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Adiabatically driven Brownian pumps
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We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle
transport through a membrane. The extension of the Parrondo’s approach developed for reversible Brownian
motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the
pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically
fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high
efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping
mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the
membrane.
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I. INTRODUCTION

Mechanisms of active transport are the focus of current re-
search primarily because of their particular relevance to studies
of transmembrane transport [1–3]. One of the promising ways
to treat the problem is based on the concept of Brownian motors
and pumps driven by nonequlibrium fluctuations of a potential
or an unbiased force (ratchet effect) [4–7]. Brownian motors
model the particle transport along a spatially periodic potential,
while Brownian pumps mimic particle transport through a
finite system (membrane) from a reservoir at low concentration
to one at the same or higher concentration. Most pump models
assume that a channel, connecting the reservoirs, can contain
only one particle or none. In this case the concentrations of
particles on both sides of a membrane are introduced via
multipliers in the pseudo-first-order rate coefficients which
define transitions between occupied and unoccupied channel
states [8–11]. Such a pump can be treated in terms of a flashing
periodic potential model [12].

There are alternative pump models designed for transport of
noninteracting particles. In these models, the particle concen-
trations in the reservoirs determine the boundary conditions
for the particle concentration in the membrane (see, e.g.,
Refs. [13,14] and [15–17] for flashing and rocking schemes,
respectively) and the number of particles inside the membrane
depends not only on the outside concentrations but also on the
potential inside the membrane. When the potential fluctuates,
this number is not constant, in contrast to that we have seen
for Brownian motors where it is fixed on each period of the
potential. This fact plays an important role in the working
mechanism [14].
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Investigation of adiabatic (no heat exchange between a
working system and surroundings) driving regime plays a
special role in the Brownian ratchet theory and its applications.
In this regime, Brownian motors exhibit high efficiency of
energy conversion [18–25]. On the other hand, the adiabatic
approximation makes the analysis analytically treatable, thus
providing a convenient way to better understand regularities
of motion-inducing and energy conversion mechanisms. Com-
mon and distinct features of adiabatically slow [18–21] and
adiabatically fast [22–25] driven Brownian motors have been
discussed in Refs. [26,27].

The goal of the present paper is to compare adiabatically
slow and adiabatically fast driven Brownian pumps with
Brownian motors functioning in the same regimes. In contrast
to models for Brownian motors, where one exploits the
normalization and periodicity conditions for the particle
concentration, here the boundary conditions are determined
by externally fixed particle concentrations in the left and right
reservoirs. Such a replacement of the boundary conditions
introduces physics having important consequences, which
are discussed in the subsequent sections. Following in this
way, we derive explicit analytical expressions for the main
pump characteristics and demonstrate, in particular, that the
pumping mechanism becomes especially efficient when the
time variation of the potential occurs adiabatically fast or
adiabatically slow, in perfect analogy with adiabatically driven
Brownian motors. At the same time, a Brownian pump can
operate at potential sign fluctuations and its efficiency is less
than that of motors due to fluctuations of the number of
particles in the membrane.

In Sec. II we formulate the model and show how the main
equations for adiabatically driven motors are modified in the
case of adiabatically driven pumps. Additionally, we discuss
similarities and differences in the operating principles of these
devices. In Sec. III an adiabatically fast driven Brownian pump
is considered in more detail using a technique of singular
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barriers introduced in Refs. [28,29]. The main findings of the
paper and their relevance are discussed in concluding Sec. IV.

II. THE MODEL AND MAIN EQUATIONS

Consider pointlike particles moving in a static fluid filling
a channel (a membrane) of length L bounded by two particle
reservoirs. The particle concentration is assumed to be small
enough such that the influence of the particles on the fluid
and interparticle interactions in the bulk can be neglected.
We also assume that the channel cross section does not vary
along its length, so that we can neglect entropic effects in
channel-facilitated transport [30,31] and consider the problem
as one dimensional. The channel is assumed wide enough
in order to neglect the effects studied in the context of
single-file diffusion [32,33], so that the particle motion exhibits
normal, rather than anomalous diffusion. Thus to concentrate
on the ratchetlike pumping mechanism, the model leaves out
additional complexities. The simplifications mentioned above
are the price we have to pay to make the problem analytically
treatable.

The particles are subjected to the potential V (x), where x is
the coordinate along the channel with the origin at the left end
0 � x � L (the potential is zero outside the membrane). The
particle concentration ρ(x,t) and the particle current J (x,t)
obey the continuity equation

∂

∂t
ρ(x,t) = − ∂

∂x
J (x,t), J (x,t) = Ĵ (x)ρ(x,t), (1)

where the current operator Ĵ (x) in the overdamped regime is
written as [34]

Ĵ (x) = −De−βV (x) d

dx
eβV (x). (2)

Here β = (kBT )−1 (kB is the Boltzmann constant and T is the
absolute temperature) and D = (βζ )−1 is the (potential free)
diffusion coefficient (ζ is the friction coefficient).

Let ρl and ρr be the particle concentrations in the left
and right reservoirs bounding the channel. The boundary
conditions for ρ(x,t) at x = 0, L must take into account jumps
of the potential at these points

ρ(0,t) = e−βV (0)ρl, ρ(L,t) = e−βV (L)ρr . (3)

At the stationary state [∂ρ(x,t)/∂t = 0], the solution of Eq. (1)
with the boundary conditions (3) can be written as

ρst(x) = e−βV (x)

[
ρl + (ρr − ρl)

∫ x

0
dx ′q(x ′)

]
,

q(x) = eβV (x)

/∫ L

0
dx ′eβV (x ′). (4)

The corresponding stationary current is

Jst = D
ρl − ρr∫ L

0 dx ′eβV (x ′)
. (5)

At ρl = ρr , the stationary solution (4) becomes the equilibrium
one and the current (5) vanishes.

Let us assume that the potential inside the membrane
instantly changes at t = 0 from Va(x) to Vb(x). So at t = 0,
the particle concentration and the particle current [designated

here and hereafter as ρa(x) and Ja , respectively] are defined by
Eqs. (4) and (5) with V (x) = Va(x). Then, the integration of
Eq. (1) over large time interval τb sufficient for the stationary
(or quasistationary) state with the particle concentration
ρb(x,τb) in the potential Vb(x) to be established gives

ρb(x,τb) − ρa(x) = − d

dx
Ĵb(x)ϕb(x), ϕb(x) =

∫ τb

0
dtρ(x,t).

(6)

Here Ĵb(x) is defined by Eq. (2) with V (x) = Vb(x). The
integration of Eq. (6) over x yields

�	ab(x) ≡ Ĵb(x)ϕb(x) = �	ab(x0)

+
∫ x

x0

dx ′[ρa(x ′) − ρb(x ′,τb)]. (7)

The quantity �	ab(x) has a simple physical meaning. It is
the net fraction of particles crossing the point x during the
time τb.

Consider a periodic dichotomous process with large dura-
tions τa and τb of alternating states with potentials Va(x) and
Vb(x). The net fraction of particles crossing the point x during
the period τ = τa + τb equals

�	dich(x) ≡ �	ab(x) + �	ba(x) = �	dich(x0) (8)

and does not depend on x. Thus the quantity �	ab(x0) in
Eq. (7) at arbitrary point x0 is to be determined. Using the
explicit expression (2) for the current operator Ĵb(x) in Eq. (7),
then multiplying both sides of Eq. (7) by exp[βVb(x)], and
finally integrating over x from 0 to L, we obtain with account
of the boundary conditions (3)

�	ab(x0) = Jbτb +
∫ L

0
dxqb(x)

∫ x

x0

dx ′[ρb(x ′,τb) − ρa(x ′)],

(9)

where qb(x) is defined by Eq. (4) with V (x) = Vb(x). As a
result, �	dich for the periodic dichotomous process takes the
form

�	dich = Jaτa + Jbτb +
∫ L

0
dx[qb(x) − qa(x)]

×
∫ x

0
dx ′[ρb(x ′,τb) − ρa(x ′,τa)] (10)

[here we put x0 = 0 since �	dich actually is position inde-
pendent, and use the designation ρa(x ′,τa) instead of ρa(x ′) in
order to stress that state “a” is also the quasistationary one].

Now consider a cyclic adiabatically slow process with
period τ for which the time dependence of the potential
V (x,t) = V [x; R(t)] can be expressed through a time-periodic
vector-function R(t) = {R1(t),R2(t), . . . ,Rn(t)}, R(t + τ ) =
R(t). The relation (9) allows us to write the net fraction
of particles crossing the point x0 during the period as the
limit of the integral sum over N jumps of the potential with
quasiequilibrium states established before each jump

	slow = lim
N→∞

N∑
m=1

�	m,m+1(x0) =
∫ τ

0
dt Jst[R(t)]

+
∮

dR
∫ L

0
dx q(x; R)

∫ x

0
dx ′ ∇Rρst(x

′; R). (11)
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FIG. 1. The phase diagram of functions R1(t) and R2(t) de-
scribing the time dependence of the two-parametric potential profile
V [x; R(t)] [R(t) = {R1(t),R2(t)}]. The solid and dashed lines with
arrows indicate the directions of loop bypass under adiabatically
slow and dichotomic regimes of operating of Brownian pumps,
respectively. In the case of a potential with singular barriers [see
(c)], the parameters R1(t) and R2(t) are related to the time-dependent
barrier height and the heights of the smooth regions between
the barriers described by the function v(x), respectively (a). The
permeable singular [V → ∞, l → 0, 
 ≡ l exp(βV ) is finite] barrier
located at the point x = 0 with different particle concentrations ρl and
ρ(0) on both sides (b). The potential profiles with singular barriers
corresponding to points a and b in (a). Dichotomous switching
between these profiles provides the directed motion through the
membrane. Parameters Vlr and Vab define the energetic shift between
the left and right smooth regions and the change of the number of
particles in the equilibrium states a and b (c).

The integration in the second term of Eq. (11) is performed
over the loop in the R space [see Fig. 1(a) as a two-dimensional
(2D) example with a rectangular loop].

Energetics of Brownian pumps is determined by the input
Ein and output Eout energies for which the following relations
hold:

E(dich)
in =

∫ L

0
dx[Vb(x) − Va(x)] [ρa(x,τa) − ρb(x,τb)] ,

(12)

E(slow)
in =

∮
dR

∫ L

0
dx[∇RV (x; R)]ρst(x; R) + kBT (τrel/τ ) ,

Eout = kBT 	 ln(ρr/ρl). (13)

The first and the second terms in E(slow)
in [Eq. (12)] correspond

to the adiabatic and nonadiabatic contributions in the input
energy (an explicit formula for the relaxation time τrel

depending on the potential profile is too cumbersome to
be presented here but τrel can be estimated as L2/D). The
quantities �	dich or 	slow should be substituted for 	 in
Eq. (13) if dichotomous or adiabatically slow processes are
considered. The efficiency of the Brownian pump is defined as
η = Eout/Ein.

Note that Eq. (11) has a physical meaning only when the first
term does not exceed the second one. As the period τ should
be large enough for the stationary regime to be established, the
second term in Eq. (11) dominates over the first one only if the
stationary current tends to zero. To satisfy this condition, we
require that ρr → ρl . Then, substituting Eq. (4) into Eq. (12)
for E(slow)

in , we obtain up to terms of order (ρr − ρl):

E(slow)
in ≈ kBT (ρr − ρl)ρ

−1
l 	

(0)
slow + kBT (τrel/τ ),

	
(0)
slow = ρl

∮
dR

∫ L

0
dx q(x; R)

∫ x

0
dx ′ ∇R exp[−βV (x ′; R)].

(14)

Thus, in the adiabatic limit (τ → ∞) and at ρl = ρr , the
pump operates without energetic consumption (E(slow)

in = 0)
like Parrondo’s reversible ratchet [18,19]. It is easy to show that
in the quasiequilibrium regime with accuracy to the quadratic
terms (ρr − ρl)2 and τ−2, the energetic costs per unit time can
be written as follows (see, e.g., Ref. [26]):

τ−1E
(slow)
out ≈ −λ11(ρr − ρl)

2 + λ12(ρr − ρl)τ
−1,

(15)
τ−1E(slow)

in ≈ −λ21τ
−1(ρr − ρl) + λ22τ

−2,

with the kinetic coefficients defined by the expressions

λ11 = kBT

ρ2
l τbar

,

τ−1
bar = Dρlτ

−1
∫ τ

0
dt

{∫ L

0
dx exp [βV (x; R(t)]

}−1

, (16)

λ12 = −λ21 = kBTρ−1
l 	

(0)
slow, λ22 = kBT τrel.

The pump efficiency η = Eout/Ein upon substitution of
the relations (15) is a simple fractional power function of
(ρr − ρl) with its maximum value ηm specified by the single
parameter Z:

ηm = (
√

1 + Z −
√

Z)2 ≈ 1 − 2Z,
(17)

Z = λ11λ22

λ2
12

= [
	

(0)
slow

]−2
(τrel/τbar) .

Thus the maximum efficiency can tend to unity if the potential
profile contains high barriers and the time τbar [defined by
Eq. (16)] is high enough.

Let us compare Eqs. (10) and (11) for dichotomous and
adiabatically slow processes at ρl = ρr (when the particle
concentration becomes equilibrium and the stationary current
is absent) with the similar equations for a Brownian particle in
a spatially periodic potential [18,19] (see also Ref. [27] where
the both processes are considered). These equations differ from
their motor analogs only by the form of particle concentrations
ρa,b(x,τa,b) or ρst(x; R): They are normalized for Brownian
motors and not normalized for Brownian pumps. Due to this
fact, the symmetry between functions q(x) and ρ(x) with
respect to the inversion of the sign of the potential occurring
for Brownian motors [27] is broken for Brownian pumps. This
leads, in particular, to the possibility of the pump effect induced
by dichotomous fluctuations of the potential sign. On the other
hand, Brownian motors and pumps operating in adiabatically
slow regime behave in a quite similar manner: Both of them
are characterized by high efficiency at τbar 	 τ → ∞ and
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ρr − ρl → 0 [with finite (ρr − ρl)τ ]. In the case of Brownian
pumps, (ρr − ρl) plays a role of a load force.

To better understand the difference between the operating
mechanisms of motors and pumps, it is necessary to take into
account that the number of particles contained in the membrane
with given boundary conditions is not fixed in contrast to
the fixed number of particles in the spatial period L in the case
of periodic boundary conditions. With this in mind, we invoke
in the next section a technique of singular barriers (introduced
in Refs. [28,29] for description of high-efficient Brownian
motors). This allows us to find conditions of high-efficient
dichotomous operation of Brownian pumps and to present
explicit expressions for main pump characteristics.

III. SINGULAR BARRIERS

A singular barrier is characterized by a flat top of a large
height V and a very small width l so that at V → ∞ and
l → 0 the quantity 
 ≡ l exp(βV ) remains finite and can take
arbitrary values. For example, if such a barrier is located at the
left boundary point x = 0 [see Fig. 1(b)], the current through
this barrier is connected with the particle concentrations on
both sides of the barrier by the relation

J = −D



[eβV (0)ρ(0) − ρl]. (18)

This relation is reduced to Eq. (3) when 
 → 0. Thus Eq. (18)
can be considered as the modified jump boundary condition.
The presence of the singular barrier has negligible effect on the
factors exp[−βV (x)] but a very significant one on the function
q(x) defined in Eq. (4) and entering in Eqs. (10) and (11). This
gives us a possibility to distinguish the influence of time-
dependent barriers and regions between barriers (wells) on the
pump characteristics, which makes the problem analytically
treatable.

Consider three singular barriers located at the points
x = 0, L/2, L with time dependencies governed by the first
component R1(t) of the two-component function R(t) =
{R1(t),R2(t)}. The permeabilities of the barriers are defined
by 
l(R1), 
c(R1), and 
r (R1), respectively. The integral∫ L

0 dx exp[βV (x; R)] is approximately equal to the sum of
these quantities, 
(R1) = ∑

i 
i(R1) , i = l, c, r , and does
not depend on R2, if 
(R1) 
 L. Then, neglecting the terms
of order 
−1, we obtain

q(x,R1) ≈ λl(R1)δ(x) + λc(R1)δ(x − L/2)

+ λr (R1)δ(x − L),

λi(R1) = 
i(R1)/
(R1), (19)

where δ(x) is the Dirac δ function.
Let us assume that the permeabilities of the left and

right barriers are equal [
l(R1) = 
r (R1)] and the to-
tal permeability of the region [inversely proportional to

(R1) = 2
l(R1) + 
c(R1)] does not depend on R1, i.e.
2λl(R1) + λc(R1) = 1. Assume also that in the state “a”
there is only the central barrier (without side barriers),
λl(R1a) = 0 , λc(R1a) = 1, and vice versa in the state “b,” i.e.,
λl(R1b) = 1/2 , λc(R1b) = 0 [Fig. 1(c)]. Then, the integration

in Eq. (11) over the rectangular contour dR [see Fig. 1(a)] gives

	slow ≈ −D
−1(ρr − ρl)τ

+ 1

2

∫ L/2

0
dx[ρst(x,R2a) − ρst(x,R2b)]

− 1

2

∫ L

L/2
dx[ρst(x,R2a) − ρst(x,R2b)] . (20)

Here the second component R2(t) is used for the de-
scription of time dependence of the smooth bare potential
V [x; R(t)] (without additionally introduced singular barriers).
Equation (20) containing ρa(b)(x,τa(b)) instead of ρst(x,R2a(b))
can be obtained from Eq. (10) for the periodic dichotomous
process with qa(x) = δ(x − L/2) and qb(x) = (1/2)[δ(x) +
δ(x − L)]. Thus, �	dich is determined by the change of the
numbers of particles in the left and right half-regions, (0, L/2)
and (L/2, L).

Important is that in the state b of the dichotomous process
the particle exchange between inside and outside membrane
regions is hindered due to the presence of the side singular
barriers. The corresponding slowdown is characterized by an
additional characteristic time τbar which is an order of 
L/D

that is much larger than the relaxation time τrel ∼ L2/D. The
particle concentration in the quasistationary state a at τa 
 τrel

can be written very simply: ρa(x,τa) = ρl exp[−βVa(x)]
at x < L/2 and ρa(x,τa) = ρr exp[−βVa(x)] at x > L/2.
Note that it does not depend on τa . On the contrary, the
particle concentration in the quasistationary state b does
depend on τb: ρb(x,τb) = κ−1

b Nb(τb) exp[−βVb(x)], where

κb = ∫ L

0 dx exp[−βVb(x)] and the number of particles in
the membrane Nb(t) at t = τb 
 τrel obeys the differential
equation

dNb(t)

dt
+ 4D

κb

Nb(t) = 2D



(ρl + ρr ). (21)

This equation can be derived by the integration of Eq. (1)
over the membrane region and subsequent use of the boundary
conditions with the singular barriers at x = 0 , L [see Eq. (18)
for x = 0]. Its solution

Nb(τb) = Nb(0)e−τb/τbar + 1

2
κb(ρl + ρr )[1 − e−τb/τbar ],

τbar = κb


4D
(22)

depends on the initial number of particles Nb(0) which equals
Na(τa) = ρlκ

l
a + ρrκ

r
a with κl

a = ∫ L/2
0 dx exp[−βVa(x)] and

κr
a = ∫ L

L/2 dx exp[−βVa(x)]. Thus

Nb(τb 	 τbar) − Nb(τb 
 τbar)

≈ 1
2 (κa − κb)(ρr + ρl) + 1

2

(
κr

a − κl
a

)
(ρr − ρl) (23)

(κa = κl
a + κr

a ) and we are led to the important conclusion
that the number of particles in the state b does not depend
on τb only if κa = κb at ρr = ρl or κa = κb , κl

a = κr
a at

ρr �= ρl . In the first case, Eq. (20) for the slow regime gives
	slow = 	

(0)
slow = ρl(κl

a − κl
b). This expression coincides with

the expression �	dich for the dichotomous regime. In all
other cases, Nb(τb) changes in time and, due to this fact, the
Brownian pump differs from a related Brownian motor.
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In order to analyze the efficiency of the Brownian pump
operating in the dichotomous regime, consider potential pro-
files which (as proved for Brownian motors [27,28]) provide
minimal energy losses under instantaneous switching. We
assume that the shapes of the left and right regions of the
potential profiles in both states are the same and are described
by the function v(x). This is allowed only at energetic shifts of
these regions as a whole [see Fig. 1(c)]. Then, the κ parameters
introduced above can be written as follows:

κl
a =

∫ L/2

0
dxe−βv(x), κr

a = e−uκl
a,

(24)
κl

b = e−u−wκl
a , κr

b = e−wκl
a,

where parameter w = βVab defines the change of the number
of particles in the equilibrium states a and b (κb = e−wκa), and
parameter u = βVlr describes the energetic shift Vlr between
the left and right regions. For such potential profile changes,
the expression (12) for E(dich)

in is significantly simplified since
the difference Vb(x) − Va(x) equals Vab + Vlr or Vab − Vlr at
x < L/2 or x > L/2, respectively, and does not depend on
x. Due to this fact, E(dich)

in is expressible through the same κ

parameters, and the final expressions take the form

�	dich = 1

2
κl

a(ρl + ρr )	̃(f ),

E(dich) = 1

2
κl

a(ρl + ρr )kBT Ẽ(dich)(f ), f = ρr − ρl

ρl + ρr

,

	̃(f ) = −2τ̃ f + 	̃0(f ),

	̃0(f ) = e−u/2 cosh u

cosh(u/2)
(tanh u − f ) − ψ(f ) tanh(u/2),

Ẽ
(dich)
out (f ) = 	̃(f ) ln

1 + f

1 − f
,

Ẽ(dich)
in (f ) = 2u	̃0(f ) + 2wψ(f ), η(f ) = Ẽ

(dich)
out (f )

Ẽ
(dich)
in (f )

,

ψ(f ) = {ew [1 − f tanh(u/2)] − 1} τ, τ̃ = Dτ/κl
a
.

(25)

Here we have put τa = τb = τ/2 and used the inequality
τ̃ 	 1. The parameter f plays the role of a load force.

Neglecting the terms of order τ̃ , we have η(f ) ≈
[ln(1 + f )/(1 − f )]/2u with the maximum value equal to
unity at f ≈ tanh u, i.e., near the stopping point at which
an exact cancellation of the ratchet effect takes place. Taking
into account the terms of order τ̃ with ψ(f ) ≈ ψ(tanh u) =
(ew/ cosh u − 1)τ̃ and that ln[(1 + f )/(1 − f )] ≈ 2u(1 −
χf̃ ), where f̃ = tanh u − f and χ = cosh2 u/u, the efficiency
is expressible as a simple fractional power function of f̃ :
η(f̃ ) = (1 − χf̃ )(f̃ − f1 − f2)/(f̃ − f1 + f3). Its maximum
value is defined by the equation

ηmax = [
√

1 + χ (f3 − f1) −
√

χ (f2 + f3)]2,

f1 = eu/2[sinh(u/2)/ cosh u] ψ(tanh u),
(26)

f2 = 2eu/2τ̃ tanh u cosh(u/2)/ cosh u,

f3 = (w/u)eu/2[cosh(u/2)/ cosh u] ψ(tanh u).

The dependencies η(f ) calculated from Eq. (25) are
depicted in Fig. 2(a) at different values of parameters u

FIG. 2. The efficiency of energy conversion defined by Eq. (25)
at τ = 0.01 versus the “load force” of the pump f = (ρr − ρl)/(ρl +
ρr ) at different values of parameter u = βVlr (indicated near the
corresponding curves) (a), and maximum efficiency of energy
conversion [calculated by Eq. (26)] as a function of u at τ = 0.01
(b). The families of solid, dotted, and dashed curves correspond to
w = βVab = 0,−1,1, respectively. The inset shows contour plot of
the dependence ηmax(u,w).

and w. Since the domains of definition are limited by the
approximate condition f < tanh u, the families of the curves
for given u and different w values are grouped. We can see
that the efficiency at w = 0 dominates within each group.
The maximum efficiencies as functions of u and w calculated
from Eq. (26) are presented in Fig. 2(b). The dependence
ηmax(u) at w = 0 is a monotonic decreasing function which is
the envelope of the family ηmax(u,w). On the other hand, the
dependencies ηmax(u) at w �= 0 are nonmonotonic functions
characterized by asymmetry with respect to the inversion
w → −w. Due to this fact, the efficiency at −w dominates
over the efficiency at w (w > 0) in the region of small u, and
vice versa in the region of large u.

As mentioned above, the number of particles in the
membrane (of the length L) may change (w �= 0) at transitions
between the states of the dichotomous process in contrast to
the fixed number of particles (w ≡ 0, in view of periodical
boundary conditions) in the spatial period L for the motor
driven by the same dichotomous process. Since w = 0 corre-
sponds to the maximum pump efficiency, one can infer that
the closer pump to the motor in operating regime, the higher
is the pump efficiency.
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Note that in contrast to the adiabatically slow regime taking
place at τbar 	 τ → ∞, the high-efficient adiabatically fast
(dichotomous) regime is realized at τrel 	 τ 	 τbar. High effi-
ciency is reached due to smallness of the parameter τ̃ ∼ τ/τbar.
The leading terms in Eq. (25) proportional to small product uf
at τ̃ → 0 have the form E

(dich)
out → λ12f u , E(dich)

in → −λ21uf ,
where λ12 = λ21 = 2κl

aρlkBT . Thus, unlike the case of the
adiabatically slow regime [see Eq. (16)], the symmetry of
kinetic coefficients arises for the dichotomic process near the
equilibrium.

IV. DISCUSSION AND CONCLUSIONS

In the present paper we have analyzed a pumping mech-
anism powered by fluctuations of the potential inside the
membrane, with emphasis on the regimes of adiabatically slow
and adiabatically fast driving. Although our analysis neglects
some precise details about the specific particle-particle and
particle-membrane interactions, it provides a physically and
mathematically consistent picture of noise-induced transport
through a membrane.

A biological relevance of the pump model with the
given particle concentration at the membrane sides was first
demonstrated in Ref. [15] which is devoted to numerical
modeling ratchetlike transport of glycerol in an aquaglyc-
eroporin channel, fueled by the cell’s metabolism. Molecular
dynamics studies [35–38] established that for biologically rel-
evant periplasmic glycerol concentrations, correlation effects
between consecutive glycerol molecules are negligible due
to their large spatial separation [15]. The idea to exploit the
ratchet effect in a pumping mechanism can be exemplified not
only by biological applications but also a chemically driven
molecular electron pump [39], a nonadiabatic electron heat
pump [40], and superconducting fluxon pumps and lenses [41].
Thus, the pump model used in this paper is relevant to analysis
of different systems.

The theoretical significance of the results obtained consists
in that Parrondo’s approach [18,19] developed for adiabatically
driven motors is extended here to adiabatically driven pumps.
In particular, Eqs. (10) and (11) determine net fraction of
particles crossing an arbitrary point inside the membrane
at adiabatically fast (dichotomous) and adiabatically slow
potential changing. They differ from those of Brownian
motors by unnormalized particle concentrations with given
values at the membrane sides. This leads to the break of
the symmetry existing for adiabatically driven motors and
to the new properties of pumps. At the same time, we have
shown that the noise-induced transport through a membrane
can be efficient at adiabatically slow and adiabatically fast

(dichotomous) regimes of changing the potential, just as in
the case of Brownian motors. The lowering of the energy
loss is achieved due to (i) adiabaticity of the potential
change process, (ii) diffusion-free directed motion generation
(provided the potential extrema shift in time), and (iii) an
effective rectification mechanism taking place (when the
characteristic amplitude of the potential is much larger then
thermal energy kBT ).

The technique of singular barriers [28,29] is extremely
useful in studies of adiabatically driven ratchets (both motors
and pumps). A virtue of this method is that it allows us to
separate parameters determining the time variation of the po-
tential, which are responsible for driving the system away from
equilibrium and for the rectification of the emergent motion
into directed motion. In this way, a set of useful analytical
regularities can be established. By introducing the singu-
lar barriers with low permeabilities [
 ≡ l exp(βV ) 
 L],
an additional characteristic time of the system arises, namely
τbar ∼ 
L/D, which is much larger than the diffusive relax-
ation time τrel ∼ L2/D. High efficiency of Brownian pumps
can be reached in adiabatically slow and dichotomous regimes
of cyclic potential changes with the period τ if τbar 	 τ and
τrel 	 τ 	 τbar, respectively.

A replacement of the periodic boundary conditions by
the conditions of given concentrations at the membrane
boundaries leads to the symmetry breaking of the average
current through the membrane with respect to the inversion of
the sign of the potential and to the dependencies of the pump
characteristics on the number of particles in the membrane.
As seen from Fig. 2, if this number is not changed during the
dichotomic switching between potential profiles, the efficiency
reaches the maximum values. Thus, in the general case, the
efficiency of adiabatically fast driven pumps is less than that
of motors with the same characteristics of fluctuations of
the potential (the spatial period of which is equal to the
membrane length). Only under the special condition of the
constant number of particles, the properties of pumps and
motors become similar.
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