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Dynamics of electric transport in interacting Weyl semimetals
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The response to an electric field (dc and ac) of electronic systems in which the Fermi “surface” consists of a
number of three-dimensional (3D) Weyl points (such as some pyrochlore iridates) exhibits a peculiar combination
of characteristics usually associated with insulating and conducting behavior. Generically a neutral plasma in
clean materials can be described by a tight-binding model with a strong spin-orbit interaction. A system of that
type has a vanishing dc conductivity; however the current response to the dc field is very slow: The current
decays with time in a powerwise manner, different from an insulator. The ac conductivity, in addition to a finite
real part σ ′(�) which is linear in frequency, exhibits an imaginary part σ ′′(�) that increases logarithmically as
a function of the UV cutoff (atomic scale). This leads to a substantial dielectric response like a large dielectric
constant at low frequencies. This is in contrast to a two-dimensional (2D) Weyl semimetal-like graphene at a
neutrality point where the ac conductivity is purely pseudodissipative. The Coulomb interaction between electrons
is long range and sufficiently strong to make a significant impact on transport. The interaction contribution to
the ac conductivity is calculated within the tight-binding model. The result for the real part expressed via the
renormalized (at frequency �) Fermi velocity v is �σ ′(�) = e4�/(9π 2h̄v)[2 log(�/�) − 5].
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I. INTRODUCTION AND SUMMARY

A long time ago a rather unorthodox physics of crys-
tals possessing three-dimensional (3D) pseudorelativistic
quasiparticles,1 exhibiting an electronic dispersion relation
εk = v|k|, where the velocity v is of the order of the
Fermi velocity in regular condensed matter systems, was
invoked to describe properties of Bi. The ultrarelativistic
linear dispersion relation describes two conical bands (of
opposite orientation) sharing the same cone tip. Recently
several proposals2–6 revived an interest in materials with such
excitations nowadays called Weyl semimetals. The Fermi
“surface” of such materials, typically with dominant spin-orbit
interactions, consists just of a finite number of disconnected
points (called Weyl or Dirac points, defined below) rather than
forming a continuous Fermi surface like electrons in usual
metals. The revived interest emerged of course after years of
intense experimental and theoretical study of graphene, a 2D
Weyl quasiparticle material.7 Suspended graphene is just such
a “semimetal” system and exhibits a number of remarkable
properties. For example, despite having zero density of states
at the Fermi level and ideally no impurities, it still has a nonzero
dc conductivity.8

While this band “touching” at a singular point was noticed
in band structure calculations even before the seminal work of
Wallace on graphite,9 the use of the Dirac model in 3D was in
the context of the two-band approximation model of bismuth.1

Due to the strong spin-orbit interaction, the linear in k terms in
a low energy effective theory near the crystallographic point L

of the fcc Brillouin zone, dominate over quadratic terms (that
dominate near the � point, leading to a common “effective
mass” description). The electronic excitations are described
by an analog of the Weyl equation of particle physics, which
describes eight two-component chiral spinors ψ (two for each
of the four L points):

∂tψ± = ±vσ · ∇ψ±. (1)

The sign describes the chirality of the mode. Metallic bismuth
is only approximately described by the ultrarelativistic “mass-
less” dispersion relation since the quasiparticles of the opposite
chirality are coupled and form four-component massive Dirac
bispinors. In Bi therefore electrons are not Weyl, but 10 meV
massive Dirac electrons where, in addition, the Fermi level is
located away from the Dirac point.

A number of related suggestions for suitable realizations
of Weyl semimetals were recently put forward. Kariyado
and Ogata3 calculated the band structure of cubic inverse
perovskites like Ca3PbO with significant spin-orbit coupling.
They observed the appearance of six Weyl points with a
very small relativistic electron mass down to 4 meV on the
line connecting the � and the X points. In iridium-based
pyrochlores such as Y2Ir2O7, there are NW = 24 Weyl points
located near the four L points of the fcc lattice. As noted
in Ref. 2, these materials “in particular provide a unique
opportunity to study the interplay of Coulomb interactions,
spin-orbit coupling, and the band topology of solids.” Also,
strong spin-orbit interactions can lead to a phase of matter, the
topological insulator5 and various possibilities to create Weyl
fermions combined into coincident opposite chirality points
or separated in the Brillouin zone in BiO2/SiO2,4 Na3Bi,
and Hg1Cr2Se4.6 These proposals generated a great deal of
experimental efforts.10 The system with 3D Weyl points was
proposed to appear in optical lattices11 following the discovery
of “artificial graphene.”12

Since the density of carriers in 3D Weyl semimetals at
zero temperature is zero (as in suspended graphene in 2D),
the Coulomb interactions are unscreened and therefore are
expected to be important to the understanding of the electrical
and optical response of these materials. Unsophisticatedly the
dimensionless coupling

α ≡ e2

εh̄v
(2)

045108-11098-0121/2013/88(4)/045108(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.045108


B. ROSENSTEIN AND M. LEWKOWICZ PHYSICAL REVIEW B 88, 045108 (2013)

is of order 1, provided the dielectric constant ε is not large,
since the analog of the light velocity v is of the order typically
of the Fermi velocity. Note that the same Coulomb potential
1/r created by an electron influences many more electrons
in 3D compared to 2D, so naively, in 3D its importance is
expected to increase. While electric transport in noninteracting
3D Weyl fermions was studied (Refs. 13 and 14 and references
therein to earlier papers in the context of particle physics),
the contributions of potentially very important Coulomb
interactions (Coulomb scattering corrections to transport as
an example) have not been studied theoretically, except basic
renormalization effects.14 This is in contrast to the situation in
graphene.

The effect of the Coulomb interactions in undoped graphene
turned out to be highly nontrivial, even within perturbation
theory, and have evoked a scientific controversy15–18 due to
the problem of the “ultraviolet regularization,” and was just
recently settled19 by noting that the ambiguities are associated
with the treatment of the separation of scales related to
the chiral anomaly.20 Some aspects of the Weyl semimetal
physics are not dominated by the Weyl points of the Brillouin
zone at which the spectrum is gapless. For example, the
ac conductivity of undoped graphene (the weak logarithmic
renormalization of the electron velocity21 does not influence
the result) is given in terms of its value in the noninteracting
theory σ0 = e2/4h̄ by

σ (�)

σ0
= 1 + Cα + O(α2) (3)

and is strictly dissipative (real). This expression is independent
of frequency (provided corrections of order h̄�/γ , γ =
2.7 eV being the hopping energy, are neglected). The value
of the only numerical constant C appearing here has been
a matter of intense controversy. The detailed calculation15

utilizing a sharp momentum cutoff regularization of the Dirac
model provided a value C(1) = 25

12 − π
2 ≈ 0.51 of order 1.

The use of the sharp momentum cutoff was criticized by
Mishchenko,16 who obtained an exceptionally small value
of C(2) = 19

12 − π
2 ≈ 0.01 making a “soft” momentum cutoff

regularization. He supported this choice by the consistency
of the Kubo and the kinetic equation calculations of conduc-
tivity with that of the polarization function. The consistency
required a modification of the long-range interaction so that
it becomes UV cutoff dependent. This apparently closed
the issue. Albeit such a small numerical value would have
profound physical consequences even beyond the transport and
dielectric properties. Nevertheless, the interaction strength C

was recalculated once again by Vafek et al.,17 who argued that
the modification of the interaction requires simultaneously a
Pauli-Villars regularization of massless fermions. They applied
yet another regularization, making the space dimensionality
fractional, D = 2 − ε, that modified both the current operator
and the interaction in such a way that they satisfy the
Ward identities and obtained C(3) = 11

6 − π
2 ≈ 0.26. The

dimensional regularization is questionable on physical grounds
and in a comprehensive subsequent work18 the authors
reaffirmed the small value C(2); it seems that this value is
the commonly accepted one. The tight-binding calculation19

however demonstrated that C(3) is the correct one. To reveal
the origin of the ambiguity exhibited by the various values of

C, the authors made use of a dynamical approach developed
earlier22 (to address the problem of separating the interband
contributions from the intraband effects due to contacts23,24)
directly in the dc case by “switching on” a uniform electric field
in the tight-binding model with Coulomb interactions, and then
considering the large-time limit. This approach (known in field
theory as the “infinite hotel story”) is the best way to reveal
physical effects of anomalies.25 One can directly separate the
contributions from the neighborhood of Dirac points and the
“anomalous” contributions from the rest of the Brillouin zone,
so that one can decide what regularization of the effective Weyl
theory is the correct one. In this sense this is advantageous
over the standard diagrammatic Kubo formula calculation in
continuum15–18 that might encounter the so-called Schwinger
terms (found in quantum electrodynamics, that is similar to
the 3D Weyl fermions).

The purpose of the present paper is to study the effect
of Coulomb interactions in 3D Weyl fermion systems with
emphasis on dynamical aspects of electric transport and
compare/contrast it with the corresponding results in 2D Weyl
fermions. To achieve this goal we define in Sec. II a tight-
binding description of Weyl fermions on a hypercubic lattice
of any dimensionality similar to a variant of the Hamiltonian
lattice model in field theory25 already used in its Lagrangian
version to simulate graphene.26 In this model the electron’s
spin is strongly coupled to momentum and therefore the model
is very reminiscent, in this respect, of the Wolff model of
bismuth or lattice realizations of topological insulators. The
lattice “regularization” is necessary to address the ultraviolet
divergencies at the intermediated stages of calculations, a
problem mentioned above. The universality of this description
of Weyl fermions (of various origins) is supported by the fact
that such a 2D model gives the same result for the interaction
corrections as the tight-binding model on the honeycomb
lattice with zero spin-orbit coupling.

In Sec. III the correction to the self-energy of a quasiparticle
with momentum p is considered. It is shown that the Fermi
velocity renormalization in 3D (already noted in Ref. 14) is
logarithmic in the UV cutoff  ∼ π/a (a being the lattice
spacing) very much like in 2D.21 The velocity at normalization
point p is

vr (p) ≡ εp + �εp

p

∣∣∣∣
p=p

= v

[
1 + 2α

3π
log

(
h̄

p

)]
. (4)

Section IV is devoted to a general derivation and application
of the dynamical approach to the electric response to the dc
and ac electric field. In particular, we obtain the slow current
decay in a dc field E of the neutral, noninteracting 3D Weyl
plasma and show that the relaxation is powerwise, see Fig. 1.
The long time asymptotics is oscillating and depends on the
microscopic details via cutoff a:

j0(t)

E
= NWe2

12π2h̄v

1

t

[
1 + cos

(
2vt

a

)]
. (5)

Here NW is the number of Weyl fermions. This explains
how the pseudo-Ohmic dc conductivity vanishes in 3D. The
relaxation dynamics therefore is qualitatively different from
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FIG. 1. (Color online) The response of the free Weyl semimetal
to a dc electric field, multiplied by t, is shown as a function of time.
The current’s asymptotic value of zero is approached powerwise.

2D, where it is insensitive to the cutoff.24 For the ac electric
field similar slow convergence to the ac conductivity occurs,
see Fig. 2. Even in the free Weyl semimetal one gets, in addition
to a finite real (pseudodissipative) part linear in frequency,14

σ ′
0(�) = NWe2

24πh̄v
�, (6)

an imaginary part, logarithmically divergent as function of the
UV cutoff:

σ ′′
0 (�) = − 2

π
σ ′

0(�) log
2v

�
. (7)

This is again different from graphene at zero doping and leads
to important dielectric properties. Relaxation to the asymptotic
behavior is faster at higher frequencies.

The leading interaction correction to the real and imaginary
conductivities per Weyl point are the subject of Sec. V, see
Fig. 3 for comparison with a metal and a semiconductor. The
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FIG. 2. (Color online) The response of the free Weyl semimetal
to an ac electric field (green lines) is shown as a function of time
for two different frequencies (magenta lines). The value of v/a is
typically of order ∼3 × 1015 Hz.
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FIG. 3. (Color online) (a) The real part and (b) the imaginary
part of the ac conductivity of the Weyl semimetal (magenta line) are
compared with those of a band insulator (red line) and of a metal
(blue line). The parameter values are given in the text.

result for the real part expressed via the renormalized Fermi
velocity defined is still linear in frequency:

σ ′(�) = σ ′
0(�)

[
1 + α

(
2

3π
log

�

�
+ C

)
+ O(α2)

]
,

(8)

C = − 5

3π
≈ −0.53.

The normalization frequency is � = vp/h̄. The imaginary part
gets further logarithmically dependent on cutoff corrections,

σ ′′(�) = σ ′′
0 (�)

[
1 + α

3π
log

2v

�
+ O(α2)

]
, (9)

despite an apparent “renormalizability” of the model to the
leading order in α at least. The physical significance of the
results including formulas including that for the complex
dielectric constant, see Fig. 4, are summarized in the con-
cluding Sec. VI. We speculate about obvious improvements
like the random phase approximation, renormalization group,
and a possibility of stronger coupling effects like the exciton
condensation.
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FIG. 4. (Color online) (a) The real part and (b) the imaginary part
of the dielectric constant of the Weyl semimetal (magenta line) are
compared with those of a band insulator (red line) and of a metal
(blue line). The parameter values are given in the text.

II. TIGHT-BINDING MODEL WITH DOMINANT
SPIN-ORBIT INTERACTIONS

A. Noninteracting Hamiltonian and linear response

The noninteracting tight-binding model is defined on the
hypercubic lattice n = ∑3

i=1 niai with lattice vectors ai of
length a by the Hamiltonian:

Kmc = i

2

∑
n,i

�n,ic
†
nσicn+ai

+ H.c. (10)

Here σi are Pauli matrices, operators c
α†
n create a two-

component spinor α = 1,2, and �n,i is the hopping integral that
in the presence of an external electromagnetic field, described
by vector potential Ai , is

�n,i = γ exp

[
i
ea

ch̄

∫ 1

s=0
Ai(n + sai ,t)

]
, (11)

where the hopping energy γ is of order of the bandwidth. It is
important to derive the current density directly in tight-binding

model:

Ji(r,t) ≡ −c
∂Kmc

∂Ai(r,t)

= ea

2h̄

∑
n

∫ 1

s=0
δD(r − n − sai)�n,ic

†
nσicn+ai

+ H.c.

(12)

It defines the UV regularization of the current operator that
obeys the Ward identities. In linear response the current density
operator is expanded up to the first order in A as J = Jp + Jd :

J
p

i (r) = ev

2

∑
n

ϒn + H.c., (13)

J d
i (r,t) = i

e2va

2ch̄
Ai(r,t)

∑
n

ϒn + H.c.,

(14)

ϒn =
∫ 1

s=0
δD (r − n − sai) c†nσicn+ai

,

where v = γ a/h̄. Space averages over volume V for a
homogeneous vector potential A(t) simplify

j
p

i = 1

V

∫
r
J

p

i (r) = ev

2V
∑

n

c†nσicn+ai
+ H.c.,

(15)

jd
i = 1

V

∫
r
J d

i (r,t) = i
e2av

2ch̄VAi (t)
∑

n

c†nσicn+ai
+ H.c.

Expansion of the minimally coupled Hamiltonian in electric
field is

Kmc ≈ K + Hext, Hext = −1

c

∫
r

Jp · A (t) . (16)

Defining Fourier components by cα
n = N−1/2 ∑

k e−ik·ncα
k ,

where the number of unit cells is N = V/aD, one has

K = γ
∑
k,i

sin(kia)c+
k σick. (17)

Diagonalization of K is achieved by adopting a reinterpretation
of the absence of an electron in the valence band as a hole and
using units h̄ = a = v = 1 by

cα
k = vα

k ak + uα
kb+

−k → cα+
k = vα∗

k a+
k + uα∗

k b−k, (18)

with spinors vk and uk given in Appendix A. Up to an additive
constant it becomes

K =
∑

k

εk(a+
k ak + b+

k bk), (19)

where

εk =
√

k̂1
2 + k̂2

2 + k̂3
2
, (20)

and the notation k̂ ≡ sin k was introduced. In 3D one observes
eight Weyl points at which εk = 0 inside the Brillouin zone
(BZ). Four are right handed: one in the center (the � point)
and three on the faces (X), while four are left handed:
three on the edges (M) and one in the corner (R). The
chirality is determined by the expansion of the Hamiltonian
Eq. (17) around a Weyl point W, sgn(εijkQ

1
i Q

2
jQ

3
k), where

Qi = ∂
∂k k̂i |W. Similarly, in 2D one has two right handed Weyls

at � and R and two left handed at M .
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The paramagnetic and diamagnetic parts of the current due
to an electric field (along, let us say, the z direction), A(t) =
(0,0,A(t)); E(t) = −c d

dt
A(t), are

jp = e

V
∑

k

[ιk(a+
k ak + b+

−kb−k) + iχkb−kak] + H.c.,

j d = e2

V A(t)
∑

k

k̂z

εk

[
k̂z

2
(a+

k ak + b+
−kb−k) (21)

−(k̂x + ik̂y)b−kak

]
+ H.c.,

where the functions χk and ιk are defined in Appendix A.

B. Coulomb interaction

Using the expression for the particle densities in momentum
space (Einstein summation implied for spins only):

Nn = cα†
n cα

n = N−1
∑

kl

ei(l−k)·ncα+
l cα

k , (22)

the Coulomb interaction takes the form

V = 1

2

∑
nm

e2

|n − m|NnNm =
∑
klk′l′

vklk′l′c
α+
l cα

kcα′+
l′ cα′

k′ , (23)

vklk′l′ = 1

2V
∑

p

vpδl−k−pδl′−k′+p, (24)

with Fourier transform of the interaction being vp = 4πe2

a2p2 . It
is important to note that the electric charge of the effective
tight-binding model should include the contributions to the
screening due to the polarization constant ε caused by degrees
of freedom not included in the model, so the “bare” charge
includes this effect e2 = e2

el/ε. We require charge neutrality
that is achieved by leaving out all the contributions including
vp=0. This prescription is always implied in what follows. It is
convenient to normal order V with respect to operators a and
b diagonalizing the “kinetic” term K via Eq. (18):

V = V 40 + V 31 + V 22 + V 13 + V 04 + V 11, (25)

where the part V ij contains i creation operators a+ or b+ and
j annihilation operators a or b, all specified in Appendix A.
In principle, the quadratic pair creation V 20 and the pair
annihilation terms V 02 could have appeared. The fact that
they have not, explained in Appendix A, greatly simplifies
the calculation and makes it competitive (at least to the
leading order) with the diagrammatic approach. The “time
independent” approach is however much more transparent,
when one realizes that excitations can be created in fours rather
than in pairs in this particular model.

III. QUASIPARTICLES AND RENORMALIZATION
OF THE FERMI VELOCITY

The energy of an electron above the Fermi level with
quasimomentum p, |p〉 = a+

p |0〉, in the noninteracting model

described by the Hamiltonian Eq. (19) is

〈p|K|p〉 = 〈0|ap

∑
l

εl(a
+
l al + b+

l bl)a
+
p |0〉 = εp. (26)

The interaction correction is

�εp = 〈p|V |p〉 = 〈0|apV a+
p |0〉. (27)

Obviously only contributions with equal numbers of creation
and annihilation operators V 22 and V 11 can contribute. The
first term contains (see Appendix A) a+b+ab, b+b+bb, and
a+a+aa terms, of which only the last one could contribute to
the expectation value Eq. (27), yet it vanishes:

�ε22
p = −

∑
klk′l′

vklk′l′(v
∗
l′ · vk′)(v∗

l · vk)〈0|apa
+
l a+

l′ akak′a+
p |0〉

= −
∑
kll′

vklpl′ (v
∗
l′ · vp)(v∗

l · vk)〈0|apa
+
l a+

l′ ak|0〉 = 0.

(28)

We are left with the simple quadratic part V 11:

�ε11
p = 1

2

∑
ql

vl−qgql〈0|ap(a+
l al + b+

−lb−l)a
+
p |0〉

= 1

2

∑
q

vp−qgqp, (29)

where

gpq ≡ |v∗
q · vp|2 − |u∗

q · vp|2. (30)

This results in

�εp = e2p

3π

[
log

3π2

2a2p2
+ O(p2)

]
. (31)

It is instructive to estimate it using the expansion around any
of the eight Weyl points with the momenta restricted, say, by
q <  < π/2a, thus omitting some contributions far from the
Weyl points that innocently could be thought to be small, but,
as the graphene example taught us, might become perfidious if
powerwise UV divergencies appear in the intermediate stages
of the calculation. In the present case divergencies are just
logarithmic though and one proceeds by expanding around
one of the Weyl points,

gpq ≈ cos θq cos θp + sin θq sin θp cos(φp − φq), (32)

where spherical coordinates q = q(sin θq cos φq, sin θq sin φq,

cos θq) were used. The sum is transformed into an integral:

�ε11
p = e2

2(2π )3

∫
qφqθq

4π sin θqq
2gpq

p2 + q2 − 2pqgpq
. (33)

The integrals over angles can be performed, see Appendix B,
resulting in [for p = p(1,0,0)]

�ε11
p = e2

4π

∫ 

q=0

[
1 + r2

2
log

(
1 + r

1 − r

)2

− 2r

]
, (34)
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where r = q/p. Changing variables in the remaining integral
establishes the leading linear dependence on p:

�εp = e2p

4π

∫ /p

r=0

[
1 + r2

2
log

(
1 + r

1 − r

)2

− 2r

]
= e2p

3π

[
log

(
2

p2

)
+ 5

3

]
. (35)

Comparing with the exact result for the “universal” model,
Eq. (31), we can choose the value of the cutoff to be slightly
outside of the continuum model applicability range  =
0.53π

a
. This means that the continuum model cannot determine

correctly the constant term that is model dependent. To
summarize, one indeed observes just a logarithmic divergence
and therefore can renormalize the Fermi velocity written in
physical units in Eq. (4).

In 2D the corresponding calculation gives a well known
“running” of the graphene velocity towards higher velocities.21

Therefore the running of the Fermi velocity in Weyl semimetal
is very much like in (undoped) graphene.

IV. DYNAMICS OF ELECTRIC RESPONSE: CURRENT
DECAY IN DC FIELD AND INDUCTIVE RESPONSE IN

AC FIELD OF THE NONINTERACTING WEYL
FERMIONS NEUTRAL PLASMA

In this section we first calculate the time evolution of
the current when the external electric field is switched on in
order to obtain the dc and ac electric response. This is done
however within a “time independent” formalism to carefully
trace the states that contribute to the dynamics and investigate
the emergence of the steady state.

A. The electric current evolution within linear response

We use the dynamical approach22 to the semimetal response
rather than the more customary diagrammatic method not
just to investigate dynamics under dc or ac field, but also to
clarify several fundamental issues in the following sections
concerning the Coulomb interaction corrections to the ac
conductivity. First the nature of the dependence of the
physical quantities on the UV “cutoff” 1/a (renormalization) is
elucidated, next the time evolution is exploited to demonstrate
the inductive response of the 3D semimetal even without
electron-electron interaction and contrast it with the purely
pseudo-Ohmic response of graphene.

The paramagnetic contribution in the Heisenberg picture is
given by the vacuum expectation value (VEV):

〈Jp(r)〉 = 〈ψmc(t)|Jp(r)|ψmc(t)〉
= 〈ψ(0)|U−1

mc (t)Jp(r)Umc(t)|ψ(0)〉. (36)

The ground state ψ (0) is that of an interacting electron system
without the external field. Expanding to “linear response” in
coupling to the external electric field (considered homoge-
neous and oriented along the z direction), Eq. (16),

Umc(t) = UK (t)

[
1 − i

∫ t

t1=0
U−1

H (t1)Hext(t1)UH (t1)

]
, (37)

where UH (t) = e−i(K+V )t , one gets

〈Jp(r,t)〉 = i

∫ t

t1=0
A(t1)

∫
r ′
〈ψ(0)|eiHtJ p

z (r)e−iH (t−t1)Jp

× (r′)e−iH t1 |ψ(0)〉 + c.c. (38)

The diamagnetic current, Eq. (13), is already of the first order
in electric field. In the next section the full model including
the many-body effects will be considered. In this section we
neglect the interaction V to solve exactly for the time evolution
of the current density.

B. Time dependence of the current generated by a time
dependent electric field

In the absence of the Coulomb interaction the VEV of the
average paramagnetic current density [in the field direction z,
see Eq. (13)] takes a form〈
j

p

0 (t)
〉

= iV
∫ t

t1=0
A(t1)〈0|eiKt jpe−iK(t−t1)jpe−iKt1 |0〉 + c.c. (39)

Using definitions of the tight-binding Hamiltonian and the
current density operator, Eqs. (19) and (21), one obtains〈

j
p

0 (t)
〉 = e2

V

∫ t

t1=0
A(t1)

∑
k

|χk|2 sin[2εk(t − t1)]. (40)

Similarly the diamagnetic contribution, using Eq. (21), is〈
jd

0 (t)
〉 = 〈0|jd |0〉 = −e2

V A(t)
∑

k

k̂2
z

εk

. (41)

To continue one has to specify the time dependence of the
applied electric field. We start in the next subsection with the
constant electric field and then continue to the ac case.

C. Decay of current in the dc electric field

In the homogeneous dc electric field described by the vector
potential A(t) = −cEt , one obtains from Eq. (40) the average
current. The integral over t1 results in

j0(t)

E
= e2

V
∑

k

{
t
k̂2
z

εk
− |χk|2

[
t

2εk
− sin(2εkt)

4ε2
k

]}
. (42)

One expects that the neutral plasma system that does not
possess electric charges on the Fermi level will not have the
“acceleration” terms linear in time t that appear in the above
equation. Indeed the sum of the first two terms vanishes:

j acc
0 (t)

E
= −t

e2

V
∑

k

[
ε−3

k

(
1 − k̂2

z

)(̂
k2
x + k̂2

y

) + ε−1
k k̂2

z

] = 0.

(43)

This is seen as follows. The integral over the BZ can be
represented as an integral over the full d

dkz
derivative like

in graphene.22 Since the BZ can be taken periodically in
the quasimomentum component kz, the integral over the
derivative vanishes. The physical arguments put forward in
the framework of graphene20 in order to comprehend this
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apply equally well here and are not repeated. The remaining
nonaccelerating part,

j0(t)

E
= e2

2V
∑

k

ε−4
k

(
1 − k̂2

z

)(̂
k2
x + k̂2

y

)
sin(2εkt), (44)

is presented in Fig. 1. It decays as given (in physical units) in
Eq. (5), exhibiting the zero conductivity rather than a universal
finite value as in graphene. This asymptotic value of zero
is approached therefore powerwise and oscillating. Note the
dependence on the ultraviolet cutoff that did not appear in
graphene.24

D. Universal dissipative and nonuniversal inductive
response to the ac electric field

The ac electric field E cos(�t) is represented by the oscil-
lating vector potential A(t) = − cE

�
sin(�t). The “universal”

nearest neighbors tight-binding model is relevant only for
frequencies � smaller than the hopping integral γ /h̄. However,
as we noticed in the context of graphene,20 the use of the
expansion of the dispersion relation near the Weyl points
should be done with some care.

Performing the integral over t1 in Eq. (40), one now obtains
the current:

j0(t)

E
= e2

V�

∑
k

{
ε−1

k k̂2
3 sin(�t) − 2ε−2

k

(
1 − k̂2

z

)(̂
k2
x + k̂2

y

)
×� sin(2εkt) − 2εk sin(�t)

�2 − 4ε2
k

}
. (45)

As in graphene, it is very difficult to approach frequencies of
interest � 
 γ /h̄, when the conductivity is presented in this
form. However it becomes substantially simpler numerically
when one subtracts the vanishing acceleration term Eq. (43)
that we have encountered in the dc calculation, with t replaced
by 1/�:

j0(t)

E
= e2

V
∑

k

ε−3
k

(
1 − k̂2

z

)(̂
k2
x + k̂2

y

)
× � sin(�t) − 2εk sin(2εkt)

�2 − 4ε2
k

. (46)

This is shown (together with the electric field) in Fig. 2 for
two values of frequency. One observes that beyond a certain
relaxation time the response becomes periodic, exhibiting a
phase difference between the current (points) and the electric
field (solid lines). To obtain the steady state value of the
complex conductivity we average over time with a damping
factor η using

σ (�) = lim
η→0+

2η

E

∫ ∞

t=0
ei�t−ηt j (t). (47)

The time integration in Eq. (46) with the current density of
Eq. (46) results in

σ0(�) = − ie2�

V
∑

k

ε−3
k

(
1 − k̂2

z

)(̂
k2
x + k̂2

y

) 1

4ε2
k − �2+

, (48)

where �+ ≡ � + iη. Due the the factor ε3
k in the denominator

one might worry about infrared divergences at the Weyl points,

but as we see below, when the neighborhood of these points
is investigated, there are no such divergences and one just has
to handle the threshold singularity at εk = �+/2 . The exact
integral is given (in physical units) in Eqs. (6) and (7) with  =
0.37π

a
, where a is the lattice spacing. To avoid the threshold

singularity we also calculated the Matsubara conductivity for
� = −iω:

σM0(ω) = e2ω

V
∑

k

ε−3
k

(
1 − k̂2

z

)(̂
k2
x + k̂2

y

) 1

4ε2
k + ω2

= e2ω

3π2
log

42

ω2
. (49)

This can be extended to finite temperature via the Matsubara
substitution ω → ω + πkBT /h̄; the dc conductivity at finite
temperature thus becomes

σdc(T ) = e2T

3π2
log

(
42

π2T 2

)
. (50)

It is important to note that both the imaginary part and
the temperature dependence of the dc conductivity are loga-
rithmically divergent as a function of the UV cutoff. Therefore
these physical quantities are sensitive to the microscopic model
even before one considers interactions between electrons.
These quantities cannot be absorbed by renormalization due
to interactions (see Sec. V) and its interpretation is proposed
in Sec. VI.

Now we proceed to try to use the continuum model
near the Weyl points. After the subtraction of “anomalous”
acceleration terms most of the contributions for � 
 γ /h̄

come from the immediate neighborhoods of the Weyl points.22

Due to symmetries it suffices to consider one of them. The
neighborhood of the origin will be defined by k <  < π/2.
Here two differences emanate compared to the transport in
graphene. In graphene the lattice spacing is irrelevant, so that
the conductivity can be calculated within the continuum Weyl
model and the ac conductivity is real for all frequencies � 

γ /h̄. In the present case an inductive part appears and moreover
depends logarithmically on the lattice spacing. To see this
explicitly, let us calculate the ac conductivity approximately by
using the Weyl approximation (linearization of the dispersion
relation) for the contribution of the Weyl points. Within the
continuum approximation in spherical coordinates one writes
the sum in Eq. (48) as

σ0(�) = − 8ie2

(2π )3

∫ 

k=0
k

∫
θ,φ

sin3 θ
�

4k2 − �2+

= − 32e2�

3(2π )2

∫ 

k=0

k

4k2 − �2+
, (51)

where the factor 8 is due to the multiplicity of the Weyl points
in our “universal” tight-binding model. The integration over k

finally gives

σ0(�) = e2�

3π

(
1 − i

π
log

42 − �2

�2

)
≈ e2�

3π
− i

e2�

3π2
log

42

�2
. (52)
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In the last line small terms of the relative order �2/2 were
omitted. The finite result for the real part and regularized
Matsubara conductivity were first obtained in Ref. 14.

Let us emphasize that the electric properties in 3D differ
from that in 2D (graphene) in that there appears an imaginary
part of conductivity that is of the same size and sometimes
even larger than the pseudodissipative one. Now we turn to the
study of the many-body effects in 3D Weyl semimetal.

V. THE INTERACTION CORRECTION TO THE AC
CONDUCTIVITY OF THE WEYL SEMIMETAL

A. Leading corrections to the current evolution
in a time dependent field

The expressions for the diamagnetic and the paramagnetic
components of the current density as a linear response to
arbitrarily time dependent electric fields are given by Eqs. (13)
and (38), respectively. The evolution operator however should
be modified as

e−i(K+V )t = e−iKt

[
1 − i

∫ t

τ=0
eiKτV e−iKτ + O(V 2)

]
, (53)

and the ground state (at initial time or Schrödinger) as

|ψ(0)〉 = |0〉 + |ψ1〉, |ψ1〉 = − 1

K
V (4,0)|0〉, (54)

with the correction to energy being �E = 〈0|V |0〉 = 0 since
the constant term in the energy will be consistently omitted
after the Hamiltonian was normal ordered. Only creation of
four particles at once is possible within the universal model,
as is shown in Appendix B. The pair creating part V (2,0)

vanishes. This simplifies the problem significantly. For exam-
ple, the diamagnetic component is absent due to this. Indeed
the diamagnetic current is quadratic [Eq. (13)] and hence the
correction

�jd (t) = 〈ψ1|e−iKt j deiKt |0〉 + c.c.

= 〈ψ1|jd |0〉 + c.c. = 0. (55)

The paramagnetic correction [in homogeneous electric field
along certain direction described by vector potential A(t)] of
Eq. (38) in the presence of Coulomb interactions takes a form

jp(t) = −ie2
∫ t

t1=0
A(t1)�(t − t1) + c.c.,

�(t − t1) = 〈ψ(0)|eiHt jpe−iH (t−t1)jpe−iH t1 |ψ(0)〉
= 〈ψ(0)|jpe−iH (t−t1)jp|ψ(0)〉. (56)

Expanding in interaction with help of Eqs. (53) and (54), the
correction to the expectation value in the interacting ground
state � above in terms of the unperturbed vacuum expectation
values is

��(t − t1)

= −i〈0|jp

∫ t−t1

τ=0
e−iK(t−t1−τ )(V (1,1) + V (2,2))e−iKτ jp|0〉

−〈0|jpe−iK(t−t1)jp 1

K
V (4,0)|0〉

−〈0|V (0,4) 1

K
jpe−iK(t−t1)jp|0〉. (57)

The other contributions vanish, again due to absence of pair
creations at this order. The first term corresponds to the
fermion self-energy correction, while the rest describe the
vertex correction. These are readily calculated:

�j (t) = e2

V2

∫ t

t1=0
A(t1)

∑
pq

vp−q

{
(t − t1) cos[2εq(t − t1)]

× |χq|2gqp + g−
qp

sin[2εq(t − t1)]

εq + εp

+ 1

2
g+

qp
sin[2εp(t − t1)] − sin[2εq(t − t1)]

εq − εp

}
, (58)

where gqp is defined in Eq. (30) and

g−
qp = Re[χ∗

qχ∗
p (u∗

p · vq)2], g+
qp = Re[χqχ

∗
p (v∗

q · vp)2]. (59)

This can be calculated using the same methods as in the leading
order in the previous section. The dc conductivity correction
vanishes linearly. Finally we calculate the correction to current
for the ac electric field.

B. Correction to the ac conductivity

In the homogeneous ac electric field, A(t) = − cE
�

sin(�t),
the ac conductivity averaged over time as in the leading order
[Eq. (47)] is

σ1(�) = 2ie2

V2�

∑
pq

vp−q

4ε2
q − �2+

[
−|χq|2gqp

(
4ε2

q + �2
)

4ε2
q − �2+

+ 2g−
qpεq

εq + εp
+ g+

qp(4εqεp + �2)

4ε2
p − �2+

]
, (60)

where �+ ≡ � + iη. Subtracting the dc limit (that vanishes
after averaging over time) like in the leading order, one
obtains a much more converging expression proportional to
the frequency

σ1(�) = ie2�

2V2

∑
pq

vp−q

4ε2
q − �2+

[
−|χq|2gqp

(
12ε2

q − �2
)

ε2
q

(
4ε2

q − �2+
)

+ 2g−
qp

εq(εq + εp)
+ g+

qp

(
4εqεp + 4ε2

q + 4ε2
p − �2

)
εqεp

(
4ε2

p − �2+
) ]

.

(61)

The numerical evaluation results in (without subleading terms
in the imaginary part)

σ1(�) = e4�

9π2

[
− log

π2

a2�2
− 5 + i

8π
log2 π2

a2�2

]
. (62)

It is however instructive to obtain this expression within the
continuum (Weyl) approximation valid within radius  around
each of the eight Weyl points.

Near a Weyl point one has the following expansion of the
functions appearing in Eq. (61) in spherical coordinates around
one of the points (chosen to be the origin �):

χk = −ieiφk sin θk, (63)

g±
qp = 1

2 sin θq sin θp[cos(φq − φp)(cos θq cos θp ± 1)

+ sin θq sin θp], (64)
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complementing Eq. (32) for gqp. The sum and the Coulomb
potential in Eq. (61) are written as

8

2(2π )6

∫
pqφpφqθpθq

× 4πp2q2 sin θp sin θq

p2 + q2 − 2pq[cos θp cos θq + sin θp sin θq cos(φp − φq)]
.

(65)

The integrals over all the angles can be performed, see
Appendix B,

σ1(�) = 2ie4�

(2π )3

∫ 

q,p=0

1

4q2 − �2+

{
2G−(r)

1 + r

+4pq + 4q2 + 4p2 − �2

(4p2 + �2+)
G+(r)

−2G+(r)

r

12q2 − �2

4q2 + �2+

}
, (66)

G = 2(1 + r2)

3r
log

(1 + r)2

(1 − r)2
− 8

3
,

G± = (1 ∓ r)4

6r2
log

(1 + r)2

(1 − r)2
± 4 − 2(1 ± r)2

3r
,

with r = q/p. The integrals give

σ1(�) = e4�

9π2

[
− log

42

�2
− 5 + i

8π
log2 42

�2

]
. (67)

One observes that the subleading terms cannot be given
correctly by the Weyl approximation as expected. We can use
the renormalized velocity from Eq. (4) to make the real part
finite.

C. Renormalization of the perturbative expansion
for conductivity

We have calculated the renormalization of the Fermi
velocity Eq. (4) and the ac conductivity of the clean Weyl
semimetal within the leading order in Coulomb interaction. It
is very tempting to try to use renormalization to improve the
results of the bare perturbation theory presented to the leading
order above by renormalizing the parameters of the theory. The
expression for the ac conductivity both in the leading order and
for the interaction correction contains dependence on the UV
cutoff a or  and it is interesting to ask whether physically
measurable quantities can be rewritten via “renormalized”
parameters only or the microscopic details represented by
the cutoff dependence are indeed unavoidable for certain
measurable quantities like the ac conductivity.

The possibility of renormalizability is expected for the 3D
Weyl model on the following two grounds.

(1) It has been claimed recently and shown to a very
high order explicitly that the 2D version (graphene) is
renormalizable.27 This is surprising due to the breaking of
the relativistic invariance (that ensures the renormalizability
for a 2D model with a 3D electromagnetic coupling). The
ac conductivity expression in 2D can be written via the
renormalized Fermi velocity Eq. (4) replacing the bare one

in Eq. (67). The key point here is that the leading order
conductivity is independent of both the velocity and the UV
cutoff.

(2) The relativistic version QED is renormalizable. Break-
ing of the relativistic invariance by taking just the static part
of the interaction might not spoil this like in 2D.

We perform the renormalization of parameters up to
the leading order. Replacing the bare Fermi velocity with
the renormalized one from Eq. (4) in the real part of the
conductivity from Eq. (8), the correction becomes finite and
proportional to frequency:

σ ′ = e2�

3πvr

(
1 + α

3π
log

4v2
r 

2

�
2

)
+ e2α�

9π2vr

(
− log

4v2
r 

2

�2
− 5

)
= e2�

3πvr

[
1 + α

3π

(
log

�2

�
2 + C

)
+ O(α2)

]
, (68)

where α = e2

vrh̄
leading to the result (in physical units) given

in Eq. (8). As in 2D the constant C is positive and of order 1.
Note that the coefficient e2 in the definition of the current is
not directly related by relativistic invariance to the Coulomb
interaction in the present model, and thus is not renormalized.
In the order considered there is no need to renormalize the
static Coulomb coupling. The imaginary part Eq. (9) remains
however “divergent,” namely logarithmically dependent on
microscopic details even after renormalization. This of course
is not surprising due to the discussion of the imaginary part
in the noninteraction theory in Sec. IV D. Even in the free
case the imaginary part is nonuniversal, namely depends on
microscopic details. The situation remains the same in the
interacting theory.

VI. DISCUSSION, EXPERIMENTAL CONSEQUENCES

Before discussing the applicability of the results to ma-
terials proposed as realizations of the Weyl semimetal, let
us summarize the electromagnetic properties of the clean 3D
semimetals at zero temperature that can be extracted from the
ac conductivity [Eqs. (6)–(9)]. The extension of our formulas
to finite temperature was trivial via the Matsubara substitution
� → � − iπkBT /h̄; the dc conductivity of noninteracting
Weyl plasma at finite temperature is given in Eq. (50).

The properties of the clean semimetal are expected to be
dissimilar from those of a band insulator and a metal. In
particular, the dielectric and optical properties differ markedly
from both of them. The complex conductivity of the neutral
Weyl plasma at zero temperature is very different from
semiconductors and from metals. Let us contrast it with the
Lorentz model of a band insulator and the Drude model for
metals with electron density n and relaxation time τ . The
ac conductivity of the Lorentz model of a band insulator
(semiconductor), represented in Fig. 3 by the red line, is

σins(�) = ω2
pτ

4π

�

� + iτ
(
ω2

0 − �2
) , (69)

where the central frequency of the band was taken to
be rather small ω0 = 3 × 1014 Hz, the relaxation time
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τ = 2 × 10−14 s and the plasma frequency ωp = 1014 Hz.
The Drude conductivity of a metal, represented by the blue
line, is obtained from this formula by taking ω0 = 0 and the
values of τ = 2 × 10−14 s and ωp = 2 × 1014 Hz. These are
compared with the real part and the imaginary part, Figs. 3(a)
and 3(b), respectively, of the Weyl semimetal, represented by
the magenta line. The number of Weyl points is NW = 8,
the UV cutoff  = π/a, a = 3 A, v = 106 m/s, and the
intrinsic dielectric constant ε = 3 (due degrees of freedom
not included in the model). At low frequencies the absorptive
part is linear, so that at dc the Weyl semimetal is insulating.
However it becomes comparable with that of (a poor) metal at
THz frequencies. The imaginary part is linear as in a metal but
with the opposite sign (capacitive like in insulator rather than
inductive).

The complex dielectric constant of the 3D semimetal is
ε = 1 + 4πiσ/� = ε′ + iε′′,

ε′(�) = 1 + NWe2

3πvh̄
log

v

�

[
1 + α

3π
log

v

�

]
,

(70)

ε′′(�) = NWe2

6vh̄

[
1 + α

(
2

3π
log

�

�
+ C

)]
,

where α = e2/εvh̄ with the renormalized (measured) value of
the Fermi velocity v. The normalization frequency is � and
C = − 5

3π
≈ −0.53.

The real part of the dielectric constant ε′ > 1 is like
that of an ordinary dielectric material with a very weak
frequency dependence, see Fig. 4(a), despite the nonzero ac
conductivity which is linear in frequency. Albeit note the loga-
rithmic divergence for small frequencies: For example at � =
100 MHz, ε′ = 16, see Fig. 4(a). The imaginary part of the
dielectric constant depends also only weakly on frequency
and is universal in that it is of order 0.2NW for Fermi velocity
v ∼ 106 m/s and intrinsic dielectric constant ε = 3.

Note also that unlike the imaginary part of the dielectric
constant that is universal (insensitive to the microscopic
details), the real part is dependent on the microscopic model
and is therefore nonuniversal. This is seen already in the
noninteracting model.

Let us compare the electric and optical properties of the pure
3D Weyl semimetal at neutrality point with the corresponding
ones in 2D. In the pure 2D Weyl semimetal at the neutrality
point (suspended undoped graphene is considered to be a good
realization of this model8) the real part of the conductivity is
finite and frequency independent in infinite samples and with
no contact work function,24 and there is no imaginary part in
the ac conductivity, at least to leading order in interactions.
The transport therefore is purely pseudodissipative. As noted
before, the situation changes rather dramatically in 3D. We
expect that problems of separation between the interband
transitions (between the valence and the conduction bands
or electron-hole pairs effects) considered in the present study
and the intraband transitions (including the Klein scattering)
due to potential barriers and mesoscopic effects are less
pronounced in 3D compared to 2D. Let us now discuss
the limitations of the model and point out some immediate
extensions.

A clean system was assumed, while disorder is expected to
be present. The effects of disorder, neglecting the interactions,

were studied in Ref. 14. There might be an interplay between
the disorder and interaction effects, but the basic physics is
expected to be unaltered unless interaction or disorder are
strong. One also can hope that, like in graphene, the importance
of disorder might be reduced compared to expectations based
on physics of ordinary “nonrelativistic” quasiparticles. The
use of an approximation like the tight-binding model of
Sec. II or even a continuum low energy Weyl model is justified
as long as the frequencies considered are much lower than the
bandwidth. As we argued in Sec. V, the tight-binding model
is rather universal, but the use of the effective massless Weyl
theory on the condensed matter scale has to be dealt with
care.

It is well known in field theory25 and in graphene that mass-
less fermions cause the absence of a perfect scale separation
between high energies (on atomic scale γ ) and low energies
(effective Weyl theory on the condensed matter scale 
 γ ).
It was demonstrated in the context of graphene20 that some
aspects of the linear response physics, including the Coulomb
interactions corrections,19 are not dominated by the Weyl
points of the Brillouin zone at which the effective low energy
model is valid. For example, large contributions (infinite, when
the size of the Brillouin zone is being considered infinite)
to the conductivity from the vicinity of the Weyl points are
canceled by contributions from the region between them.
Another famous consequence of this scale nonseparation is the
“species doubling” of lattice fermions,25 which in the context
of graphene means that there necessarily appears a pair of
Weyl points of opposite chirality. The UV regularization of
the effective theory does matter and, if one were to use such a
model, the only regularization known to date to be consistent
with the tight binding is the space dimensional regularization
developed in Ref. 17.

There are a number of quite straightforward extensions
of the leading order interaction calculation of the ac con-
ductivity performed in the present work. Converting it into
the RPA-like approximation is simple, but in addition taking
into account the finite momentum transfer is more involved
than the analogous calculations in graphene.18 This would
allow us to study the plasmons’ effects and even the strong
coupling phenomena like the exciton condensation.28 Beyond
the linear response, phenomena like the nonlinear I-V curves
due to the particle-hole (Schwinger) pair creation and relax-
ation due to their recombination studied in the context of
graphene29 also can be extended to 3D in a straightforward
fashion.

ACKNOWLEDGMENTS

We are indebted to T. Maniv, H. C. Kao, and W. B. Jian for
valuable discussions.

APPENDIX A: THE UNIVERSAL TIGHT-BINDING MODEL

1. Diagonalization of the noninteracting tight-binding model
and expression for the current

The noninteracting model is diagonalized in 3D with
the following coefficients of the Bogoliubov transformation
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Eq. (18):

uk = 1√
2εk(εk + k̂z)

(
−k̂x + ik̂y

εk + k̂z

)
,

(A1)

vk = 1√
2εk(εk + k̂z)

(
εk + k̂z

k̂x + ik̂y

)
,

where k̂ ≡ sin k and ε2
k = k̂2

x + k̂2
y + k̂2

z . Using matrix ele-
ments

u+
k σ3vk = − k̂x + ik̂y

εk

, v+
k σ3vk = −u+

k σ3uk = k̂z

εk

, (A2)

one obtains the coefficient of the electric current as

χk = (̂ky − ik̂x) cos kz

εk

, ιk = k̂z cos kz

2εk

. (A3)

2. Normal ordering of the interaction

The normal ordering is quite straightforward:

V ij =
∑
klk′l′

vklk′l′O
ij , (A4)

where the part V ij contains i creation operators a+ or b+ and
j annihilation operators a or b. The quartic terms are

O40 = −(v∗
l · uk)(v∗

l′ · uk′)a+
l a+

l′ b
+
−kb

+
−k′ = (O04)+, (A5)

O31 = (O13)+ = (v∗
l · uk)[(v∗

l′ · vk′)a+
l b+

−ka
+
l′ ak′

− (u∗
l′ · uk′)a+

l b+
−kb

+
−k′b−l′ ] + (v∗

l′ · uk′)

× [(v∗
l · vk)a+

l a+
l′ b

+
−k′ak − (u∗

l · uk)]a+
l′ b

+
−kb−lb

+
−k′ ,

(A6)

O22 = −(v∗
l′ · vk′)(v∗

l · vk)a+
l a+

l′ akak′ + (u∗
l · uk)(v∗

l′ · vk′)

× a+
l′ b

+
−kak′b−l + (u∗

l′ · uk′)(v∗
l · vk)a+

l b+
−k′akb−l′

− (u∗
l · uk)(u∗

l′ · uk′)b+
−kb

+
−k′b−lbl′ − (v∗

l · uk)(u∗
l′ · vk′)

× a+
l b+

−kak′b−l′ − (u∗
l · vk)(v∗

l′ · uk′)a+
l′ b

+
−k′akb−l .

(A7)

In principle there are three possible quadratic terms where

O20 = (O02)+ = δk−l′(v
∗
l · vk)(v∗

l′ · uk′)a+
l b+

−k′

− δl−k′ (u∗
l · uk)(v∗

l′ · uk′)a+
l′ b

+
−k.

O11 = δk−l′ (v
∗
l′ · vk′)(v∗

l · vk)a+
l ak′ + δl−k′(u∗

l · uk)(u∗
l′ · uk′)b+

−k

× b−l′ − (u∗
l · vk)(v∗

l′ · uk′)(δk−l′b
+
−k′b−l + δl−k′a+

l′ ak).

(A8)

Relations between the scalar products for unequal momenta
that appear here

(u∗
k · ul) = (v∗

k · vl)
∗, (v∗

k · ul) = −(u∗
k · vl)

∗ = −(v∗
l · uk)

(A9)

are useful in summation over momenta incorporating Eq. (24),
in particular for two equal momenta

vklk′k = 1

V vl−kδl−k′ , vkk′k′l′ = 1

V vk′−kδl′−k. (A10)

Most importantly, summing over momenta, the pair creation
term vanishes:

V 20 =
∑
kl

vl−k(−(u∗
l · vk)(v∗

k · vl)b
+
−la

+
l

+ (u∗
l · vk)(u∗

k · ul)b
+
−ka

+
k )

=
∑
kl

vl−k(u∗
l · vk)((u∗

l · uk) − (v∗
k · vl))b+

−la
+
l = 0.

(A11)

This leads to numerous simplifications.

APPENDIX B: ANGLE INTEGRALS APPEARING IN CALCULATIONS OF SELF-ENERGY AND CONDUCTIVITY

1. Self-energy

The integral over φq in Eq. (33) for the self-energy is, using∫ 2π

�=0

c + d cos �

a + b cos �
= 2π

b
[(bc − ad)/

√
a2 − b2 + d], (B1)

is

1

2π

∫ 2π

φq=0

cos θq cos θp + sin θq sin θp cos(φp − φq)

1 + r2 − 2r[cos θp cos θq + sin θp sin θq cos(φp − φq)]

= 1

2r

[
1 + r2√

(1 + r2 − 2r cos θp cos θq)2 − (2r sin θp sin θq)2
− 1

]
. (B2)

The integral over the azimuth angle for θp = 0 (our choice for the quasiparticle direction) results in

1

2π

∫ π

θq=0
sin θq

(
1 + r2

1 + r2 − 2r cos θq

− 1

)
= 1 + r2

2r2
log

(1 + r)2

(1 − r)2
− 2

r
, (B3)

leading to Eq. (34).
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2. Corrections to conductivity

First contribution to the ac conductivity, Eq. (61), involves the angle integral

I1 =
∫

φpφqθpθq

sin θp sin θq

sin2 θq[cos θq cos θp + sin θq sin θp cos(φp − φq)]

p2 + q2 − 2pq[cos θp cos θq + sin θp sin θq cos(φp − φq)]
. (B4)

Integration over φp and �φ = φp − φq using Eq. (B1) gives

I1 = 2π2

r

∫
θpθq

sin θp sin3 θq

[
1 + r2√

(1 + r2 − 2r cos θp cos θq)2 − (2r sin θp sin θq)2
− 1

]
= 2π2

r
G+(r), (B5)

where function G+ is given in Eq. (66). The two other angle integrals are done in the same way.
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