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We investigate the competition between the spin-orbit interaction of itinerant electrons and their Kondo

coupling with local moments densely distributed on the honeycomb lattice. We find that the model at half-

filling displays a quantum phase transition between topological and Kondo insulators at a nonzero Kondo

coupling. In the Kondo-screened case, tuning the electron concentration can lead to a new topological

insulator phase. The results suggest that the heavy-fermion phase diagram contains a new regime with a

competition among topological, Kondo-coherent and magnetic states, and that the regime may be

especially relevant to Kondo lattice systems with 5d-conduction electrons. Finally, we discuss the

implications of our results in the context of the recent experiments on SmB6 implicating the surface

states of a topological insulator, as well as the existing experiments on the phase transitions in SmB6 under

pressure and in CeNiSn under chemical pressure.
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Systems containing both itinerant electrons and local
moments continue to attract intensive interest in modern
condensed matter physics. The antiferromagnetic ex-
change coupling between the two components gives rise
to the Kondo singlet ground state. Historically, the Kondo
effect in a single local-moment impurity provided an
understanding of the resistivity minimum in metals as
well as the physics of dilute magnetic alloys and quantum
nanostructures [1,2]. In the concentrated case, considera-
tion of the Kondo effect and its competition with magneti-
cally ordered ground states has been playing a central role
in the understanding of the novel phases and quantum
criticality of heavy fermion materials [3]. For the half-
filled limit of the Kondo lattice system, the Kondo effect
gives rise to the paramagnetic Kondo insulator (KI)
state [2,4–6].

Recently, the quantum spin Hall insulator in two dimen-
sions and the topological insulator (TI) more generally
have attracted extensive interest [7,8]. These insulators
have a charge excitation gap in the bulk, but support
gapless surface states protected by time-reversal symme-
try. The surface states constitute a helical liquid where the
spin orientation is locked with the direction of electron
momentum [9,10]. Although they are robust against weak
disorders that preserve time-reversal symmetry, the surface
states may be influenced by magnetic impurities. For ex-
ample, the conductance of a one-dimensional edge helical
liquid of a two-dimensional TI in the presence of a single
magnetic impurity can exhibit a logarithmic behavior at
high temperatures and goes to the unitarity limit at T ¼ 0
due to the formation of a Kondo singlet [10,11]. This is in

contrast to the Kondo problem in conventional Luttinger
liquids, where even very weak Coulomb interaction leads
to vanishing conductance at zero temperature [12].
Generally speaking, the Kondo screening of magnetic
impurities on the surface of TIs may not necessarily be
complete due to the SUð2Þ breaking of the spin-orbit
coupling (SOC) [13], and the effective Ruderman-Kittle-
Kasuya-Yosida interaction between the local moments can
be mediated by the edge carries, leading to an in-plane
noncollinear and helical order [14–17]. For magnetic im-
purities in TIs, previous studies have focused on the effect
of surface impurities, i.e., magnetic impurities positioned
on the surface of TIs, or coupled effectively to the surface
states [18]. Whether and how the bulk magnetic impurities
influence the properties of TIs is largely an open problem.
From the perspective of heavy-fermion physics, very

interesting properties are emerging from materials that
involve 5d electrons, such as the pyrochlore Pr2Ir2O7

[19]. The significant SOC of the 5d electrons may give
rise to topologically nontrivial physics for the 5d electrons
alone, raising the intriguing question of the interplay
between topological and Kondo physics. The regime of
transitions among the competing ground states represents a
setting in which the effects of strong interactions on TIs
may become more tractable. Furthermore, Kondo insula-
tors themselves may become topological as a result of the
symmetry properties of the hybridization matrix [20].
Motivated by these recent developments, in this letter we

study a dense set of magnetic local moments interacting
with the spin-orbit coupled itinerant electrons on the hon-
eycomb lattice as illustrated in Fig. 1. Such a system is
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relevant for the graphene or magnetic moment interface and
could be constructed through cold atoms in an optical
lattice. The system could also be realized by growing a
two-dimensional TI on an appropriate magnetic insulating
substrate; similar heterostructures involving TI Bi2Se3 thin
films and superconducting layers have already been fabri-
cated by the molecular beam epitaxy technique [21]. It may
very well be built based on the existing 5d-electron-based
iridates on the honeycomb lattice, such as Na2IrO3 [22].
Finally, given that recent experiments in SmB6 have pro-
vided tentative evidence for the surface states of a topologi-
cal insulator [23,24], our results here on the transitions
between topological insulator and Kondo coherent states
lead to the intriguing question of what happens to such
surface states when SmB6 and related intermetallic systems
are tuned by external or chemical pressure (see below).

The model we consider, illustrated in Fig. 1, is specified
by the Hamiltonian

H ¼ �t
X
hiji�

cyi�cj� þ i�so

X
�ij���0

vijc
y
i��

z
��0cj�0

þ JK
X
i

~si � ~Si; (1)

where ci� annihilates an electron at site i with spin com-

ponent � ¼" , # , ~si ¼ cyi�ð ~���0=2Þci�0 , and ~Si represents
the local moments with ~� being the Pauli matrices.
The parameters t and �so are the nearest-neighbor hop-
ping energy and the next-nearest-neighbor intrinsic
(Dresselhaus-type) SOC of the conduction electrons,
respectively, with vij ¼ �1 depending on the direction

of hopping between the next-nearest-neighbor sites.
Finally, JK is the antiferromagnetic Kondo coupling
between the spins of conduction electrons and local impu-
rities. The model Eq. (1) minimally interpolates the Kane-
Mele Hamiltonian (JK ¼ 0) [9,25] and the standard Kondo
lattice Hamiltonian (�so ¼ 0). We note that recent studies
have focused on the effect of Hubbard U interaction of the
conduction electrons [26–31].

To proceed, we note that the model of Eq. (1) is con-
nected to the Anderson lattice Hamiltonian,

H ¼ HKM þHcd þHd; (2)

where HKM is the Kane-Mele Hamiltonian [the first two

terms of Eq. (1)], Hcd ¼ V
P

i�ðcyi�di� þ H:c:Þ is the hy-

bridization between the itinerant electrons and localized

d-electrons, and Hd ¼ E0

P
i�d

y
i�di� þU

P
indi"ndi# is for

the local electrons with E0 being the local energy level and
U the on-site Coulomb repulsion of local electrons. The
models described by Eqs. (1) and (2) are equivalent pro-
vided that, in the absence of SOC, the d-electrons are in the
Kondo regime (U is sufficiently large and E0 is well below
the Fermi energy (EF) of the conduction band). In this
regime, JK � V2½ð1=EF � E0Þ þ ð1=U� EF þ E0Þ�. Our
calculations will be carried out in Eq. (2). As our focus is
on the competition between the TI and KI at half-filling, we
shall mainly consider the paramagnetic states.
In the momentum k space, the conduction electron part

of the Hamiltonian takes the form of HKM ¼P
k�C

y
k�Mk�Ck�, with Cy

k� ¼ ðcya;k�; cyb;k�Þ and

Mk� ¼ ��k �� �k

��k ���k ��

 !
; (3)

where, � ¼ þ1 and �1 refers to spin up and spin
down, �k ¼ 2�so½sink1 � sink2 � sinðk1 � k2Þ�, �k ¼
�tð1þ e�ik1 þ e�ik2Þ. We have included the chemical
potential � term to control the electron filling. The sub-
scripts a and b denote two sublattices of the honeycomb
lattice as shown in Fig. 2. Each unit cell has two adjacent a,
b sites, and the primitive vectors are a1 and a2.
For the local electrons, we consider the large-U limit

and utilize the slave-boson method [1]. The local electrons

are expressed as dyi� ¼ fyi�bi, with fyi� and bi� being,

respectively, fermionic and bosonic operators satisfying

the constraint byi bi þ
P

�f
y
i�fi� ¼ 1. Introducing the basis

�y
k� ¼ ðcya;k�; cyb;k�; fya;k�; fyb;k�Þ in the k space, the

mean-field Hamiltonian is expressed as HMF ¼P
k��

y
k�Hk��k� with

Hk� ¼ Mk� rVI

rVI ðE0 þ �ÞI

 !
: (4)

Here, I is a 2	 2 identity matrix, r ¼ hbi is the condensa-
tion density of the bosons, and � is the Lagrange multiplier
introduced to implement the constraint. We will carry out
our calculations for N ¼ 2 (� ¼ �1); a large-N
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FIG. 2 (color online). The unit cell and primitive translation
vectors.

FIG. 1 (color online). Itinerant electrons moving on a honey-
comb lattice while coupled vertically to the local spins on a
parallel lattice.
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generalization in the presence of SOC may also be consid-
ered [32]. The quasiparticle bands of the mean-field
Hamiltonian Eq. (4) are degenerate for the two spin com-
ponents. For each spin component, the Hamiltonian can be
diagonalized (even though the matrix is 4	 4) giving rise
to the quasiparticle dispersion

Eð1Þ
k ¼ 1

2

�
Gkþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

k� þ 4r2V2
q �

��

Eð2Þ
k ¼ 1

2

�
Gk� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

kþ þ 4r2V2
q �

��

Eð3Þ
k ¼ 1

2

�
Gkþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

k� þ 4r2V2
q �

��

Eð4Þ
k ¼ 1

2

�
Gk� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

kþ þ 4r2V2
q �

��;

(5)

with Gk� ¼ E0 þ �þ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ j�kj2
q

. The parameters

r and � are determined by the following equations:

1

2N

X
k�;�¼a;b

hfy�;k�f�;k�i þ r2 ¼ 1 (6)

V

2N

X
k�;�¼a;b

<hcy�;k�f�;k�i þ r� ¼ 0; (7)

withN being the total number of unit cells and< indicat-
ing the real part. In the following we shall mainly consider
the half-filled case, corresponding to � ¼ 0.

The formation of the quasiparticle bands, specified by
Eq. (5), requires the renormalized hybridization V� ¼
rV � 0. By contrast, if V� ¼ 0, the spectra separate into
the decoupled conduction bands and local level. Moreover,
the band inversion takes place at V� ¼ 0. While this fea-
ture is hidden and not important in ordinary Kondo lattice
problems, it is crucial in the present problem because now
the conduction bands are from the TI. As a consequence,
the bulk gap of TI closes at the onset of V�, leading to a
quantum phase transition to the KI.

At zero temperature, r (or V�) is nonzero only if V is
larger than a critical Vc, as a result of the suppressed
density of conduction electron states for a honeycomb
lattice. Figure 3(a) shows the numerical results for the V
dependence of r for several values of �so. The local level
E0 is taken at the bottom of the conduction band. The
critical Vc � 1:3 for �so ¼ 0, and increases almost linearly
with �so, as seen in the inset of Fig. 3(a). When V < Vc,
r ¼ 0, indicating the Kondo destruction, so the system

remains in the TI phase with a bulk gap �T ¼ 6
ffiffiffi
3

p
�so.

While for V > Vc, r � 0, the Kondo screening emerges
and the band inversion takes place immediately, so the
system enters into the KI phase. For small r, the KI phase
has a finite hybridization gap �K � 2r2V2=3t. This is the
direct band gap at the �-point where the contribution from
the SOC vanishes.

It is interesting to compare the results here for the
Kondo-lattice problem with those for its counterpart of a

single ion magnetic impurity imbedded in the bulk of the
two-dimensional TI. Using the samemethod, and for �so ¼
0:15 as an example shown in Fig. 3(a), we find Vc � 2:07
for the single ion Kondo screening which is much larger
than Vc � 1:45 determined here. In the absence of SOC,
the finite Vc is due to the fact that the electron host is a
pseudogap system so that the single ion Kondo screening
needs a nonzero Kondo coupling comparable to the gap
amplitude [33–35]. The enhancement of Kondo effect
comparing to the single ion Kondo screening is similar to
the Kondo lattice with d-wave superconducting conduction
electrons [36].
We next investigate the surface states of the finite system

with boundaries. We take a two-dimensional ribbon by
cutting two zig-zag edges with width N2, while the size
along a1 remains infinite. Then the boson mean-field r is
dependent on the coordinate n2 and the sublattices and can
be denoted by raðn2Þ and rbðn2Þ, respectively. We have
rbðn2Þ ¼ raðN2 � n2Þ due to the inversion symmetry.
Figure 3(b) shows the site dependence of ra and rb forN2 ¼
40 and �so ¼ 0:15. A general feature is that r decreases
rapidly from the edge to the bulk. This feature is attributed to
the gapless edge states. rðn2Þ is almost flat away from the
edges (5< n2 < 35) as shown in Fig. 3(b), indicating that
the finite size effect is relatively small for N2 ¼ 40.
Figure 4 shows the energy spectra with four sets of

parameters; here, �¼0 is imposed. Figures 4(a) and 4(b)
display the spectra of the conduction electrons in the
absence of the Kondo singlet (V� ¼ 0) and for �so ¼
0; 0:03, respectively. The edge states with a single Dirac
point at the Fermi energy in Fig. 4(b) manifest the TI phase
[9,25]. In comparison, Figs. 4(c) and 4(d) are the spectra
for V > Vc. The Kondo-singlet formation is clearly
reflected in the hybridization gap at half filling and the
relatively narrow flat bands near the Fermi energy (near the
transition point the flatness is measured by t=V�).
Furthermore, we observe that in the KI phase, the

narrow bands can be separated from the continuum by

FIG. 3 (color online). (a) Large system with periodic boundary
condition: The mean-field parameter r as a function of V for
�so ¼ 0, 0.15, and 0.25. As a comparison, the red open square is
for the corresponding single-ion Kondo problem for �so ¼ 0:15.
The inset shows the critical Vc as a function of �so. All the
coupling constants are in unit of t. (b) The site dependence of r
for the lattice with zig-zag edges for several V in the Kondo
phase, the width N2 ¼ 40, �so ¼ 0:15.
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increasing the SOC, leading to a bulk gap at the 1=4 or 3=4
fillings (achieved by tuning the chemical potential � � 0).

This is the direct band gap between Eð3Þ
k and Eð4Þ

k or between

Eð1Þ
k and Eð2Þ

k at the points (2�=3, 4�=3) and (4�=3, 2�=3),

respectively,with thegapmagnitude�KT�6
ffiffiffi
3

p
r2V2�so=�

2

for the large bulk system.Moreover, for the finite systemwith
boundaries, the edge states emerge again with a Dirac point
within the bulk gap. This feature is robust for a range of the
chemical potential� corresponding to the 1=4 or 3=4 filling.
We have also calculated the Z2 topological bulk invariant
�2D following the monodromy approach developed in
Ref. [37]. The result confirms that �2D ¼ 1 at half filling
and�2D ¼ �1 at 1=4 or 3=4 filling. Therefore, the insulat-
ing phase at 1=4- or 3=4-filling is topologically nontrivial,
and its surface states, while having the spin direction locked
by the momentum, contain the contributions from both
conduction and local electrons. Hence in the case of
Fig. 4(d) we have a new TI phase with the Kondo-singlet
formation and a surface heavy-fermion helical liquid.

We now consider the TI-KI transition around Vc. In the
present analysis at the saddle-point level, the onset of
Kondo effect is continuous [Fig. 3(a)]. Correspondingly,
the KI gap sets in continuously. By contrast, on the TI side
there is simply a decoupling of the conduction-electron and
local-moment components. However, we show that the
quantum fluctuations beyond the saddle point reduce the
bulk gap from the TI side, as is described in some detail in
the Supplemental Material [38]. The situation is similar to
the case of single-impurity pseudogapped Kondo problem,
for which numerical renormalization group calculations,
for instance, establish a well-defined second-order phase
transition for the Kondo-destruction quantum critical point
[39]. In the lattice case, the Ruderman-Kittle-Kasuya-
Yosida interaction between the local moments, which is
mediated by Kondo coupling in our model, will also induce
magnetic order. Taking into account the magnetic order
will leave the KI phase intact; as is standard, the Kondo

screening present in the KI phase quenches the local
moments and their ordering tendency. In the TI phase,
we have explicitly shown (in the SM) that an antiferro-
magnetic order, characterized by the order parameter M,

will reduce the TI bulk gap to �T ¼ 2ð3 ffiffiffi
3

p
�so �

JKMÞð1� V2=E2
0Þ. This TI gap remains nonzero for a

finite range of M and V; in other words, the TI phase
remains stable in the presence of an antiferromagnetic
order for a range of V < Vc. Our results can be understood
based on general arguments: in the presence of magnetic
order, the Z2 topological invariant is replaced by two spin-
Chern numbers which remain unchanged when the time
reversal symmetry is broken by the magnetic order [40,41].
Meanwhile, the surface states remain gapless unless the
bulk gap closes [42,43].
While detailed transitions among KI and TI phases, on the

one hand, and antiferromagnetic order on the other is be-
yond the scope of the present work, our work does reveal
that the heavy-fermion phase diagram contains a hitherto
unexplored new regime with a competition among topologi-
cal, Kondo-coherent, and magnetic states; such competition
involves the physics of Kondo destruction and associated
local quantum criticality [44]. In other words, when the
magnetic order and related dynamical effects are incorpo-
rated in our analysis, the TI-KI transition discussed here will
represent a regime where topological effects strongly inter-
play with the onset of magnetism and Kondo coherence. The
simplification that proximity to quantum criticality brings
may very well make the interaction effects on the TI phase
and its associated surface states more tractable.
We close by noting that we have treated the hybridization

to be k independent. When the spin and k dependences of
the hybridization are incorporated, part of the KI phase may
itself become topological, as emphasized in Ref. [20].
We now briefly discuss our work in the context of 4f-

electron-based Kondo insulators. In SmB6, it is known that a
sufficiently large external pressure collapses the Kondo
coherence in SmB6 and turns it into an antiferromagnetic
metallic state [45]. Combined with the recent experimental
evidence in SmB6 for the edge states of a topological
insulator [23,24], this is reminiscent of the transition among
the topological and Kondo-coherent or magnetic states
implicated by the present study. An intriguing question
then arises, which deserves the study of future experiments:
what happens to the candidate chiral edge states when SmB6

is placed under external pressure? Along a similar line,
CeNiSn is another intermetallic system believed to be a
Kondo insulator. In CeNiSn, (negative) chemical pressure
achieved through Pd or Pt substitution for Ni is known to
induce a transition out of its Kondo insulator state [46–49].
It will therefore be informative to explore surface states in
the CeðPt1�xNixÞSn and CeðPd1�xNixÞSn series. Finally, it
is worth noting that CePtSn has the distinction of involving
5d electrons with a large SOC.
To summarize, we have considered the effect of SOC of

the conduction electrons in a Kondo-lattice system. Our

FIG. 4. The energy spectra for a ribbon of width N2 ¼ 40.
(a) V ¼ 0 and �so ¼ 0; (b) V ¼ 0 and �so ¼ 0:03; (c) V ¼ 1:7
and �so ¼ 0; (d) V ¼ 1:7 and �so ¼ 0:03.
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study offers the first qualitative understanding of the com-
petition between topological and Kondo insulator ground
states on a simple and yet generic model in two dimensions.
While our analysis has so far been primarily confined to the
paramagnetic cases, our results already suggest that the
overall phase diagram of heavy-fermion systems includes
a new regime with competition among topological, Kondo-
coherent, and magnetic states. This regime should be par-
ticularly prominent for heavy fermion systems whose
conduction electron band is associated with the strongly
spin-orbit-coupled 5d electrons. As such, our work opens
up a new regime of physical interest for compounds based
on iridium, platinum, and related 5d elements.
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Wäppling, H. v. Löhneysen, T. Takabatake, and Y.
Echizen, Physica (Amsterdam) 289B–290B, 256 (2000).

[49] M. Kasaya, T. Tani, H. Suzuki, K. Ohoyama, and M.
Kohgi, J. Phys. Soc. Jpn. 60, 2542 (1991).

PRL 111, 016402 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 JULY 2013

016402-5

http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1080/000187300243345
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.102.256803
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.81.235411
http://dx.doi.org/10.1103/PhysRevB.80.241302
http://dx.doi.org/10.1103/PhysRevB.80.241302
http://dx.doi.org/10.1103/PhysRevB.81.233405
http://dx.doi.org/10.1103/PhysRevB.81.233405
http://dx.doi.org/10.1103/PhysRevLett.104.146802
http://dx.doi.org/10.1103/PhysRevLett.106.097201
http://dx.doi.org/10.1103/PhysRevLett.106.097201
http://dx.doi.org/10.1103/PhysRevB.85.245108
http://dx.doi.org/10.1103/PhysRevB.85.245108
http://dx.doi.org/10.1103/PhysRevLett.96.087204
http://dx.doi.org/10.1103/PhysRevLett.104.106408
http://dx.doi.org/10.1103/PhysRevLett.104.106408
http://dx.doi.org/10.1126/science.1216466
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://arXiv.org/abs/1211.5104
http://arXiv.org/abs/1211.6769
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevB.82.075106
http://dx.doi.org/10.1103/PhysRevLett.106.100403
http://dx.doi.org/10.1103/PhysRevLett.106.100403
http://dx.doi.org/10.1103/PhysRevLett.107.010401
http://dx.doi.org/10.1103/PhysRevLett.107.010401
http://dx.doi.org/10.1103/PhysRevLett.107.166806
http://dx.doi.org/10.1103/PhysRevB.84.205121
http://dx.doi.org/10.1103/PhysRevB.84.205121
http://arXiv.org/abs/1201.1698
http://dx.doi.org/10.1140/epjb/e2012-30318-5
http://dx.doi.org/10.1103/PhysRevLett.64.1835
http://dx.doi.org/10.1103/PhysRevLett.64.1835
http://dx.doi.org/10.1103/PhysRevB.54.11936
http://dx.doi.org/10.1103/PhysRevLett.106.016801
http://dx.doi.org/10.1103/PhysRevLett.106.016801
http://dx.doi.org/10.1103/PhysRevB.77.125129
http://dx.doi.org/10.1103/PhysRevB.77.125129
http://dx.doi.org/10.1103/PhysRevB.83.235115
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.016402
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.016402
http://dx.doi.org/10.1103/PhysRevLett.89.076403
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1103/PhysRevB.80.125327
http://dx.doi.org/10.1103/PhysRevLett.107.066602
http://dx.doi.org/10.1103/PhysRevLett.108.196806
http://dx.doi.org/10.1103/PhysRevLett.108.196806
http://dx.doi.org/10.1007/s10909-010-0221-4
http://dx.doi.org/10.1007/s10909-010-0221-4
http://dx.doi.org/10.1103/PhysRevLett.94.166401
http://dx.doi.org/10.1016/0304-8853(92)90644-4
http://dx.doi.org/10.1016/0304-8853(92)90644-4
http://dx.doi.org/10.1016/0921-4526(96)00098-1
http://dx.doi.org/10.1016/S0921-4526(00)00387-2
http://dx.doi.org/10.1143/JPSJ.60.2542

