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This article implements for the first time a numerical semiconductor device simulation-based multiobjective evolutionary algorithm
(MOEA) for the characteristic optimization of amorphous silicon thin-film solar cells, based upon a unified optimization framework
(UOF). To calculate the device’s characteristic, a set of coupled solar cell transport equations consisting of the Poisson equation, the
electron-hole current continuity equations, and the photo-generation model is solved numerically. Electrical characteristics, the
short-circuited current, the open-circuited voltage, and the conversion efficiency are calculated to analyze the properties of the explored solar
cells. The aforementioned device simulation results are used to evaluate the fitness score and access the evolutionary quality of designing
parameters via the implemented non-dominating sorting genetic algorithm (NSGA-II) in the UOF. Notably, designing parameters including
the material and structural parameters, and the doping concentrations are simultaneously optimized for the explored solar cells. The
simulation-based MOEA methodology is useful in optimal structure design and manufacturing of semiconductor solar cells.

Keywords Amorphous silicon; Design optimization; Material and structural parameters; MOEA; Multiobjective; Simulation-based

evolutionary method; Thin film solar.

INTRODUCTION

Solar energy is zero-emission and renewable, so semi-
conductor devices, in particular, silicon-based solar cells,
used for converting sunlight to electrical power have been
more attractive in recent years [1-6]. As the energy
demand is growing, it is necessary for us to decrease
the fabrication cost of semiconductor solar cells and
improve the energy conversion efficiency () for the
potential of reducing fossil fuel consumption and more
electrical power generation potentially. Currently, the
materials of crystalline silicon (c-Si), polycrystalline sili-
con (poly-Si), and amorphous silicon (a-Si) have been
of great interest for manufacturing of silicon-based solar
cells [7]. Most of optimal designs of thin-film Si solar cells
for pursuing the higher conversion efficiency are mainly
achieved empirically. Genetic algorithm (GA) is a
population-based global search optimization method
based on the mechanics of natural selection, and often
considered as the most famous branch in evolutionary
algorithms [8, 9]. Nowadays, the GA with the appropri-
ate elitist policy can guarantee the global best solution
acquirement theoretically and generally can provide
many near-optimal selections of the problem varying
from semiconductor nanostructures to electronic circuits
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[10-20]. Recently, the GA was adopted for solving single
objective optimization problems in electrical character-
istic design of solar cells [21]. However, diverse solar cell
engineering designing problems are high complexity and
there are usually with multiple constraints and designing
requirements. Mathematically, a solar cell designing
problem can be modeled as a multiobjective optimization
problem. Optimizing the parameters of the solar cell’s
multiobjective optimization problem by using the multi-
objective evolutionary algorithm (MOEA) will be inter-
esting for the academic and industrial domains [22-27].

In this work, based upon a unified optimization
framework (UOF) [28], a device simulation-based
MOEA is proposed for a-Si thin-film solar cell design
optimization, where the nondominating sorting genetic
algorithm (NSGA-II) [24, 25] is implemented for its
good performance. To calculate the device character-
istic, a set of coupled solar cell transport equations con-
sisting of the Poisson equation, electron-hole current
continuity equations, and the photo-generation model
is solved numerically [29-33]. The results of device
simulation including the short-circuited current (Ig.),
the open-circuited voltage (V,.), and the conversion
efficiency (1) are used for the fitness calculation; conse-
quently, the quality of designing parameters is evaluated
via the NSGA-II. The iteration of evolutionary process
is terminated when the results meet the prescribed tar-
gets. The optimization approach presented in this work
allows us to at the same time optimize the electrical char-
acteristics, for a p-i-n structure of a-Si thin-film solar cell
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with original efficiency of 5.68%, n=28.1% is obtained
successfully. This study shows practical application in
solar cell characterization and structure optimal design.

In the next section, we describe the parameters of
examined a-Si thin-film solar cell to be optimized briefly.
We then introduce the device simulation-based MOEA
optimization technique on the UOF. In Section 4, we
will discuss the optimization results in terms of compu-
tational and electrical meanings in detail. We finally
draw the conclusion and list future work.

THE SOLAR CELL AND THE OPTIMIZATION TECHNIQUE

For real-world application of solar energy, it is impor-
tant to decrease the manufacturing cost and increase the
efficiency of power conversion [7]. In order to make
efficient photo converters of p-n junctions with high
collection efficiency, it is necessary for us to equip the
diffusion length of minority carriers which exceeds typi-
cal absorption depths [1, 2]. However, c¢-Si is very
high-priced in production; it has been of great interest
to consider other photovoltaic materials of less requiring
the quality of silicon which can be processed relatively
low in price. At present, a-Si has been identified as one
of the best materials with the advantage mentioned
above. This thin film material is usually produced by
physical or chemical deposition techniques which can
be applied to large areas and throughputs [1, 2, 7].

The basic configuration of a-Si solar cell is a p-i-n
structure, as shown in Fig. 1. The silver and SizN4 are
the front contact metal and antireflection layer [3-5].
For doped a-Si, the diffusion length is very short physi-
cally, so we consider a central undoped, lightly doped, or
intrinsic region to extend its thickness so that photons

Silver

Intrinsic semiconductor

Parameters to be optimized of the studied p-i-n solar cell
" Thickness of silver: Front Contact Thickness (Lm)
" Thickness of the anti-reflection layer SisNy: Front Arc Thickness (um)
" Thickness of the all semiconductors: Substrate Thickness (LLm)
" Doping concentration of the p-layer: Front Doping Concentration (cm®)
" Dopant depth of the p-layer: Front Doping Depth (Lm)
" Doping concentration of the n-layer: Back Doping Concentration (cm™)
" Dopant depth of the n-layer: Back Doping Depth (Lum)

FiGure 1.—Plot of the optimized a-Si solar cell with the p-i-n structure.
The parameters to be optimized include the layer’s thickness and doping
profile of each layer.
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could be absorbed effectively. The material and
structural parameters to be optimized are explained in
Fig. 1. The feasible numeric ranges of the parameters
are listed in Table 1 according to device physics of solar
cell. In order to estimate the electrical characteristics of
the studied solar cells, three governing equations which
include the Poisson equation and the electron-hole cur-
rent continuity equations in semiconductor are solved
self-consistently [28-32]. They indicate that the number
of carriers is conserved and the electrostatic potential
due to the carrier charges obeys Poisson’s equation. In
the electron-hole current continuity equations, the gen-
eration rate is an electronic excitation event which
increases the number of free carriers available to carry
charge and the recombination rate is an electronic relax-
ation event which reduces the number of free carriers.
For the studied a-Si thin-film solar cells, the most impor-
tant form of generation G, and G, is optical generation
G°P'. The G°" is calculated from the optical part, where
a set of Maxwell’s equations is solved [1, 2].

Notably, in the approach by using GA for solar cell
optimization problems, weighting function is the most
commonly used skill to construct the function, but the
critical issue is that the function cannot perfectly
describe the original design problems, and there is no
standard rule to determine the weightings [21]. Actually,
solar cell design problems belong to multiobjective opti-
mization problems (MOPs). Such problems have more
than one objective function discussed above and thus
usually have many optimal solutions, known as Pareto
optimal solutions. These solutions can help designers
verify the relationships among various objectives, and
provide several options for the posteriors decision mak-
ing. In other words, formulating the design problems to
MOPs is intuitive and much easier than typical GA
approaches, and the optimal solutions of the problems
involve more information. Many algorithms have been
proposed to solve MOPs [8, 9, 22-26]. Because the
population-based parallel process of evolutionary com-
puting techniques has consistency to the property of
MOPs (multiple optimum solutions achievement),
MOEAs have received attentions and become the most
popular approach to solve MOPs. The general scenario
of an MOEA is that randomly initializes the population
(the set of possible designs) in the search space, and then
evolves it generation by generation until the stop criter-
ions are reached. In the above flow, the MOEA must
achieve the fitness values of each design in the

TaBLE 1.—Feasible numeric range of the parameters to be optimized.

Parameters to be optimized Feasible numeric range

Substrate Thickness (um) 0.50-1.00
Front Contact Thickness (um) 0.05-0.3
Front Arc Thickness (pm) 0.02-0.2
Back Doping Concentration (em™?) 1 x 10131 x 10%°
Back Doping Depth (um) 0.01-0.30
Front Doping Concentration (cm™>) 1 x 10131 x 10%°
Front Doping Depth (um) 0.001-0.1
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population every generation. The common method to
obtain the values, which is known as simulation-based
approach, is by calling external computationally expens-
ive numerical semiconductor device simulation pro-
grams to implement the exact evaluations. Note that,
the proposed UOF can be used by GA and MOEA.
GA is a classical algorithm while MOEA is similar but
introducing multiobjective concept; both are tested
and compared in the solar cell design problem. The
MOEA algorithm improves one of the disadvantages
of GA: the weighting value of fitness calculation. While
fitness is a value used to compare each individual, it will
be simple if there is only one objective. If there are
many objectives, the calculated value of each objective
is multiplied weighting and summed to obtain the fit-
ness. The weighting’s value could be calibrated empiri-
cally, which is a time-consuming task, and actually it
can only find the best point of a fitting line generated
by the weighting products sum. Because weighting
products sum fitness is hard to find best characteristic
of each objective simultaneously, MOEA algorithm
has no weighting and find best characteristic of each
objective simultaneously. When one objective problem,
it is significant that largest value is the best (or “domi-
nant’’). The dominant concept is used in MOEA, the
objective values of dominant solutions form a “pareto
front” curve for any arbitrary two objective values in
two-dimensional (2D); similarly, it can also form a
surface in three dimensions.

The solar cell design problem is solved by using MOEA
which is implemented on the UOF together with the
numerical semiconductor device simulation [27-32]. Note
that the UOF is an objective-oriented optimization
framework for general optimization problem. A specific
MOEA, the NSGA-II is chosen because of its reliability
and parameterless characteristic [24-25]. The optimiza-
tion technique is used to optimize the performance of
a-Si thin film solar cells. There are two main components
of the UOF which is the Problem and Solver. For each
component, it is designed from the high-level code to
can be reused and fast to response. In brief, the UOF is
a basic interface to bridge that defining a problem and
fast solving the problem by a variety of methods. The
design of UOF has a robust advantage that the numerical
simulation programs as well as the optimization solvers
can be changed and used easily for other applications.
In this work, we use 2D numerical semiconductor device
simulation to simulate the optical and electrical properties
of the a-Si p-i-n solar cell, such as the optical generation
rate, the electric field, and the electron-hole densities;
consequently, the corresponding electrical V., Jg., and
n of the solar cell are calculated. To achieve the aforemen-
tioned specifications, we set the V., J.., and # as three
objective functions to be maximized, where all parameters
have their constraints and feasible numeric ranges, as
listed in Table 1. The adopted solver MOEA optimizes
the studied solar cell, which includes four operations,
evaluation, selection, crossover, and mutation; and the
evaluation and fitness assign are modified owing to the
multiobjectives.
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FiGure 2.—The proposed optimization technique based upon UOF to
optimize the electrical characteristics and conversion efficiency of the
tested a-Si solar cell with the simulation-based MOEA. Empirically, the
crossover rate is 0.9, and the mutation rate is 0.06. The mutation rate is
smaller than the crossover rate; it implies that only few populations are
required to mutate. The computing platform used in this study has the
processor of a 3.1 GHz Xeon processor (4 CPUs) and the main memory
of 8 GB SRAM, which is running with a Linux kernel of CentOS release
5.8. The computational time to run a solar cell design optimization takes
more than 12 hours, where the time for each numerical simulation of
the solar cell’s optical and electrical characteristics is 1,200sec with all
evolutionary parameters (color figure available online).

The whole optimization flow of the technique is
shown in Fig. 2. In the mask and parameter setting files,
we define the given structure and the parameters to be
optimized of the a-Si solar cell. Then, the population,
which means the group of parameter configurations, is
initially generated randomly or by engineering experi-
ences. After the initial population established, all indivi-
duals in the population are evaluated by numerical
semiconductor device simulation program to obtain
the goal characteristic. We further assign each popu-
lation the fitness value, which is determined by the opti-
mization method. According to GA, we generate next
iteration from last population. The parents are selected
by random competition; and individuals which have bet-
ter fitness value have more probability and the weak
remain in small proportion. The variation operation
contains two mechanisms: crossover and mutation.
Crossover is used as the first operator applied on the
parents. One parent will inherit the genes (parameters
in the array) of an offspring from beginning to split
point (randomly determined afresh in each offspring
production), where the other takes the rest. By using
the second operator, mutation, we can select two genes
in one individual in a statistically sound way (i.e., totally
random approach) and exchange them under the prob-
ability of mutation rate. Finally, except the best 10%
individuals in the old population, which are called eli-
tists, the offspring after variation operators will act in
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place of the rest of the old population. Iteratively, a
new population established and next generation of evol-
ution starts from evaluation step until the stop criteria
are met.

RESULTS AND DISCUSSION

With the parameters listed in Table 1, both the popu-
lation size and the maximum generation are 100 in the
tested solar cells. Our target is to maximize the device’s
voltage, current density, as well as its efficiency for
advanced energy harvesting applications. To estimate
the electrical characteristics of the a-Si solar cell we
use the simulated reflectance spectra. The property of
optical system affects seriously the short-circuit current
density and the conversion efficiency of a solar cell. So
the short-circuit current density and the open-circuit
voltage of the solar cell are calculated under the
standard AM1.5 global spectrum from its current and
voltage (I-V) characteristics. Then, the solar cell’s
conversion efficiency deduced from V. . and I is
given by

Pmax ISC VOC Pmax
— = x 100%, 1
1 Isc VOC P[ PI ’ ( )

where  P;  designates the incident  power
(P;=0.1W/cm? under illumination AM 1.5G) and
P,... 1s the largest electrical power the solar cell can
deliver. First, we give a proper range of the parameters
of the structure to optimize the efficiency. The results
of our optimization are shown in Fig. 3, where the
results obtained by using GA and MOEA are com-
pared. The original design is 5.68%, as shown in

8.8_: — L
& 8.4
g 8.2 ~ |
£ 80
g 7.81 ]
— 7.6} x | _MOEA |
7.4 °_~GA~ >
7.2} © Original Design.= 095
?0_‘§ | 111005\
e 145 S
065 N
6.0 1.20
N(%) 2

FiGure 3.—The key results of MOEA implemented in this work as well as
the result of GA show that the solution of our optimization is better than
that of GA and can discover the optimal solutions in overall decision
space (color figure available online).
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Fig. 3, both the GA and MOEA show significant
improvement in the conversion efficiency.

Nevertheless, the solutions of the MOEA imply more
information within the engineering limitation of
the solar cell, compared with the result of GA. The
efficiency of MOEA optimized result is about 41.3 per-
cent improvement from the default efficiency 5.68%. In
addition, we can see that the ‘Front Doping Depth’ is
the largest value and the ‘Back Doping Depth’ is the
smallest value, which shows the fact that higher ‘Front
Doping Depth’ and the lower ‘Back Doping Depth’ are
the superior design strategy for a-Si thin film solar
cells. From semiconductor device physics, the designs
using both the GA and MOEA show that the p-layer
is much thinner than the n-layer, which is accommo-
dated to typical design methodology because the
diffusion length of hole is much shorter than the dif-
fusion length of electron. Furthermore, we discover
that the thickness of antireflection layer for decreasing
the sunlight reflectance might be lower than 50 nm in
our case. Second, we further apply different parameter
range but same structure to maximize the V. and I,
respectively. The results show that the ‘Front Doping
Concentration’ should be high for both improving
Vo and Ig..

By considering the conversion efficiency as the only
objective to be maximized, the GA optimized conversion
efficiency # =~ 8.0%, which is close to the conversion
efficiency by the MOEA, as shown in Fig. 3. In this
test, the MOEA optimized results are #5=28.1%,
ISC:7.76mA/cm2, and V,.=1.1732V. However, as
listed in Table 2, if we set the requirements: # > 8%,
I,.>8mA/cm? and V. >1.1V, from the results of
MOEA, we can find four possible solutions, MOEA
Sol. 1-MOEA Sol. 4, among the results of MOEA.
However, the GA only optimizes each requirement one
by one. The results, GA Sol. 1-GA Sol. 3, by the GA
approach achieve the aforementioned specification sep-
arately, but the GA cannot optimize the requirements:
n>8%, Io.>8mA/cm? and V,.>1.1V at the same
time.

We further compare the results between the MOEA
and GA in terms of the pairwised relationship among
the aforementioned electrical specifications. Figure 4
shows a relationship between the achieved V.. and #.
When the device’s voltage is below 1.14V, we can
increase the device’s efficiency along with the increase
of operation voltage at the same time. They possess a
positive correlation. However, if the voltage of a-Si solar
cell is larger than 1.7V, the efficiency is saturated and
cannot be increased any more, where a turnaround
point appears. The MOEA’s result improves the
GA-found efficiency, as shown in Fig. 4, the new found
8.1%-efficiency by the MOEA is better than the GA’s
results.

Figure 5 shows the plot of J. vs. V.. The current den-
sity drops significantly when the operation voltage is lar-
ger than 1.14V. Their relationship is almost negative
correlation, but the optimal I-V point found by MOEA
and GA is very similar. The results of the current density
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TaBLE 2.——The optimized results of a-Si solar cell for the requirements: 1 > 8%, I > 8mA/cm2, and V,.>1.1V. There are four possible MOEA
solutions that can achieve the requirements. The GA can achieve each requirement separately.

Substrate Front contact Front arc Back doping Front doping
thickness thickness thickness concentration Back doping concentration Front doping Jse
(nm) (nm) (nm) (em™) depth (pm) (em™) depth (pm) 1 (%) Voo (V) (mA/cm™?)

MOEA Sol.1 0.6549 0.1665 0.051 5.296E19 0.2021 2.511E19 0.063 8.04 1.1455 8.01
MOEA Sol.2 0.7248 0.1953 0.050 5.685E19 0.2101 2.675E19 0.079 8.02 1.1409 8.02
MOEA Sol.3 0.7254 0.1956 0.050 5.658E19 0.2100 2.662E19 0.078 8.02 1.1398 8.03
MOEA Sol.4 0.6519 0.1676 0.051 5.334E19 0.2023 2.554E19 0.063 8.05 1.1480 8.00
GA Sol.1 0.6500 0.3000 0.040 4.800E19 0.2000 6.800E19 0.092 8.00 1.1590 7.7
GA Sol.2 0.5000 0.2000 0.050 7.400E19 0.1000 9.500E19 0.100 7.27 1.1687 6.95
GA Sol.3 1.0000 0.0500 0.050 4.100E19 0.1000 4.250E19 0.060 6.79 0.9841 8.64

vs. the efficiency on MOEA and GA are shown in Fig. 6.
It implies that the when the current density is smaller
then 8.1 mA /cm?, the relationship is positive correlation
between the current density and the efficiency. When the
current density is larger then 8.1 mA /cm?, the relation-
ship behaves negative correlation between the current
density and the efficiency. The MOEA’s result improves
the GA-found efficiency, as shown in Fig. 6, the new
found 8.1%-efficiency by the MOEA which maintains
a relatively higher level of the current density is better
than the GA’s results. The computational observation
discussed above enable us to apply the optimized results
of the MOEA to estimate the a-Si material and p-i-n
structural limitations of the studied solar cell, which is
beyond the scope of GA.

Notably, as shown in Figs. 4-6, the results of GA
could not get better solution on each domain. It is obvi-
ously that the GA can deal with single-target problems;
for a multiobjective problem, GA requires a proper cost
function with empirically turned weighting coefficients.
In contrast to the GA, the MOEA can solve the

1.20 — ” -
v1s | 1
x X >
_ 110} i
= ﬂ
8
> 1.05}F =
X il
[ x  MOEA
1.00 o GA
0-95 Il 1 1 Il Il
70 72 74 76 78 80 82
n (%)

FiGure 4.—The results of the open-circuit voltage vs. the conversion
efficiency on MOEA and simple GA. A relationship between the V.
and 7 is further examined; under a level of open-circuit voltage, it is poss-
ible for us to increase the V,. and 7, simultaneously. Notably, the 5
reaches its maximum when V,.> 1.7V (color figure available online).

multiobjective solar cell problem by optimizing the three
objective functions at the same time, which implies
that the MOEA can even get the better solutions on
three directions. To verify the manufacturability of the
MOEA optimized material and structural parameters,
we further fabricate a-Si sample based on the fabrication
line of silicon solar cell. The flow chart of the fabrication
process for solar cell follows our recent work in [4]. After
the structure fabrication process, the post processing of
the cell is finished under AM1.5G conditions. The post
processing includes electrode formation by standard
screen printing method and the cell characterization to
obtain the V. Js, and 5. The measured conversion
efficiency of 9.6% is even better than the optimized result
(about 8.0%) from the proposed MOEA. The difference
between the measured (9.6%) and optimized (8.0%)
efficiencies can be attributed to the different design of
reflectance layer of the fabricated sample. In this work,
the reflectance layer of SizNy is a thin film layer which
is different from the fabricated sample. The optimization
and sample fabrication show that the numerical semi-
conductor device simulation-based MOEA methodology
is promising for solar cell design and manufacturing.

8.8
8.6 |
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<8O0}
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76
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FIGURE 5.—The results of the current density versus the voltage on MOEA
and simple GA which indicate the I-V relationship is almost negative
correlation (color figure available online).
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FiGUurRE 6.—The results of the current density vs. the efficiency on MOEA
and GA. Itindicates that the when under a level of the current density (about
7.8 mA /cm’-8.1 mA /cm?), the relationship is positive correlation between
the Ji. and n. When the current density is larger then 8.lmA/cm2, the
relationship turns to negative correlation (color figure available online).
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CONCLUSIONS

In this study, based upon a unified optimization frame-
work, a numerical semiconductor device simulation-based
MOEA is implemented for amorphous silicon thin-film
solar cell optimization problem and achieves superior
results. By simultaneously maximizing the open-circuit
voltage, short-circuit current density, and conversion
efficiency, the results of MOEA optimization technique,
not only enable us to design the tested a-Si p-i-n solar cells,
but also show interesting and potential designing para-
meters, compared with the results of GA and the original
design. The approach of simulation-based MOEA pre-
sented in this work is an alternate optimization method
by using statistical Taguchi quality design [34]. Notably,
the efficiency of 8.0% optimized from the MOEA method-
ology is significantly increased from the original efficiency
of 5.68%. This simulation-based MOEA methodology
running on the UOF can be used in solar cell characteriza-
tion and optimal structure design. Consequently, it will
benefit the manufacturing of semiconductor solar cells.
We are currently applying this optimization technique to
design semiconductor solar cells with embedded array of
quantum dots.

Notably, directly and iteratively solving the Maxwell’s
equations and drift-diffusion equations for the optical
property and transport characteristic of the solar cell
would be very time consuming and highly computing
intensive. Meta-modeling approaches with considering
the recent advents of the EvoNN and BioGP algorithms
[35-37] could provide a cost-efficient evolutionary way
in solar cell design optimization.
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