case-A, as can be understood from the field distribu-
tions in Figs. 8 and 9. The loss of case-B can become smaller if
it is operated at other dips in the higher frequency range [6]. The
case-B structure has the advantage of avoiding material loss in
the core since the guiding core is simply an air region in addition
to its simple pipe geometry which can make the manufacturing
very easy.

F. Microstructured Six-Air-Hole Fiber Waveguide

So far, we have examined the accuracy of the PSFD method
with the PML by analyzing several standard 1-D and 2-D
W-type and M-type leaky waveguides, and the resultant ac-
curacy has been demonstrated to be on the order of
for all cases. Now, we will apply this PSFD method to solve
waveguides with more complicated structures.
First, we consider the popularly studied microstructured six-

air-hole fiber [17]–[19], [21], as shown in Fig. 1(d). With the
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TABLE VI
PSFD COMPUTED EFFECTIVE INDEXES FOR THE FUNDAMENTAL MODE OF THE SIX-AIR-HOLE WAVEGUIDE FOR THE AND MODES

Fig. 8. Field profiles of the mode of the case-A M-type fiber waveguide.
(a) . (b) . (c) . (d) . (e) . (f) .

Fig. 9. Field profiles of the mode of the case-B M-type fiber waveguide.
(a) . (b) . (c) . (d) . (e) . (f) .

structural symmetry, we can again treat only one quarter of the
waveguide cross-section, as we have done in the previous three
circular waveguide structures. According to [17]–[19], and [21],
six holes are hexagonally arranged, and the hole pitch, i.e., the
center-to-center distance of adjacent holes, is m.
The radius of each hole is m, and the refractive
indexes for the fiber and the hole are and 1.0, re-
spectively. With the cladding extended to infinity, this struc-
ture possesses a similar characteristic as the W-type fiber since
the six air-holes create an equivalent lower-index ring structure,

Fig. 10. (a) Structural refractive-index profile along the -axis and Re[ ] of
the fundamental mode versus distribution for the six-air-hole waveguide with
the enlarged Re[ ] profile for m in the inset showing
the leaky-wave characteristic. (b) Re[ ] versus distribution with the inset
showing the sub-domain arrangement and grid mesh.

making the structure to support leaky modes with complex ef-
fective indexes.
The and modes, as defined in [17] and [18],

are considered here at m. The PSFD computed
complex effective indexes for these two modes are listed in
Table VI for different s. Accuracy of self-convergence on
the order of is observed for this complicated structure.
According to the result of the multipole method proposed in
[18], the computed effective index for this mode was

, which
agrees well with our results to for the real part and to

for the imaginary part. On the other hand, as mentioned
in the Introduction, a new high-order boundary-integral-equa-
tion (BIE) method was reported recently and shown to achieve
exponential convergence and extremely high accuracy [19].
The computed effective index for the mode provided
in [19] is ,
which agrees with our results to the order of for both the
real and imaginary parts.
To observe the leaky waves and their attenuations in the

PML layer, Re[ ] versus and Re[ ] versus profiles are
shown in Fig. 10(a) and (b), respectively. Since scanning of
along the -axis will pass through the air-hole, discontinuity
of Re[ ] would occur, as can be seen in Fig. 10(a). Domain
partitioning and grid meshes in the computation are shown
in the inset of Fig. 10(b). Again, one quarter the waveguide
cross-section is treated and the PML, not shown in Fig. 10(b),
is designed to be in the region ( m and m).
From the inset in Fig. 10(a), the field can be seen well absorbed
in the PML region and approaching zero eventually.
The PSFD computed electric and magnetic mode-field distri-

butions are shown in Fig. 11(a)–(f) for the mode and in
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Fig. 11. Field profiles of the mode of the six-air-hole fiber waveguide.
(a) . (b) . (c) . (d) . (e) . (f) .

Fig. 12. Field profiles of the mode of the six-air-hole fiber waveguide.
(a) . (b) . (c) . (d) . (e) . (f) .

Fig. 12(a)–(f) for the mode, which are similar to those pre-
sented in [17] and [21]. Similar to the standard circular fibers,
the and profiles are alike, and so are the and
profiles.
Up to now we have analyzed four kinds of 2-D waveguides

with round material interfaces, and the PSFD computed effec-
tive indexes are listed in Tables III, IV, V, and VI, respectively.
Based on the data in the tables, as a useful summary, we calcu-
late and plot the errors of versus in Fig. 13(a)–(d) to
show the respective characteristics of numerical convergence
of the developed PSFD mode solver. For each , the error of

is defined as the absolute value of the difference between
the calculated and an accurate reference . Fig. 13 is
presented in logarithmic scales, and exponential convergence
of computational accuracy is observed in all four cases, which
means that numerical errors can be fast reduced by a relatively
small increase in the number of grid points. Note that the
calculated errors in Fig. 13(a) are based on the data assuming
the air cladding layer is of 1.9 m thickness and the reference

being the analytical solution, while the reference s
for Fig. 13(b)–(d) are respectively those s corresponding

Fig. 13. Exponential convergence characteristics of the error of versus
. (a) The circular fiber. (b) The W-type circular fiber. (c) The M-type circular

fiber. (d) The six-air-hole fiber waveguide.

to the respective maximum value in Tables IV, V, and VI.
Regarding computer resources used, we provide the following
data for the case of the circular fiber obtained using one core on
a 2.66-GHz Intel® Core™ i7-920 PC machine. With , 6,
8, 10, 12, and 14, the corresponding computation times are 4.14
s, 20.4 s, 68.11 s, 212.38 s, 443.58 s, and 783.13 s, respectively,
the matrix sizes are 1050, 2058, 3402, 5082, 7098, and 9450,
respectively, and the memories taken are 1864 kB, 2112 kB,
2356 kB, 2676 kB, 3120 kB, and 3588 kB, respectively. It can
be seen our program uses small memories. Fig. 13(a) reveals
that with the error of already goes down to the
practically impressive order of .

G. RIB Waveguide

We have analyzed several leaky-mode waveguides with cir-
cular interfaces, and the PSFD method is shown to give
accuracy through self-convergence tests. It has been shown in
[24] that using the PSFD method for analyzing (nonleaky) di-
electric channel waveguides with sharp dielectric corners can
provide only accuracy in the effective index with ;
with , the accuracy improves to

, and , respectively. The convergence characteristic
is not an exponential one as in the 2-D waveguides without cor-
ners discussed so far but more with a first-order convergent rate.
This is due to that the sharp dielectric corners are associated with
electric-field singular points, which ruins the computation [24].
Below, we will consider two rectilineal waveguides, the

rib waveguide and the photonic wire waveguide, as shown in
Fig. 1(e) and (f), respectively. First, in this subsection, the rib
waveguide is examined. The waveguide structure is the same
as that studied in [29]. Referring to Fig. 1(e), the thicknesses
in the rib region are m and m, the rib
width is m, and (air), 3.44, and 3.4 for
the upper cladding, the core, and the substrate, respectively.
The operating wavelength is m. The fundamental
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Fig. 14. Sub-domain arrangement and grid mesh for the rib waveguide.

TABLE VII
PSFD COMPUTED EFFECTIVE INDEXES FOR THE FUNDAMENTAL TE MODE OF

THE RIB WAVEGUIDE

TE guided mode of this rib waveguide is not a leaky one, but
it is a good case for examining the effect of the sharp corners
in a more complicated waveguide structure than the simple
channel waveguide, since it has long been an example for
benchmarking waveguide mode solvers including in [32]. And
such examination would be useful before studying the photonic
wire waveguide in the next subsection. Fig. 14 shows the rib
waveguide structure and the designed sub-domain arrangement
for half structure due to symmetry. PML regions (not shown)
are put outside the right, bottom, and top sides with thick-
nesses 6 m (three sub-domain layers), 4 m (two sub-domain
layers), and 2 m (one sub-domain layer), respectively. The
PSFD computed effective indexes for different s are listed
in Table VII, and the finite-difference method obtained value
of provided in [32] is used
for comparison. Apparently, the PSFD calculation reaches
3.413132 when , and then the convergent rate slows
down. However, with larger used, as seen in Table VII for
from 16 to 32, better accuracy can be obtained, and we

can achieve two more accuracy digits than that in [32], i.e.,
(after rounding) with self-convergent

accuracy on the order .
The calculated , and pro-

files for the fundamental TE mode are shown in Fig. 15(a)–(f),
respectively. The mode fields are well guided in the thicker por-
tion of the rib region, and field singular points can be seen in
Fig. 15(b).

Fig. 15. Field profiles of the fundamental TE mode of the rib waveguide. (a)
. (b) . (c) . (d) . (e) . (f) .

Fig. 16. Sub-domain arrangement and grid mesh for the photonic wire wave-
guide.

H. Photonic Wire Waveguide

The photonic wire waveguide or photonic wire has been an
essential structure in recently developed high-density photonic
integrated circuits, and the computed effective indexes of its
fundamental mode have been compared among ten different nu-
merical methods or solvers in [30]. As shown in Fig. 16, the
guiding core and the substrate are both made of silicon with

and there is a buffer layer between them with
. The upper cover medium is air, resulting in a high-index-

contrast structure. The rectangular core has of course sharp cor-
ners. One important characteristic is that the limited thickness
of the buffer causes the fundamental mode to leak power
into the substrate, and the accurate determination of Im[ ]
becomes a main concern. To compare with the results in [30],
we adopt the same parameters: the width and the height of the
core being 0.5 m and 0.22 m, respectively, the thickness of
the buffer layer being 1.0 m, and m. The de-
signed sub-domain arrangement for half structure is also shown
in Fig. 16. Again, PML regions (not shown) are put outside the
right, bottom, and top sides with thicknesses 4 m (three sub-
domain layers), 4 m (two sub-domain layers), and 2 m (one
sub-domain layer), respectively. The PSFD computed complex
effective indexes for different s are listed in Table VIII, and
with up to 32. From the convergence trend, we would have
confidence that Re[ (order of accuracy)
and Im[ ] falls betweem and ,
showing slow convergent rate for this high-index-contrast struc-
ture with corners compared with all cases discussed above.
The calculated effective indexes by ten different methods or

solvers, as given in Table VI of [30], are similarly listed in
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TABLE VIII
PSFD COMPUTED EFFECTIVE INDEXES FOR THE FUNDAMENTAL MODE OF THE

PHOTONIC WIRE WAVEGUIDE

TABLE IX
COMPUTED EFFECTIVE INDEXES FOR THE FUNDAMENTAL MODE OF THE

PHOTONIC WIRE WAVEGUIDE FROM TEN METHODS AS LISTED IN TABLE VI
OF [30] AND FROM THE PSFD METHOD

Table IX together with our PSFD result using for com-
parison. It was concluded in [30] that for Re[ ], four solvers
agree on five significant digits 2.4123 with CAMFR and ape-
riodic fourier modal method even agreeing up to seven signif-
icant digits, and for Im[ ], three solvers agree on three sig-
nificant digits with CAMFR and aperiodic fourier
modal method again agreeing on five significant digits after
rounding. It is seen that our PSFD result agrees with CAMFR
and aperiodic fourier modal method on six significant digits
for Re[ ] (2.41237) and with a deviation less than

for Im[ ] ( after rounding). As mentioned
in the first paragraph of the previous subsection for rib wave-
guide, the sharp dielectric corners are with electric-field sin-
gular points and ruin the spectral convergence [24]. Therefore,
although Table III shows the possible decreasing trend for the
values of both Re[ ] and Im[ ], such decrease would be
slow with . We did not pursue further computation since the

one has already been expensive.
Fig. 17 shows the Re[ ] profile along the -axis at

together with the waveguide refractive-index profile. The mode
field is seen mostly guided in the core, decaying in the
buffer layer, leaking into the Si substrate, and absorbed by the
PML layer. The PML is placed at m (substrate) and
the enlarged field profile depicted in the inset of Fig. 17 clearly
shows the leaky behavior and the well-absorption by the PML.

Fig. 17. Structural refractive-index profile along the -axis at and
Re[ ] of the fundamental mode versus distribution at for the pho-
tonic wire waveguide with the enlarged Re[ ] profile for m
in the inset showing the leaky-wave characteristic.

Fig. 18. Field profiles of the fundamental mode of the photonic wire wave-
guide. (a) . (b) . (c) . (d) . (e) . (f) .

The PSFD calculated , and
profiles for the fundamental mode are shown in Fig. 18(a)–(f),
respectively. The field singular points can be seen in Fig. 18(b).

V. CONCLUDING REMARKS

We have incorporated the stretched coordinate PMLs into
the recently developed pseudospectral frequency-domain
(PSFD) method waveguide mode solver which employs a
penalty scheme [24] so that leaky modes can be determined
with high-accuracy complex effective indexes. Applications
of the new PSFD solver to several standard leaky-mode slab
and circular waveguides, including the W-type and M-type
ones, demonstrate that computational accuracy for the effective
indexes of their fundamental modes can be on the order of

. For the popularly studied more complicated microstruc-
tured six-air-hole fiber, our PSFD solver can achieve self
convergence of accuracy in the effective index on the order of

, and the comparison with a new high-order boundary-in-
tegral-equation (BIE) method reported recently [19] shows that
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the agreement between the two solvers is up to the order of
for both the real and imaginary parts of the computed

effective index for the mode. As for rectilineal waveg-
uides with sharp corners, PSFD analyses of the rib waveguide
and the photonic wire have been conducted. As investigated in
[24], sharp dielectric corners are associated with electric-field
singular points and ruin the exponential-convergence char-
acteristic of the PSFD computation. Nevertheless, compared
with the prior high-accuracy finite-difference analysis of the
rib waveguide in [32], we can achieve two more accuracy
digits, with self-convergent accuracy on the order , for the
computed effective index of the fundamental TE mode. For the
high-index-contrast photonic wire with substrate leakage, the
PSFD solver provides an effective index for the fundamental
mode close to the possible best results offered by CAMFR and
aperiodic fourier modal method among ten methods compared
in [30] with the agreement on six significant digits for the real
part and on three digits for the imaginary part.
Some remarks regarding the advantages of this proposed

PSFD method waveguide mode solver are addressed below.
Solving second-order Helmholtz equations in terms of the
two transverse-magnetic field components has been a popular
approach in full-vectorial waveguide analysis. The PSFD
formulation of [21] was based on such approach with PMLs
implemented. The present PSFD formulation is constructed
using first-order differential equations written from Maxwell’s
equations and the six field components are included. Obvi-
ously, under the same sub-domain arrangement, the number
of unknowns becomes larger, which could be the major disad-
vantage. In [24], on which the present formualtion is based,
the possibility of reducing the total number of discrete equa-
tions as well as the field components included to reduce the
computational work has been discussed in its concluding re-
marks, where it was also pointed out that one advantage of the
first-order-equation formulation is its easiness to include tensor
permittivity in the waveguide structure. One useful aspect of
directly obtaining six field components from the waveguide
analysis lies in the combined application of the PSFD and
PSTD methods in analyzing or simulating some device struc-
tures involving waveguide input. The complete profiles of the
six field components of the input waveguide eigenmode can be
readily used as the input functions to the PSTD computation
with the same sub-domain mesh arrangement considered in the
waveguide-mode calcuation and the time-domain simulation.
One key technique utilized in the present formulation is the

same penalty scheme formulated in [24] for treating interface
boundary conditions between adjacent sub-domains although
we make the generalization here by implementing the stretched
coordinate PML. Note that in the PSFDmethod of [21], directly
matching interface conditions was employed. As discussed also
in Subsection V.B in [33] which reported a PSFD method for
solving scattering problems, the penalty scheme provides an
edge-by-edge approach to impose interface conditions between
sub-domains and it avoids the problematic issue of specifying a
unique normal vector at a vertex point of a sub-domain by spec-
ifying two normal vectors at the vertex point using the nornmal
vectors on the edges that intersect at the vertex. Every vertex
point is thus enforced with two penalty interface conditions. We

have found that the numerical convergence behavior through
this penalty treatment appears to be better than that of [21] using
the direct matching of interface conditions. One example is the
analysis of the mode shown in Table VI of the six-air-hole
waveguide. Some comparison between the analysis results of
[19] and [21] for this mode was discussed in Section V of [19],
which showed an agreement not as superior as that betweem
those of [19] and this work.
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