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An Efficient Method for Analyzing On-Chip Thermal Reliability
Considering Process Variations
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This work provides an efficient statistical electrothermal simulator for analyzing on-chip thermal reliability
under process variations. Using the collocation-based statistical modeling technique, first, the statistical
interpolation polynomial for on-chip temperature distribution can be obtained by performing deterministic
electrothermal simulation very few times and by utilizing polynomial interpolation. After that, the proposed
simulator not only provides the mean and standard deviation profiles of on-chip temperature distribution,
but also innovates the concept of thermal yield profile to statistically characterize the on-chip temperature
distribution more precisely, and builds an efficient technique for estimating this figure of merit. Moreover, a
mixed-mesh strategy is presented to further enhance the efficiency of the developed statistical electrothermal
simulator.

Experimental results demonstrate that (1) the developed statistical electrothermal simulator can obtain
accurate approximations with orders of magnitude speedup over the Monte Carlo method; (2) comparing
with a well-known cumulative distribution function estimation method, APEX [Li et al. 2004], the developed
statistical electrothermal simulator can achieve 215× speedup with better accuracy; (3) the developed mixed-
mesh strategy can achieve an order of magnitude faster over our baseline algorithm and still maintain an
acceptable accuracy level.
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1. INTRODUCTION

As technology scales down to the sub-90nm node, on-chip power densities increase
rapidly. Hence, power dissipation and thermal management have become important
issues of VLSI design. High on-chip temperature distribution and thermal gradients
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drastically degrade the circuit performance and design reliability, operating tempera-
tures seriously affect gate delays [Kumar and Kursun 2006], and nonuniform on-chip
temperature distribution induces timing faults [Bota et al. 2004]. Since on-chip power
consumption is proportional to operating temperatures, thermal runaway might occur
if thermal-related issues are not carefully considered in package design [Vassighi and
Sachdev 2006]. To ensure design qualities, such as performance, power consumption,
and reliability, researchers have been devoted to dealing with thermal-related issues
in physical design [Tsai et al. 2006; Liu et al. 2008]. To provide the related thermal
cost for optimization engines of physical design, several efficient deterministic thermal
simulators [Wang and Chen 2003; Huang et al. 2006; Yang et al. 2007; Huang and
Lee 2009] have been developed to predict on-chip temperature profile. However, these
thermal simulators only provide thermal information with deterministic on-chip power
consumption.

As predicted by the international technology roadmap for semiconductors (ITRS),
leakage power consumption increases dramatically and has become a dominant por-
tion of total power consumption [ITRS 2010]. Moreover, the scaling down of technology
causes physical parameter variations to be non-ignorable, and this fact leads to sub-
stantial on-chip leakage power fluctuations. As pointed out by Pang and Nikolic, 8% of
process variations can lead to about 25% of on-chip leakage power fluctuations [2009].
Therefore, physical parameter variations are essential to be considered for on-chip
power estimation techniques [Chang and Sapatnekar 2007; Shen et al. 2010b, 2010a].
Since on-chip temperature is transfered from on-chip power consumption, its distribu-
tion is impacted by process variations inducing leakage power fluctuations. However,
deterministic thermal analyzers [Wang and Chen 2003; Huang et al. 2006; Yang et al.
2007; Huang and Lee 2009], which did not take process variations into account in
their power models, are not adequate to precisely provide thermal reliability estima-
tion under process variations. Therefore, the on-chip temperature profile should be
treated statistically under process variations, and statistical thermal simulation tech-
niques are essential, especially for leakage dominated technologies [Huang et al. 2009;
Jaffari and Anis 2008].

To provide the statistical characteristics of on-chip temperature distribution, Jaffari
and Anis [2008] proposed a recursive log-normal approximation algorithm to obtain
mean and standard deviation profiles of the on-chip temperature distribution. Com-
pared with the Monte Carlo (MC) simulations, they have successfully demonstrated
its efficiency and accuracy for estimating mean and standard deviation profiles of the
temperature distribution in the macro-architectural level. Instead of constructing the
different leakage power model for each different macro/gate type, they built the differ-
ent leakage power model for each bin (grid) on a die. Since optimization engines, such
as floorplanners or placers, might disturb positions of macros or gates, their related
leakage power models need to be rebuilt after an optimization loop is executed. There-
fore, the efficiency of their approach will be degraded while casting into thermal-aware
design flows, because their approach needs to execute the time-consuming HSPICE
simulation numerous times and fit curves for reestablishing leakage power models.
In addition, their recursive log-normal approximation algorithm is restricted to the
form of their proposed leakage power models. However, the leakage power model is
getting more complicated for maintaining an acceptable accuracy level as the tech-
nology continuously scales down. To overcome the leakage power model restriction, a
statistical thermal simulation framework that has high capability of adopting complex
and accurate power models for any technology generations is required.

Besides the leakage power model issues, the figure of merit for on-chip temperature
distribution is still ambiguous if only its mean and standard deviation profiles are

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 3, Article 41, Pub. date: July 2013.



An Efficient Method for Analyzing On-Chip Thermal Reliability 41:3

reported.1 Therefore, instead of only reporting mean and standard deviation profiles,
a more precise figure of merit for the statistical characteristics of on-chip temperature
distribution should be addressed to ensure the thermal reliability or to provide the
thermal related cost for thermal-aware design engines.

In this work, a statistical simulation framework is developed for characterizing the
on-chip temperature distribution. With the aim of dealing with the restriction issues
of leakage power models, providing a more precise figure of merit for ensuring thermal
reliability and being more easily incorporated into statistical performance analysis and
design engines, technical key points and advantages of this work are summarized as
follows.

(1) Compared with the bin-based model [Jaffari and Anis 2008], a cell-based model
is adopted for characterizing leakage powers. With the precharacterizing property,
the reestablishing process of leakage power models can be avoided, while macros
or gates are exchanged by optimization engines, such as floorplanners or placers.

(2) Adopting the concept of sparse collocation-based methods, a statistical electrother-
mal simulation framework is developed to generate the statistical polynomial ex-
pression of on-chip temperature distribution. Compared with that of Jaffari and
Anis [2008], the developed framework is more flexible for complex and precise
leakage powers models.

(3) This work not only provides the mean and standard deviation profiles of on-chip
temperature distribution, but also introduces the concept of thermal yield profile to
statistically characterize the on-chip temperature distribution more precisely, and
builds an efficient estimating technique for this figure of merit.

(4) Without sacrificing the accuracy, a mixed-mesh strategy is presented and integrated
into the baseline method of our statistical electrothermal simulation engine to
further enhance its efficiency.

The rest of this article is organized as follows. Section 2 motivates the concept and
essentialness of on-chip thermal yield profile, investigates the accuracy of existing cell-
based leakage power models, and indicates that complex leakage current models are
required for maintaining acceptable accuracy level. After that, the problem formulation
and the modeling technique of device parameters are described in Section 3. Then, the
developed statistical electrothermal simulator is detailed in Section 4, and experimen-
tal results are given in Section 5. Finally, the conclusion and potential applications of
the developed simulation framework are presented in Section 6.

2. MOTIVATION ILLUSTRATIONS

2.1. Concept of On-Chip Thermal Yield Profile

Because of process variations, on-chip temperature at an arbitrary position r is a
random variable. Therefore, the deterministic thermal analysis with nominal on-chip
power profile can no longer be a good figure of merit for identifying the hotspot lo-
cation of the chip. Moreover, even if the temperature at any arbitrary position r has
been treated as a random variable, it will still be ambiguous if only the mean (μT (r))
and standard deviation (σT (r)) profiles of on-chip temperature distribution are deliv-
ered. For example, only using the mean profile of on-chip temperature distribution
as a figure of merit is very likely (about 50%) to incorrectly indicate hotspot loca-
tions. Furthermore, as both μT (r) and σT (r) are delivered, by utilizing the Chebyshev
inequality, a large temperature value will be estimated to ensure the lower bound

1Please see the interpretation stated in Section 2.1.
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Fig. 1. An example to demonstrating the gap between the temperature profile that really achieves 90%
thermal reliability and the temperature profile that satisfies the lower bound of 90% thermal reliability in
the Chebyshev inequality: (a) the temperature profile that really achieves 90% thermal reliability, T 90

Real(r);
(b) the temperature profile that satisfies the lower bound of 90% thermal reliability in the Chebyshev
inequality, T 90

Chebyshev(r).

of 90% thermal reliability, that is, T 90
Chebyshev(r) needs to be μT (r) + 3σT (r) to ensure

Prob(T (r) ≤ T 90
Chebyshev(r)) ≥ 0.9. Here, T (r) is the on-chip temperature distribution.

Since the Chebyshev inequality does not always get a tight lower bound for any
type of random variables, there will be a gap between the temperature profile, T 90

Real(r),
that really achieves 90% thermal reliability (i.e., Prob(T (r) ≤ T 90

Real(r)) = 0.9), and
T 90

Chebyshev(r).2 As shown in Figure 1, the gap between T 90
Real(r) and T 90

Chebyshev(r) can
achieve about 10◦C in our experimental results. Therefore, using the temperature
profile of the Chebyshev bound might be an immoderately conservative constraint for
thermal reliability. This undesirable phenomenon can result in immoderate guard-
banding for circuit design.

On the other hand, from the aspect of circuit design, the specifications of circuit
performance and the timing constrains of primary I/Os are usually specified in the
system-level design stage. Moreover, in the timing and thermal cooptimization pro-
cess, timing issues usually take higher priority than thermal issues. Designers try to
minimize the circuit delay and meet the temperature requirement. Therefore, in the
presence of process variations, to identify possible hotspot regions of a chip, the thermal
yield profile, T yield(r, Tspec(r)), can be defined as the probability profile of the on-chip
temperature at an arbitrary position r being at or less than a specified temperature
Tspec(r).

The thermal yield profile can identify the hotspot regions and can also quantify the
probability of a region that could be a hotspot. Therefore, it is a suitable figure of merit
for the thermal-related cost in timing-thermal cooptimization physical design stages.

2.2. Leakage Power Modeling

Leakage currents of a gate not only depend on physical device parameters and oper-
ating temperatures but also on its input patterns [Chang and Sapatnekar 2007]. To
build leakage power models, different input patterns, physical parameters, and oper-
ating temperatures are set for each gate in the cell library, and HSPICE simulation is

2For example, given a standard normal random variable x with Prob(x ≤ 1.28σx) = 0.9, however, the
Chebyshev inequality requires a larger reference value to obtain the same probability as the lower bound,
i.e., Prob(x ≤ 3σx) ≥ 0.9.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 3, Article 41, Pub. date: July 2013.



An Efficient Method for Analyzing On-Chip Thermal Reliability 41:5

Table I. Accuracy Comparison of Ig and Is with HSPICE Simulation Results for an NAND Gate

maximum average
fg(L, tox, T ) error error error > 3%

Without tox, L, t2
ox, L2

6.48% 2.70% 4.37%
temperature [Chang and Sapatnekar 2007; Shen et al. 2010b]

With L, tox, T 3.20% 0.97% 0.35%
temperature †L, tox, T , t2

ox 1.55% 0.29% 0.00%

maximum average
fs(L, tox, T ) error error error > 3%

L, tox, t2
ox, t−1

ox [Chang and Sapatnekar 2007] 347.32% 70.65% 98.27%
Without

L, tox, Ltox, L2, t2
ox, t−1

ox , Lt−1
ox , L−1toxtemperature

[Shen et al. 2010b, 2010a]
314.13% 70.52% 100.00%

L, T , tox [Yu et al. 2009] 32.23% 8.73% 76.62%
(L, tox, T ) are fully expanded to 2nd order =⇒

With L, tox, T , Ltox, toxT , T L, L2, t2
ox, T 2 10.31% 1.53% 8.47%

temperature † (L, tox, T ) are fully expanded to 3rd order =⇒
L, tox, T , Ltox, toxT , T L, L2, t2

ox, T 2, LtoxT , L2tox, 1.31% 0.19% 0.00%
t2
oxT , T 2L, L3, t3

ox, T 3

† The adoptive forms of fg and fs in this work.
Note: The second column shows the fitting components of fg and fs adopted by existing and proposed models.

performed with the industry design kit to generate data of the leakage currents. After
that, average leakage currents of the input patterns are fitted by the least squares
method. With leakage currents exponentially relating with physical parameters and
operating temperatures and using the least squares fitting method, two major leakage
currents—gate tunneling leakage current (Ig) and subthreshold leakage current (Is)—
for each gate type can be fitted [Chang and Sapatnekar 2007; Shen et al. 2010a, 2010b;
Yu et al. 2009].

Ig(L, tox, T ) = a0 exp( fg(L, tox, T )), (1)
Is(L, tox, T ) = b0 exp( fs(L, tox, T )). (2)

Here, a0 and b0 are fitting constants, L is the channel length, tox is the oxide thickness,
T is the operating temperature, and fg(·) and fs(·) are specific fitting forms.3

Basically, Ig occurs in both on and off states, and Is is the off-state leakage mechanism.
Therefore, the leakage power of a gate can be represented as follows [Chang and
Sapatnekar 2007; Shen et al. 2010a, 2010b; Yu et al. 2009].

Pleak(L, tox, T ) = VddIg + (1 − Sw)VddIs, (3)

where Vdd is the supply voltage and Sw is the switching activity.
To adopt suitable leakage power models, different cell-based leakage current models

are investigated [Chang and Sapatnekar 2007; Shen et al. 2010a, 2010b; Yu et al.
2009]. To examine their accuracy, we have implemented their proposed models and
compared their results with that of HSPICE simulation under TSMC 65nm design kit.
Since leakage currents are temperature-dependent, simulation results show that the
ignorance of temperature effect in the models [Chang and Sapatnekar 2007; Shen et al.
2010b, 2010a] leads to considerable errors. As shown in the second row of Table I, the

3Variations of the device channel length and oxide thickness are considered in this work, since leakage power
is more sensitive to these parameters [Chang and Sapatnekar 2007; Shen et al. 2010a, 2010b]. It should
be noted that although only these two parameters are considered, the developed framework can be easily
extended to include any other process variation types, such as the channel dopant variation.
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Table II. Error of Leakage Current Models Proposed by [Jaffari and Anis
2008] for an NAND Gate under 65nm Technology Node

Leakage Current maximum error average error error > 3%
Subthreshold 35.53% 9.82% 79.34%

Gate Tunneling 4.51% 1.07% 6.32%

model adopted by Chang and Sapatnekar [2007] and Shen et al. [2010b] can provide
acceptable accuracy for the gate tunneling leakage current because of its insensitivity to
operating temperatures. However, since the subthreshold leakage current is sensitive
to operating temperatures, as shown in the sixth and seventh rows of Table I, the
models [Chang and Sapatnekar 2007; Shen et al. 2010a, 2010b] are not adequate for
preserving the accuracy.

To simultaneously take temperatures and process variations into account, Yu et
al. proposed a first-order exponential model, b0 exp(b1L + b2tox + b3T ), for the sub-
threshold leakage current [2009]. Their model can provide accurate results for the
90nm technology node. However, since the variability of subthreshold leakage current,
because of operating temperatures and physical device parameters, will increase for
more advanced technologies, considerable errors occur for simulation results under the
65nm technology node, as shown in the eighth row of Table I. To improve the accuracy
for modeling leakage currents, the orders of fitting components for fg(L, tox, T ) and
fs(L, tox, T ) shown in Eqs. (1) and (2) are increased. As shown in the fourth and tenth
rows of Table I, compared with some models [Chang and Sapatnekar 2007; Shen et al.
2010a, 2010b; Yu et al. 2009], our models can present accurate results for both gate
tunneling and subthreshold leakage currents. As demonstrating by the test results,
exquisite approaches are still required for modern statistical power analyzers [Chang
and Sapatnekar 2007; Shen et al. 2010a, 2010b] to refine the estimated result, while
the temperature-dependent leakage power model is included.

Besides the cell-based leakage current models [Chang and Sapatnekar 2007; Shen
et al. 2010a, 2010b; Yu et al. 2009], Jaffari and Anis proposed a bin (grid)-based leak-
age power model that also simultaneously contains temperature and process variation
effects [2008]. Adopting the bin (grid)-based leakage power model, Haghdad and Anis
developed a power yield analysis engine that simultaneously considers temperature
and process variation effects [2012]. However, the power dissipation of several bins
might be changed because of disturbing macros/cells after each optimization itera-
tion of thermal-aware design engines, such as floorplanners or placers. Therefore, the
time-consuming HSPICE simulation and least-squares fitting process need to be re-
performed for rebuilding leakage power models of the disturbed bins (grids). This will
degrade its efficiency of providing thermal reliability information or thermal-related
cost for thermal-aware design engines. We have implemented their leakage power mod-
els for examining the accuracy. With the fitting forms adopted in Jaffari and Anis [2008]
and Haghdad and Anis [2012], both subthreshold and gate tunneling leakage currents
of each gate type in the cell library are fitted as a0(1+a1T +a2T 2) exp (a3L + a4tox). The
fitting results are also compared with those of HSPICE simulations under the TSMC
65nm model card, and listed in Table II. The results show that their adopted leakage
power models present considerable errors under the 65nm technology node, although
adequate accuracy of these models for the 90nm technology node has been reported
[Jaffari and Anis 2008]. As shown in Table II, their adopted leakage power models
result in the maximum error being 35.53% and the average error being 9.82% for the
subthreshold leakage current of an NAND gate under the 65nm technology node.

Demonstrating results, more accurate leakage power models should be adopted in
the electrothermal analysis frameworks [Jaffari and Anis 2008; Haghdad and Anis
2012] to refine the estimated results, since the temperature is transferred from power
consumption. Although the electrothermal analysis frameworks proposed [Jaffari and
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Fig. 2. Compact thermal model of physical design stages.

Anis 2008; Haghdad and Anis 2012] can be very efficient, their baseline tempera-
ture calculation frameworks require exquisite extending strategies, because their log-
normal temperature approximation algorithm can not be applied to the leakage power
models that are not expressed as log-normal random variables, that is, the first-order
regression models for fg(L, tox, T ) and fs(L, tox, T ) in Eqs. (1) and (2) are not sufficient
for the accuracy.

Compared with the framework in Jaffari and Anis [2008] and Haghdad and Anis
[2012], our proposed thermal reliability estimator can handle accurate and more com-
plicated leakage power models and present accurate estimated results.

3. PROBLEM FORMULATION AND PHYSICAL PARAMETER MODELING

3.1. Problem Formulation

The compact thermal model for physical design stages is shown in Figure 2 [Wang and
Chen 2003; Huang et al. 2006; Yang et al. 2007; Huang and Lee 2009]. It consists of
three portions. The primary heat flow path is composed of the thermal interface mate-
rial, heat spreader, and heat sink. The secondary heat flow path contains interconnect
layers, I/O pads, and the print circuit board. Functional blocks of the die are modeled
as many power-generating sources attached to a thin layer close to the top surface
of the die with the thickness being equal to the junction depth of device [Lallement
et al. 2004]. Due to variations of physical parameters, the power consumption of func-
tional blocks is treated statistically. Therefore, the profile of power generating sources,
p(r, L, tox, T ), shown in Figure 2 is modeled as a function of device channel length L,
oxide thickness tox, and on-chip temperature distribution T .

Combining the compact thermal model and the statistical power consumption of
functional blocks, the on-chip temperature distribution T (r, L, tox) can be governed by
the statistical steady state heat transfer equation.4

∇ · (κ(r, T )∇T (r, L, tox)) = −p(r, L, tox, T ), (4)

4Since the time constant of heat conduction is much larger than the clock period of the circuit [Wang
and Chen 2003; Skadron et al. 2004], steady-state characteristics of the on-chip temperature distribution
are more concerned in thermal-aware physical design engines [Han and Koren 2007; Chakraborty et al.
2008; Tsai et al. 2006]. The scope of this article is to provide a simulation framework for thermal-aware
physical design engines, although temporary characteristics of the on-chip temperature distribution are also
important for the post-floorplanning or placement real-time task scheduling or workload assignment [Reda
et al. 2011].
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Fig. 3. An iterative scheme for computing the appropriate thermal conductivity and approximated average
of steady-state nominal temperature values. Tnom is the average of on-chip mean temperature values, and
Pnom is the total nominal power consumption after executing an iteration. With nominal values of the
physical device parameters and Tnom, Pnom can be obtained by summing up the power values of all gates in
the design.

subject to the boundary condition

κ(rbs , T )
∂T (rbs , L, tox)

∂ �nbs

+ hbs T (rbs , L, tox) = fbs (rbs ). (5)

Here, r = (x, y, z) ∈ D, D = (0, Lx) × (0, Ly) × (−Lz, 0) is the domain of die, Lx and Ly
are the lateral sizes of die, Lz is the thickness of die, κ(r, T ) is the thermal conductivity
(W/m · ◦C) of die, and ∇ is a diverge operator. bs is any specific boundary surfaces
of the die, rbs is the position on bs, hbs is the heat transfer coefficient on bs, fbs (rbs )
is the heat flux function on bs, and ∂/∂ �nbs is the differentiation along the outward
direction which is normalized to bs. p(r, L, tox, T ) is the power density profile that
consists of the deterministic dynamic power density profile pd(r), the statistical gate
tunneling leakage power density profile pg(r, L, tox, T ), and the statistical subthreshold
leakage power density profile ps(r, L, tox, T ). Since the major part of device current
flows through the channel, power density distribution has its value only when r ∈
(0, Lx) × (0, Ly) × (− jd, 0). Here, jd is the junction depth of device [Lallement et al.
2004].

Generally, the values of κ(r, T ) are temperature dependent. In practice, they can
be treated as appropriate constant values while performing temperature-aware phys-
ical design procedures [Tsai et al. 2006]. Given nominal values of the physical device
parameters, the appropriate thermal conductivity can be computed by using the ap-
proximated average of steady-state nominal temperatures calculated by an iterative
computation scheme shown in Figure 3.

With the appropriate thermal conductivity, the statistical steady-state heat transfer
equation can be rewritten as

κ∇2T (r, L, tox) = −p(r, L, tox, T ), (6)

subject to the boundary condition

κ
∂T (rbs , L, tox)

∂ �nbs

+ hbs T (rbs , L, tox) = fbs (rbs ), (7)
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where κ is the thermal conductivity of the die that is obtained by utilizing the procedure
presented in Figure 3.

With Eqs. (6) and (7), the goals of this work are to estimate the mean profile, the stan-
dard deviation profile, and the thermal yield profile of on-chip temperature distribution.

3.2. Physical Parameter Modeling

Generally, variations of physical parameters can be classified into two categories, die-
to-die (D2D) variations and within-die (WID) variations. Due to different stages of
the fabrication process, D2D and WID variations can be treated as two independent
variation sources. Since D2D variations are smooth within a die, it is reasonable to
model all devices having the same D2D variation. On the other hand, WID variations
present considerable gradients within a die, and they are spatially correlated because
spatial imperfection of the chemical-mechanical polishing and lithography processes.
As indicated by the measured results of Cline et al. [2006] and Cheng et al. [2011],
distributions of the physical parameters are similar to those of the Gaussian random
variables; generally, WID variations are assumed to be a correlated Gaussian ran-
dom process, and D2D variations are treated as a Gaussian random variable for all
devices [Bhardwaj et al. 2008; Chang and Sapatnekar 2007; Shen et al. 2010a, 2010b].

Combining the models of D2D and WID variations, the physical parameter Par(rxy)
with its nominal value μPar(rxy) at position rxy = (x, y) ∈ (0, Lx) × (0, Ly) can be repre-
sented as

Par(rxy) = μPar(rxy) + δW ID(rxy) + δD2D, (8)

where δW ID(rxy) is a Gaussian random process of WID variations, and δD2D is a Gaussian
random variable of D2D variations.

Since the spatial correlation of δW ID(rxy) has different decreasing rates in the
x-direction and y-direction [Cline et al. 2006], the following spatial covariance function
[Bhardwaj et al. 2008] is adopted for modeling the spatial correlation of δW ID(rxy).5

C(rx1 y1 , rx2 y2 ) = σ 2 exp
(

−|x1 − x2|
λx

− |y1 − y2|
λy

)
, (9)

where rx1 y1 = (x1, y1) and rx1 y2 = (x2, y2), λx and λy are correlation lengths of δW ID in
the x- and y-directions, respectively, and σ is the standard deviation of δW ID(rxy).

In this work, the Karhunen-Loève (KL) expansion is utilized to simplify δW ID(rxy),
since its number of transformed random variables is much smaller than that of princi-
pal component analysis (PCA) [Bhardwaj et al. 2008]. By applying the KL expansion,
δW ID(rxy) with the spatial covariance function shown in Eq. (9) can be approximated as

δW ID(rxy) ≈
NPar∑
l=1

√
χ lϑl(rxy)ζl. (10)

Here, NPar is the truncation number, each (χl, ϑl(rxy)) is an eigen-pair of C(rx1 y1 , rx2 y2 ),
and ζl ’s are independent standard normal random variables.

5Although this specific spatial covariance function is adopted, the Karhunen-Loève expansion of a Gaussian
random process with an arbitrary spatial covariance function can be efficiently obtained by a finite-element
method [Schwab and Todor 2006]. Hence, more advanced spatial covariance functions [Gao et al. 2011; Liu
2007; Cheng et al. 2011] can also be incorporated into our framework.
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The closed-form expressions of an eigen-pair (χl, ϑl(rxy)) for C(rx1 y1 , rx2 y2 ) shown in
Eq. (9) can be derived as follows [Zhang and Lu 2004].

χl = 4σ 2λxλy(
λ2

xν
2
x,i + 1

)(
λ2

yν
2
y, j + 1

) , (11)

ϑl(rxy) = ϑx,i(x)ϑy, j(y), (12)

where l, i, and j are indices, and the mapping between (i, j) and l is one to one.
ϑx,i(x) and ϑy, j(y) are equal to

ϑx,i(x) = λxνx,i cos(νx,ix) + sin(νx,ix)√(
λ2

xν
2
x,i + 1

)
Lx/2 + λx

, (13)

ϑy, j(y) = λyνy, j cos(νy, j y) + sin(νy, j y)√(
λ2

yν
2
y, j + 1

)
Ly/2 + λy

. (14)

Here, νx,i and νy, j are positive values that satisfy

(λ2ν2 − 1) sin(νγ ) = 2λν cos(νγ ), (15)

with (ν = νx,i, γ = Lx, λ = λx) and (ν = νy, j, γ = Ly, λ = λy), respectively.
To get reasonable truncation numbers of KL expansions for the physical parameters

L and tox, in this work, NPar for Par = L or Par = tox is decided by the following
criterion.

χNPar+1∑NPar+1
i=1 χi

≤ ε, (16)

with ε = 1%.
Generally, devices located adjacently have similar physical characteristics [Chang

and Sapatnekar 2007; Shen et al. 2010b, 2010a]. Therefore, the active layer is par-
titioned into several rectangular grids for modeling physical parameters. After that,
with the KL expansion, the device channel length Lm and oxide thickness toxm in the
mth modeling grid can be approximated as

Lm = μLm + gT
Lm

ηL, (17)

toxm = μtoxm + gT
toxm

ηtox
. (18)

Here, μLm and μtoxm are nominal values of Lm and toxm, respectively. gLm
and gtoxm

are coefficient vectors for ηL and ηtox
, respectively. ηL = [ηL1, . . . , ηLNL

]T and ηtox
=

[ηtox1 , . . . , ηtox Ntox
]T are standard normal random vectors constituted by the KL expanded

WID and D2D random variables for representing the device channel length and the
oxide thickness in all modeling grids, respectively.

In the rest of this article, ξ is employed to represent [ηL1 , . . . , ηLNL
, ηtox1 , . . . , ηtox Ntox

]T

for the sake of notation simplicity.

4. STATISTICAL ELECTRO-THERMAL SIMULATOR

The executing flow of the proposed statistical electrothermal simulator is summa-
rized in Figure 4. Given the information of physical parameters, the KL expansion is
performed to transform the spatial correlated physical parameters into a set of uncor-
related random variables. Then, the statistical polynomial expression of the on-chip
temperature distribution is generated by the developed stochastic collocation-based
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Fig. 4. Flow of the developed statistical electrothermal simulator.

statistical interpolation polynomial generator. After that, the on-chip thermal yield
profile is estimated by the developed thermal yield profile estimation engine.

The stochastic collocation-based statistical interpolation polynomial generator, the
thermal yield profile estimation engine, and a mixed-mesh strategy for enhancing the
statistical electrothermal simulator will be described in the following three sections.

4.1. Stochastic Collocation-Based Statistical Interpolation Polynomial Generator

The generator takes three steps to construct the statistical interpolation polynomial
of the on-chip temperature distribution. First, the multidimensional sampling points
of KL expanded random variables are generated by using the Smolyak sparse grid
formula with sampling points being the roots of Hermite polynomials (HPs). Then, for
each sampling point of the physical parameters, its corresponding temperature profile
can be obtained by solving the corresponding deterministic heat transfer equation.
Finally, the approximated expression of on-chip temperature distribution is built by
utilizing Newton’s interpolation polynomial formula. The details are presented in the
rest of this section.

4.1.1. Smolyak Sparse Grid Generation. The primary advantage of Smolyak sparse grid
formulation is to construct an interpolating polynomial for approximating a multi-
variate function u ∈ Cr by using much fewer samples of the desired function than
those of the full tensor product interpolation formula and the MC method but still to
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Sampling Points of 
Monte Carlo

Sampling Points of 
Smolyak Sparse Grid

ξ1

ξ2

ξ1

ξ2

Fig. 5. The number of sampling random variables comparison between the Monte Carlo method and the
Smolyak sparse grid formulation. Here, the samples of Smolyak sparse grid are adopted for achieving a
level-two approximation.

maintain an acceptable error bound [Smolyak 1963; Barthelmann et al. 2000]. Here,
Cr is the set of all functions that have continuous derivatives of all orders up to r. With
this stochastic collocation technique, the statistical interpolation polynomial of on-chip
temperature distribution can be efficiently constructed.

The MC method randomly generates samples of the random variables and hence
requires a large number of samples for achieving an accurate estimate. In contrast, the
Smolyak sparse grid technique uses the roots of HPs or the extrema of the Chebyshev
polynomial [Barthelmann et al. 2000] to generate samples of the random variables
and employs these fewer samples to effectively interpolate the desired solution. For
example, Figure 5 illustrates that the number of possible sample points of the MC
method is much larger than that of the Smolyak sparse grid formulation for a two-
dimensional random variable.

According to the Smolyak sparse grid formulation [Smolyak 1963], on-chip tempera-
ture distribution can be explicitly approximated as follows [Barthelmann et al. 2000].

T̂ NKL
q (r, ξ ) =

∑
q−NKL+1≤|i|≤q

(−1)q−|i|
(

NKL − 1
q − |i|

)(
Qi1 (T ) ⊗ · · · ⊗ Qin(T ) ⊗ · · · ⊗ QiNKL (T )

)
. (19)

Here, NKL = Ntox + NL is the number of random variables in ξ , q = NKL + l, l ≥ 1 is
the formulation level, and |i| = ∑NKL

n=1 in, with each in ≥ 1. Qin(T ) is an interpolating
polynomial of T (r, ξ ) by only utilizing a single random variable ξn, in is the index to
decide the sample number (min) for Qin(T ), and ⊗ is the cross product operator for
functions. As suggested by Barthelmann et al. [2000], min=1 is set to 1, and min is equal
to 2in−1 + 1 for in > 1. From Eq. (19), only the corresponding temperature values of
a small set of samples for ξ need to be known [Barthelmann et al. 2000]. This set is
called the sparse grid and can be represented as

H(q, NKL) =
⋃

q−NKL+1≤|i|≤q

(
h̄i1 × · · · ×h̄in × · · · ×h̄iNKL

)
, (20)

where h̄in = {ξ1
n , . . . , ξ

min
n } is the set of sample points used by Qin(T ), and × is the cross

product operator for sets.
The number of sample points from the Smolyak sparse grid formulation is in the

order of O
(
Nl

KL/l!
)
, and the runtime complexity for obtaining T̂ NKL

q (r, ξ ) is in the order
of tdet · O(Nl

KL/l!). Here, tdet is the runtime complexity for performing the deterministic
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electrothermal simulation once. The Smolyak sparse grid formulation ensures a error

bound, cNKL,r ·(log NH)(r+1)(NKL−1)

Nr
H

, for the function having bounded derivatives up to order
r [Barthelmann et al. 2000]. Here, NH is the number of sample points in H(q, NKL),
and cNKL,r is a constant that depends on NKL and r. According to our experience, the
accurate estimation of the thermal yield profile can be obtained by setting level l to
be 1. The number of sample points for the Smolyak sparse grid formulation can be
much less than that of the MC method. A simple example is presented in Appendix A
to illustrate the Smolyak sparse grid formulation.

The sampling values of h̄in for each in must be properly decided. Adopting the roots
of H-PCs with its order corresponding to each in can achieve the most accurate result,
as ξ is a normal random vector [Phillips 2003]. Choosing the extrema of the Chebyshev
polynomial with its order corresponding to in can achieve the nested sparse grid struc-
ture, that is, h̄in= j ⊂ h̄in=k as j < k, and the acceptable accuracy [Barthelmann et al.
2000]. In this work, we select the roots of H-PCs as the sampling values, since the re-
sult is shown to be very accurate by using the low-level approximation, and the nested
sparse grid structure is still preserved for q = NKL + 1.6

4.1.2. Deterministic Electrothermal Solver: Temperature Profile Calculation for a Given Sample
Point. After constructing the sparse grid H(q, NKL) of ξ , the samples of channel length
and oxide thickness in the mth modeling grid corresponding to the jth sampling vector
ξ j in H(q, NKL) can be calculated by Eqs. (17) and (18), respectively, and the determin-
istic power density profile corresponding to ξ j can also be obtained. Hence, we have the
deterministic steady-state heat transfer equation as

κ∇2T (r, ξ j) = −p(r, ξ j, T ), (21)

subject to the boundary condition

κ
∂T (rbs , ξ

j)
∂ �nbs

+ hbs T (rbs , ξ
j) = fbs (rbs ). (22)

Here, T (r, ξ j) and p(r, ξ j, T ) are the deterministic temperature and power density
profiles with the sampling point ξ j , respectively. Since the power density profile in
Eq. (21) is temperature dependent, a deterministic electrothermal solver is summarized
in Figure 6 and built to obtain each T (r, ξ j).

The implementation of the developed deterministic electrothermal solver is illus-
trated in Figure 7. The accumulated area of each gate type in each simulating tem-
perature grid can be precalculated and stored in the precalculation stage. With this
precalculated data, the deterministic power density profile for each sampling point in
H(q, NKL) can be obtained and updated in the order of O(Nx NyNtype) during the elec-
trothermal simulation loop. Here, Nx and Ny are the division numbers of the simulation
grid along x− and y−directions, respectively, and Ntype is the number of gate types for
the given design. Generally, Ntype is determined by the specific cell library, and it is far
less than the number of simulation grids, Nx Ny. After obtaining or updating the deter-
ministic power density profile, an efficient deterministic thermal simulator [Huang and
Lee 2009] is adopted to solve the deterministic heat transfer equation. These updating
and solving procedures are repeated until the result is converged.

6If high-order approximation is needed for the accuracy, we suggest using the extrema of the Chebyshev
polynomial because the nested sparse grid structure is always preserved. Hence, the number of sample
points can be smaller.
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Fig. 6. Deterministic electrothermal solver for each sampling point (ξ j ) in the sparse grid. pleak, pd, and p
are the leakage, dynamic, and total power density profiles for each sampling point, respectively.

Placement of Gates

Pre-calculation Stage Post-calculation Stage

Simulation Grids 

…
…

Accumulate the 
area of each gate 
type in a grid 

…
Obtain Power Profile

Obtain Temperature Profile

Power consumption in a grid 
is got by summing all 
products of the accumulated 
area of each gate type and its 
power density with the 
updated temperature and 
process parameters of 
sampling point

Temperature in a grid is 
calculated by an efficient  
generalized integral 
transform based analytical 
thermal simulator that can 
analyze one-million-grid 
temperature profile within 
0.13 second   

…
…

Electro-thermal Loop

Fig. 7. Implementation of solving the deterministic heat transfer equation.

4.1.3. Temperature Profile Construction by Using Polynomial Interpolation. With each obtained
T (r, ξ j), the polynomial interpolation technique can be applied to construct the in-
terpolating polynomial for the statistical temperature. As suggested by Barthelmann
et al. [2000], the Lagrange polynomial can be applied to construct the interpolating
polynomial Qi1 (T ) ⊗ · · · ⊗ QiNKL (T ) for each different |i|. However, the suggested inter-
polation method requires performing the cross-product operation of functions; this can
be slightly complicated for the implementation. Therefore, we adopt Newton’s inter-
polating method to globally interpolate T (r, ξ ), because it can be implemented more
easily and can interpolate the same polynomial as Barthelmann’s method [Phillips
2003]. Therefore, the Smolyak’s error bound can still be preserved.
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Fig. 8. Stochastic collocation-based statistical interpolation polynomial generation algorithm.

With Newton’s interpolation formula, the on-chip temperature at an arbitrary posi-
tion r∗ of the die can be approximated as

T̂ (r∗, ξ ) =
NH−1∑

j=0

ûj(r∗)φ j(ξ ). (23)

Here, each φ j(ξ ) is a fundamental polynomial with respect to the jth sampling vector
ξ j , and the form of each φ j(ξ ) can be found in Phillips [2003]. NH is the number of
sampling vectors in the sparse grid H(q, NKL). Each ûj(r∗) is an unknown coefficient
that needs to be determined.

Based on the basic idea of interpolation that the approximated function must match
each known data, the interpolated polynomial in Eq. (23) satisfies the following equa-
tion for each ξn.

NH−1∑
j=0

ûj(r∗)φ j(ξn) = T (r∗, ξn). (24)

With the property of fundamental polynomial described in [Phillips 2003], Eq. (24) can
be rewritten as the matrix form for finding each ûj(r∗) at position r∗.⎡⎢⎢⎢⎢⎣

φ0(ξ0) 0 · · · 0
φ0(ξ1) φ1(ξ1) · · · 0

...
...

. . .
...

φ0(ξ NH−1) φ1(ξ NH−1) · · · φNH−1(ξ NH−1)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

û0(r∗)
û1(r∗)

...
ûNH−1(r∗)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
T (r∗, ξ0)
T (r∗, ξ1)

...
T (r∗, ξ NH−1)

⎤⎥⎥⎥⎥⎦ (25)

Each ûj(r∗) can be calculated by using the forward substitution.
The algorithm for generating the statistical interpolation polynomial of on-chip tem-

perature distribution is shown in Figure 8.

4.2. Thermal Yield Profile Estimation Engine

With the generated statistical interpolation polynomial of on-chip temperature distri-
bution, the mean, standard deviation, and skewness profiles of on-chip temperature
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distribution are computed. After that, the temperature at each arbitrary position is
approximated to be a corresponding skew normal random variable by the moment
matching technique. Finally, the on-chip thermal yield profile is estimated by looking
up the cumulative distribution function (CDF) table of those corresponding skew nor-
mal random variables. The detailed description of this thermal yield profile estimation
engine is shown next.

As mentioned in Section 2.1, the on-chip thermal yield profile at an arbitrary position
r∗ of the die can be defined as

T yield(r∗, Tspec(r∗)) def= Prob(T (r∗, ξ ) ≤ Tspec(r∗)). (26)

With the definition given in Eq. (26), our target is to approximate the CDF of T (r∗, ξ ).
To obtain the approximated expression of T (r∗, ξ ), the formulation level l is set as 1
for generating the sparse grid H(q, NKL) with q = NKL + l in Eq. (20). Then, applying
Newton’s interpolating method, the approximated expression of T (r∗, ξ ), shown in
Eq. (23), can be rewritten as7

T̂ (r∗, ξ ) =
NKL∑
k=1

(
âk(r∗)ξ2

k + b̂k(r∗)ξk

)
+ ĉ(r∗), (27)

where âk(r∗), b̂k(r∗), and ĉ(r∗) are the coefficients and can be obtained by performing
the algorithm shown in Figure 8.

After several manipulations, Eq. (27) can be rewritten as

T̂ (r∗, ξ ) =
NKL∑
k=1

âk(r∗)χk(r∗, ξk) + c̃(r∗). (28)

Here, each χk(r∗, ξk) = (ξk+ b̂k(r∗)
2âk(r∗) )

2 is a non-central chi-square random variable, because

ξk is a normal random variable, c̃(r∗) = ĉ(r∗) −∑NKL
k=1

b̂2
k(r∗)

4âk(r∗) is a constant, and χk(r∗, ξk)’s
are independent because ξk’s are independent. Therefore, T̂ (r∗, ξ ) is a weighted sum of
independent non-central chi-square random variables.

The estimation of Eq. (26) can be done by calculating the CDF of T̂ (r∗, ξ ) represented
in Eq. (28). Since ξ is an independent normal random vector, theoretically, the PDF
of T̂ (r∗, ξ ) could be obtained by convolving the PDFs of χk(r∗, ξk)’s. However, it is not
practical because of numerous numerical convolutions. The moment matching-based
CDF estimation techniques are another choice for efficiently approximating the CDF
of T̂ (r∗, ξ ). APEX [Li et al. 2004], a state-of-the-art method, approximates the CDF of
a random variable with the similar form of Eq. (27) by linearly combining exponential
waveforms and can achieve an arbitrarily required matching order of statistical mo-
ments. Padé approximation is essential during performing APEX, although it cannot
guarantee being stable for obtaining poles/zeros, even in the low-order approximation.
To remedy this unstable issue, the technique proposed by Tutuianu et al. [1996] can be
adopted to obtain the first two dominated pole/zero pairs for APEX. However, the first
two dominated pole/zero pairs only can construct an approximated CDF of T̂ (r∗, ξ ) that

7To get a more accurate approximated expression of T (r∗, ξ ), one can set the formulation level l as 2 to capture
the cross-product terms of ξk’s in the second-order polynomial approximation. As shown in Appendix C,
with cross-product terms of ξk’s, the second-order polynomial approximated expression of T (r∗, ξ ) can be
transformed to the form that is consistent with Eq. (27). Therefore, the proposed thermal yield profile
estimation engine can be extended to the second-order polynomial approximation that has cross-product
terms of ξk’s.
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Fig. 9. Sketch of PDF for the weighted sum of two independent non-central chi-square random variables.
Case 1: the convolution result of two right-skewed distributions or two left-skewed distributions. Case 2: the
convolution result of one left-skewed distribution and one right-skewed distribution.

matches up to the first two statistical moments. Refer to Li et al. [2004] and Tutuianu
et al. [1996] for the details of APEX and the stable two-pole technique, respectively.

Here, we are going to develop a moment matching-based technique to match the
statistical moments of T̂ (r∗, ξ ) up to the third order for approximating the CDF of
T̂ (r∗, ξ ). The basic idea of this approach is to approximate a random variable with a
unimodal and skewed PDF by matching its mean, variance, and skewness to be a skew-
normal random variable. To explain the unimodal PDF property of T̂ (r∗, ξ ), the sketches
of PDFs corresponding to two different cases for the weighted sum of two independent
non-central chi-square random variables are shown in Figure 9. Case 1 shows the
convolution result of two right-skewed distributions or two left-skewed distributions,
and Case 2 presents the convolution result of one left-skewed distribution and one right-
skewed distribution. Although, depending on the leading coefficients, the skewness of
resulting random variables might increase or decrease, both resulting random variables
have unimodal PDFs. Since T̂ (r∗, ξ ) is the weighted sum of independent non-central
chi-square random variables, its PDF can be obtained by performing the convolution
of two random variables successively. Therefore, it still has a unimodal PDF.

As indicated in Azzalini [2005], the skew-normal random variable is suitable for
approximating the random variable with unimodal and skewed PDF. Hence, the skew-
normal random variable can be a suitable model for approximating T̂ (r∗, ξ ).

From the representation of Eq. (28), the thermal yield at an arbitrary location r∗ can
be approximated as

T yield
(
r∗, Tspec(r∗)

) ≈ Prob
(
T̂ (r∗, ξ ) ≤ Tspec(r∗)

)
= Prob

(
�T̂ (r∗, ξ ) ≤ ρT̂ (r∗)

)
, (29)

where ρT̂ (r∗) = Tspec(r∗)−μT̂ (r∗)
σT̂ (r∗) , and �T̂ (r∗, ξ ) = T̂ (r∗,ξ )−μT̂ (r∗)

σT̂ (r∗) . μT̂ (r∗) and σT̂ (r∗) are the

mean and the standard deviation of T̂ (r∗, ξ ), respectively; they can be computed in the
order of O(NKL), since χk(r∗, ξk)’s are independent.

To approximate �T̂ (r∗, ξ ) to be a skew-normal random variable, Z ∼ SN(υr∗ , ωr∗ , αr∗ ),
the parameters υr∗ , ωr∗ , and αr∗ [Azzalini 2005] need to be calculated. The first three
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moments of Z can be formulated as follows with these parameters.

E{Z} = υr∗ + ωr∗δr∗ , (30)
Var{Z} = ω2

r∗
(
1 − δ2

r∗
)
, (31)

Skew{Z} = 4 − π

2
δ3

r∗√(
1 − δ2

r∗
)3

, (32)

where

δr∗ =
√

2
π

αr∗√
1 + α2

r∗

. (33)

After matching the first three moments of �T̂ (r∗, ξ ) with Eqs. (30)–(32), we have

υr∗ = −ωr∗δr∗ , (34)

ωr∗ =
√

1
1 − δ2

r∗
, (35)

αr∗ =
√

π

2
δr∗√

1 − π
2 δ2

r∗

, (36)

where

δr∗ =

√√√√√ γ
2
3

�T̂
(r∗)( 4−π

2

) 2
3 + γ

2
3

�T̂
(r∗)

. (37)

Here, γ�T̂ (r∗) is the skewness of �T̂ (r∗, ξ ), and the sign of δr∗ is the same as the sign
of γ�T̂ (r∗).8

To obtain γ�T̂ (r∗), E{�T̂ 3(r∗, ξ )} is needed and can be calculated as

E{�T̂ 3(r∗, ξ )} = E{T̂ 3(r∗, ξ )} − 3σ 2
T̂

(r∗)μT̂ (r∗) − μ3
T̂

(r∗)

σ 3
T̂

(r∗)
, (38)

where μT̂ (r∗) and σT̂ (r∗) are the mean and standard deviation of T̂ (r∗, ξ ), respectively.
As shown in Eq. (38), E{T̂ 3(r∗, ξ )} is needed. However, the computational complexity

of obtaining its value is O(N3
KL) if the expression of T̂ (r∗, ξ ) shown in Eq. (28) is directly

used. To reduce the complexity, T̂ (r∗, ξ ) can be rewritten as

T̂ (r∗, ξ ) =
NKL∑
k=1

âk(r∗)χ̂k(r∗, ξk) + d̂(r∗), (39)

8Theoretically, the skew-normal random variable has an upper-bound skewness that can be achieved. In
Appendix B, we examine the preceding stability issue, and address a method that can stably achieve the
more higher-order approximation if more accurate approximation is required.
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where χ̂k(r∗, ξk) = χk(r∗, ξk) − μχk(r∗), d̂(r∗) = c̃(r∗) − ∑NKL
k=1 âk(r∗)μχk(r∗), and μχk(r∗) =

E{χk(r∗, ξk)}. Since χ̂k(r∗, ξk)’s have zero mean and are independent, we have

E

⎧⎨⎩
(

NKL∑
k=1

âk(r∗)χ̂k(r∗, ξk)

)i
⎫⎬⎭ =

NKL∑
k=1

âi
k(r∗)E

{
χ̂ i

k(r∗, ξk)
}
, (40)

for i = 1, 2, and 3.
Therefore, E{T̂ 3(r∗, ξ )} can be obtained in the order of O(NKL), and the computational

complexity of evaluating E{�T̂ 3(r∗, ξ )} is also O(NKL).
With υr∗ , ωr∗ , and αr∗ , T yield(r∗, Tspec(r∗)) can be estimated by the CDF of the matched

skew-normal random variable. Finally, we have

T yield(r∗, Tspec(r∗)) ≈ �(βr∗ ) − 2TOwen (βr∗ , αr∗ ) . (41)

Here, �(·) is the CDF of the standard normal random variable, TOwen(·) is Owen’s
T function [Azzalini 2005], and βr∗ = ρT̂ (r∗)−υr∗

ωr∗ .
With Eqs. (34)–(36) and Eq. (41), T yield(r∗, Tspec(r∗)) can be efficiently evaluated by

the lookup table method.

4.3. Mixed-Mesh Strategy for Enhancing the Statistical Electrothermal Simulator

As stated in Section 4.1.3, the deterministic electrothermal solver presented in Figure 6
needs to be executed NH times to generate the statistical interpolation polynomial of
on-chip temperature distribution shown in Eq. (23) with the level-1 Smolyak sparse
grid formula. Hence, although the developed thermal yield profile estimation engine
can be done efficiently, the total runtime for obtaining the thermal yield profile is still
dominated by the statistical interpolation polynomial generation. Here, we will present
a mixed-mesh strategy to speed up the statistical interpolation polynomial generator
without sacrificing the accuracy of the estimated thermal yield profile.

The developed mixed-mesh strategy is inspired by the following observations. The
statistical interpolation polynomial generator needs to perform the deterministic elec-
trothermal solver once for calculating the temperature profile with nominal device
parameters and execute the deterministic electrothermal solver NH-1 times for ob-
taining temperature variations corresponding to the nominal temperature profile. The
temperature profile from the first part contributes the major portion of the mean pro-
file of temperature distribution, and the temperature variations from the second part
contribute a large portion of the variance and skewness profiles of temperature dis-
tribution. In practice, the magnitude of the mean temperature profile is larger than
those of the variance and skewness profiles of temperature distribution, since process
variations of parameters are usually within a controllable range.

Based on the preceding observations, the mixed-mesh strategy for generating the
statistical interpolation polynomial of on-chip temperature distribution is illustrated
in Figure 10. Since the mean profile contributes a major portion to the thermal yield
profile, the nominal temperature profile is built by the deterministic electrothermal
solver with a fine mesh having NFNF grids to preserve the estimation accuracy of the
mean temperature profile. Then, the difference between the maximum and minimum
temperature values, �T max, of the nominal temperature profile is calculated, and an
allowable temperature resolution, Tres, is chosen. After that, the remaining NH − 1 de-
terministic electrothermal simulations are executed with a coarse mesh having NCNC

grids. Here, NC is equal to ��T max/Tres�. Finally, the mean, variance, and skewness
profiles of on-chip temperature distribution can be approximated by the generated
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Fig. 10. The sketch of mixed-mesh strategy for generating the statistical interpolation polynomial of on-chip
temperature distribution.

statistical interpolation polynomial, and these temperature profiles are utilized to cal-
culate the thermal yield profile.

With the proposed mixed-mesh strategy, the runtime for generating the statistical
interpolation polynomial of on-chip temperature distribution can be significantly re-
duced. In this work, an effective deterministic thermal simulator [Huang and Lee 2009]
is adopted as the kernel of our developed deterministic electrothermal solver.9 The com-
putational complexity of the deterministic thermal simulator presented in Huang and
Lee [2009] is O(NMNM log NBase). Here, NMNM is the mesh size, and NBase is the number
of bases for expressing the deterministic temperature profile. Generally, by using the
average chip temperature calculated by the iterative computation scheme of the 1D
thermal model shown in Figure 3 to be the initial operating temperature, the number of
electrothermal loops for achieving convergence can be less than a small value. Hence,
the computational complexity of the developed deterministic electrothermal solver is
also O(NMNM log NBase).

Therefore, the computational complexity of our baseline algorithm (the fine mesh
is used for each deterministic electrothermal simulation) stated in Figure 4 is
O(NHNFNF log NBase), and the computational complexity by utilizing the developed
mixed-mesh strategy can be reduced to O((NFNF + (NH − 1)NCNC) log NBase).

The computational complexity ratio of the developed mixed-mesh strategy for gener-
ating the statistical interpolation polynomial to the deterministic electrothermal solver
with nominal device parameters is equal to 1+(NH−1)×(NC/NF)2. In our experimental
results, an accurate thermal yield profile can be estimated with NH = 53, NF = 128,
NC = 16, and Tres = 0.65◦C. The computational complexity ratio is 1.8125. There-
fore, the mixed-mesh strategy does enhance the efficiency of the developed statistical
electrothermal simulator for catching up with that of a deterministic electro-thermal
simulator.

5. EXPERIMENTAL RESULTS

The developed statistical electrothermal simulator is implemented in C++ language
and tested on a Linux system with Intel Xeon 3.0-GHz CPU and 32GB memory. The
die size is 2.5 mm × 2.5 mm × 0.5 mm. The junction depth is set to 20nm for the 65nm

9As reported in Huang and Lee [2009], it took only 0.13 seconds to obtain the temperature profile of a chip
with one million functional blocks and 1024 × 1024 simulation mesh.
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Fig. 11. Power map of the test chip: (a) floorplan, (b) geometries of the die and package, (c) the mean profile
of the power map, (d) the standard deviation profile of the power map. Here, Lx and Ly are the width and
length of the test die, respectively.

technology [Lallement et al. 2004], and the Debye length is 2nm [Bienacel et al. 2004].
The floorplan of a test chip having 1.2 million functional gates is shown in Figure 11(a),
and the geometries of chip and package are shown in Figure 11(b).

By applying the modeling skill of thermal parameters mentioned in Figure 3 of
Section 3.1 and the modeling skill for both heat transfer paths mentioned in Huang
et al. [2006], the thermal conductivity and the equivalent heat transfer coefficients of
the primary and secondary heat flow paths for executing the deterministic thermal
simulator [Huang and Lee 2009] are summarized in Table III. The boundary condition
of each vertical surface is set to be isothermal [Huang and Lee 2009].

The device parameters, the truncation points of KL expansions for the channel length
(NL) and the oxide thickness (Ntox ), and the number of device modeling grid (NKLg ) are
summarized in Table IV. Both NL and Ntox are decided by using the criterion stated in
Eq. (16) with ε = 1%. To model the spatial correlation, both ηx/Lx and ηy/Ly are set to
0.98 for the correlation function shown in Eq. (9) [Cline et al. 2006]. The active layer
of the test chip is divided into 128 × 128 simulated grids.

The estimated mean and standard deviation profiles of the power map under the
settings of 60% WID and 40% D2D variations to the total variations are shown in
Figures 11(c)–(d), respectively.
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Table III. Equivalent Thermal Parameters

Parameter Value

κ 104.6 W/(m·◦C)
hp 12,000 W/(m2·◦C)
hs 2,017 W/(m2·◦C)

κ: the thermal conductivity of the die.
hp: the equivalent primary heat transfer coefficient.
hs: the equivalent secondary heat transfer coefficient.

Table IV. Parameters and Truncation Points for the Channel Length
and Oxide Thickness

Nominal L Nominal tox 3σL 3σtox NL Ntox NKLg

65nm 1.5nm 12% 5% 13 13 49

5.1. Electrothermal vs. Nonelectrothermal Simulations

With the number of grids being 100 for modeling device parameters and the ratios
of WID and D2D variations to the total variations being 60% and 40%, respectively,
the MC method with 2 × 104 samples is employed to demonstrate essentialness of the
electrothermal simulation loop. The estimated mean and standard deviation profiles of
the on-chip temperature distribution with and without considering the temperature-
dependent issue of leakage power are shown in Figures 12(a) and 12(c), and Fig-
ures 12(b) and 12(d), respectively. For the mean profile estimation, the difference be-
tween Figure 12(a) and Figure 12(b) is over 16%. For the standard deviation profile
estimation, the difference between Figure 12(c) and Figure 12(d) is over 31%. These
results indicate that statistical electrothermal analysis is essential.

5.2. Accuracy and Efficiency

This section is going to demonstrate the correctness and efficiency of the developed
statistical electrothermal simulator and show its efficiency improvement by using the
mixed-mesh strategy.

Given three different ratio pairs of the WID and D2D variations to the total varia-
tions, (WID, D2D) = (40%, 60%), (50%, 50%), or (60%, 40%), the results from 2 × 104

MC simulations, which satisfy the maximum absolute relative error of variance is less
than 1%, are utilized as the reference solution.

5.2.1. Mean and Standard Deviation Estimation. To demonstrate the accuracy and efficiency
of the developed statistical interpolation polynomial generator, the level-1 Smolyak
sparse grid formula with the sampling points being the roots of HPs is built. The
deterministic electrothermal solver needs to be executed 53 times, since the number
of sampling points (NH) for physical parameters to obtain the level-1 Smolyak sparse
grid formula is equal to 2 × (NL + Ntox ) + 1, and both NL and Ntox are calculated to be
13, as shown in Table IV. The size of each simulation mesh is 128 × 128.

The maximum absolute errors of mean and standard deviation profiles are presented
in Table V. The first two columns indicate the ratio pairs of WID and D2D variations
to the total variations. Compared with 2×104 MC simulations, the maximum absolute
errors of the estimated mean and standard deviation profiles from the developed sta-
tistical interpolation polynomial generator are shown in the fifth and sixth columns,
respectively. As shown in Table V, the maximum absolute errors are less than 3.0% for
all three different ratio pairs.

To fairly compare the runtime, the MC simulation is performed till achieving the
same accuracy of standard deviation as the developed statistical interpolation polyno-
mial generator. The number of MC simulations is shown in the #Samples column, and
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Fig. 12. Results of the MC method with or without considering the electrothermal effect: (a) and (b) are
the mean temperature profiles with and without considering the electrothermal effect, respectively; (c)
and (d) are the standard deviation profiles of temperature distribution with and without considering the
electrothermal effect, respectively.

the Runtime column denotes the runtime for both methods. According to the Speedu
column, the developed statistical interpolation polynomial generator can be orders of
magnitude faster than the MC method. Under the ratio pair (WID, D2D) = (60%, 40%),
the developed statistical interpolation polynomial generator takes 2.74 seconds to gen-
erate the interpolation polynomial of temperature profile for the 128 × 128 simulation
mesh. It contains 0.47 seconds for executing 53 deterministic electrothermal simula-
tions, and 2.27 seconds to generate the interpolation polynomials after the 53 sampling
temperature profiles are obtained.

With the ratio pair (WID, D2D) = (60%, 40%), the estimated mean and standard
deviation profiles of on-chip temperature distribution are shown in Figures 13(a) and
13(b), respectively. The error distributions of the mean and standard deviation of on-
chip temperature distribution are presented in Figures 13(c) and 13(d), respectively.
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Table V. Accuracy and Efficiency Comparison of the Developed Statistical Interpolation Polynomial Generator
and the MC Method

MC Method Developed Statistical Interpolation Polynomial Generator
WID W2D Maximum Maximum Standard Speedup (×)
Ratio Ratio #Samples Runtime (s) Mean Error Deviation Error Runtime (s)

40% 60% 6,921 442.94 0.91% 2.70% 2.68 165.2
50% 50% 7,011 448.70 0.91% 2.68% 2.72 164.9
60% 40% 7,031 449.98 0.90% 2.72% 2.74 164.2

†The error is calculated by comparing with 2 × 104 MC simulations.
“Runtime” does not include the time for parsing input files.

Fig. 13. Estimated mean and standard deviation profiles of on-chip temperature distribution with the
ratio pair (WID, D2D) = (60%, 40%): (a) and (b) are the estimated mean and standard deviation profiles,
respectively; (c) and (d) are the error distributions of the estimated mean and standard deviation profiles
compared with the MC method, respectively.
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Table VI. Accuracy and Efficiency Comparison of APEX [Li et al. 2004] and the Skew Normal Model Method

WID D2D APEX [Li et al. 2004] Skew Normal Model
Ratio Ratio Tref Runtime (s) Maximum Error Runtime (s) Maximum Error Speedup (×)

40% 60% 88.40◦C 2.80 1.97% 0.013 1.63% 215.38
50% 50% 88.48◦C 2.80 1.90% 0.013 1.52% 215.38
50% 50% 88.54◦C 2.80 2.32% 0.013 1.41% 215.38
†The error is calculated by comparing with 2 × 104 MC simulations.

5.2.2. Thermal Yield Estimation. To demonstrate the accuracy and efficiency of the devel-
oped thermal yield estimation engine by using the skew normal model, APEX [Li et al.
2004], a well-known cumulative distribution function estimation method, is also im-
plemented. To avoid the instability of Padè approximation for APEX, a stable two-pole
model [Tutuianu et al. 1996] is employed for finding poles and zeros. The developed
statistical interpolation polynomial generator is utilized to generate the statistical
expression of temperature distribution for both the skew normal model method and
APEX. With the average mean (μT ) and standard deviation (σ T ) of temperature distri-
bution obtained by 2 × 104 MC simulations, the specified reference temperature, Tref ,
is assumed to be μT + 2.5σ T .

Table VI summarizes the results, and it shows that both the skew normal model
method and APEX can accurately provide the thermal yield profile for each test case;
furthermore, the developed skew normal model method is more accurate than that of
APEX. The maximum error of the skew normal model method is 1.63%, and the maxi-
mum error of APEX is 2.32%. The results also reveal that the developed skew normal
model method achieves 215× speedup over APEX. This is for two reasons. One is that
APEX needs higher-order statistical moments to get a tight bound of its generalized
Chebyshev inequality for the PDF/CDF shifting process. In our implementation, APEX
requires moments up to the ninth order to achieve an accurate thermal yield profile
estimate, even though it only needs moments up to the fourth order to get the first
two dominated poles [Tutuianu et al. 1996]. The other is that APEX needs to solve
zeros for constructing its exponential model after two dominated poles are computed.
Compared with APEX, after the moments of temperature distribution up to the third
order are computed, the skew normal model method simply looks up the CDF table of
the skew-normal random variable to estimate the thermal yield profile.

The thermal yield profiles obtained by 2 × 104 MC simulations and estimated by the
developed skew normal method and APEX under 60% of WID variation and 40% of
D2D variation to the the total variations are presented in Figures 14(a)–14(c), respec-
tively. The errors of estimated thermal yield profiles by the skew normal model method
and APEX are plotted in Figures 14(d)–14(e), respectively. As shown in Figures 14(b)–
14(c), the developed statistical interpolation polynomial generator can provide accurate
statistical on-chip temperature expression for the thermal yield estimation, and the
thermal yield profile can indicate thermal reliabilities at different locations of the
die, that is, the smaller the thermal yield at a location, the less reliable the location.
Figure 14(c) also shows that the estimated thermal yield profile of APEX might im-
practically exceed 100% in some region, since APEX does not guarantee generating a
statistical model with preserving the property of CDF.

To further demonstrate the accuracy of the skew normal model method, the estimated
CDF of temperature distribution at position A in Figures 14(a)–14(c) obtained by 2×104

MC simulations, the skew normal model method, and APEX with the ninth and fourth
order moments for the PDF/CDF shifting process are drawn in Figure 15. As shown in
Figure 15, the result of the skew normal model method fits that of MC simulations very
well. However, APEX with the fourth order for the PDF/CDF shifting process cannot
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Fig. 14. Estimated thermal yield profiles and error profiles of the skew normal model and APEX: (a) the
thermal yield profile by 2 × 104 MC simulations; (b) and (c) the estimated thermal yield profiles by the skew
normal model method and APEX, respectively; (d) and (e) the error profiles of estimated thermal yields by
the skew normal model and APEX, respectively.

Fig. 15. CDFs of temperature at position A in Figures 14(a)–14(c) obtained by 2 × 104 MC simulations, the
skew normal model method, APEX with the ninth order for the PDF/CDF shifting process, and APEX with
the fourth order for the PDF/CDF shifting process.

meet the CDF obtained by the MC simulations, and APEX with the ninth order for the
PDF/CDF shifting process does not provide the accurate estimate of thermal yield with
smaller reference temperature values.

5.2.3. Mixed-Mesh Strategy for Thermal Yield Estimation. As demonstrated in Section 5.2.2,
the developed skew normal model-based thermal yield profile estimation engine can
be two orders of magnitude faster than APEX and can obtain the thermal yield profile
in 0.013 seconds. However, as shown in Table V, it still requires couples of seconds to
generate the statistical interpolation polynomial of temperature distribution. Here, we
are going to show the superiority of the developed mixed-mesh strategy for thermal
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Fig. 16. Estimated thermal yield profile and error distribution of the developed mixed-mesh strategy.

Table VII. Accuracy and Efficiency Comparison between the Baseline and Mixed-Mesh Strategy Thermal Yield
Profile Estimation Methods

Mesh Size Runtime (s) Maximum Speedup
Method Nominal 52 (= 2NKL) Expression Generation Thermal Yield Profile Total Error Ratio
Baseline 128 × 128 128 × 128 2.740 0.013 2.753 1.41% 1.0

Mixed Mesh 128 × 128 16 × 16 0.049 0.013 0.062 2.28% 44.4
†The error is obtained by comparing with the MC method with 2 × 104 samples.

yield profile estimation with the test case having 60% WID variation ratio and 40%
D2D variation ratio. For the accuracy verification, its results are compared with 2 ×
104 MC simulations, and for the efficiency demonstration, its results are compared
with the baseline method of the developed skew normal model thermal yield profile
estimation engine with the size of the simulation mesh being equal to 128 × 128 for
each deterministic electrothermal simulation corresponding to each sampling point in
the Smolyak sparse grid.

By using the mixed-mesh strategy, first, the simulation mesh for calculating the nom-
inal temperature profile of the test case is set to 128×128. After obtaining the nominal
temperature profile, the difference between the maximum and minimum temperature
values �T max is calculated to be 10.1◦C, and the temperature resolution Tres is set to
0.65◦C for the coarse-mesh construction. Under this setting, the size of the coarse mesh
is calculated as 16 × 16 for executing the remaining 52 (= 2 × NKL) deterministic elec-
trothermal simulations. The estimated thermal yield profile by using the mixed-mesh
strategy is shown in Figure 16(a). Compared with Figure 14(a), the estimated thermal
yield profile matches with that of the MC simulations. Its error distribution is drawn in
Figure 16(b), and the plot shows that the errors are within the range [−2.28%, 0.13%].

Comparison between the developed baseline and mixed-mesh strategy thermal yield
profile estimation methods is summarized in Table VII. The Expression Generation
column denotes the runtime of generating the statistical interpolation polynomial,
and it is 2.74 seconds and 0.049 seconds for the baseline method and the mixed-mesh
strategy, respectively. The Thermal Yield Profile column shows the runtime to obtain
the thermal yield profile by using the skew normal random variable model, and it is
0.013 seconds for both methods. From the last three columns of Table VII, we can see
that the developed mixed-mesh strategy, with slightly trading off the accuracy, can
achieve 44.4× speedup over the developed baseline method.
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6. CONCLUSION AND POTENTIAL APPLICATIONS

An efficient statistical electrothermal simulator is proposed. The developed statistical
electro-thermal simulator not only provides the mean and standard deviation profiles
of on-chip temperature distribution, but also delivers the thermal yield profile of on-
chip temperature distribution to designers and provides a proper figure of merit to
indicate the thermal reliability of designed circuit.

Compared with the MC method and APEX [Li et al. 2004], the experimental results
demonstrate that the proposed statistical electrothermal simulator can accurately and
efficiently provide the mean, standard deviation, and thermal yield profiles of on-chip
temperature distribution.

Potential extensions and applications of the developed framework are summarized
as follows.

6.1. Statistical Electrothermal Analysis of 3D ICs

One possible strategy of extending our framework to 3D ICs is summarized as follows.

(1) Construct the equivalent modified nodal analysis (MNA) system for a 3D IC with
the process variation and temperature-dependent power consumption vector at the
right-hand side of MNA equation.

(2) Build the sparse grid sample points for KL expanded or PCA decomposed random
variables of the physical parameters. Use these sample points to get the determin-
istic physical parameters, and hence, we have several deterministic temperature-
dependent power consumption vectors corresponding to these deterministic physi-
cal parameters.

(3) Perform the deterministic electrothermal analysis with each deterministic
temperature-dependent power consumption vector by using any existing deter-
ministic electrothermal simulators to get the corresponding temperature profile.

(4) Interpolate the statistical polynomials of the on-chip temperature distribution, and
apply the developed thermal yield profile estimation technique to it.

6.2. Thermal-Aware Statistical Timing Analysis

One possible extension strategy for the thermal-aware statistical timing analysis is
briefed as follows. Given different channel-length variations, different oxide-thickness
variations, different operating temperatures, and different load capacitances, the delay
data of each gate type in the cell library can be constructed by utilizing the HSPICE.
With the simulated data and the least square fitting methodology, the delay of a specific
gate type can be fitted as the first-order canonical form

D = a0 + a1L + a2tox + a3T , (42)

where the fitting coefficients a0, a1, a2, and a3 are load-capacitance dependent.
After that, by using the formulation of KL expansion or PCA decomposition, L(r∗)

and tox(r∗) at the arbitrary position r∗ can be represented as a linear combination of
their transformed Gaussian random variables. Then, using the level-1 Smolyak sparse
grid formulation, the delay of an arbitrary gate type at position r∗ can be expressed as

D =
Npar∑
i=1

(
biξi + ciξ

2
i

)
+ d. (43)

Here, bi ’s, ci ’s, and d are constants, and ξi ’s are the Gaussian random variables trans-
formed by KL expansion or PCA decomposition. With the expression stated in Eq. (43),
any existing second-order statistical static timing analysis engine can be utilized to
perform the thermal-aware statistical timing analysis.
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6.3. Possible Utilizing Scenarios of the Thermal Yield Profile

As indicated in Tsai et al. [2006], several existing thermal-aware placers have suc-
cessfully taken the temperature effect into account by using deterministic thermal
analyzers to calculate the thermal-related cost. By using similar strategies presented
in Tsai et al. [2006], the developed thermal yield profile estimation engine can also be
utilized to calculate the thermal-related cost for thermal-aware placing flows, since the
quantity of thermal yield is intrinsically deterministic.

A multiple supply voltage design method for 3D ICs was proposed in Yu et al. [2009],
and it can also be used for 2D ICs. Yu et al. [2009] calculated the thermal-related
cost incrementally by using the mean and standard deviation of on-chip temperature
distribution. Since the thermal yield is a better figure of merit for quantifying the ther-
mal effect, instead of using the mean and standard deviation of on-chip temperature
distribution, the developed thermal yield profile can be and should be adopted for that
work.

APPENDIXES

A. AN EXAMPLE FOR ILLUSTRATING THE SMOLYAK SPARSE GRID FORMULATION

A simple example with NKL = 2 and q = NKL + 1 = 3 is given to illustrate the Smolyak
sparse grid formulation. We have 2 ≤ |i| ≤ 3, since q − NKL + 1 ≤ |i| ≤ q. Hence,
i1 = 1, i2 = 1 for |i| = 2, and i1 = 1, i2 = 2 or i1 = 2, i2 = 1 for |i| = 3. The numbers of
sample values for random variables ξ1 and ξ2 are mi1=1 = 1 and mi2=1 = 1 for |i| = 2, and
mi1=1 = 1 and mi2=2 = 3 or mi1=2 = 3 and mi2=1 = 1 for |i| = 3, respectively. According
to various values of i1 or i2, the interpolating polynomial forms can be determined by
utilizing a single random variable ξ1 or ξ2.

After that, the interpolating polynomial forms corresponding to ξT = [ξ1, ξ2] at
different combined values of i1 and i2 can be constructed by using the functional
cross-product operation. For example, Qin=1(T ) = 1 and Qin=2(T ) = p0 + p1ξn + p2ξ

2
n

are the first-order and second-order interpolating polynomial forms for n ∈ {1, 2},
respectively. Qi1=1(T ) ⊗ Qi2=2(T ) = 1 ⊗ (b0 + b1ξ2 + b2ξ

2
2 ) = b0 + b1ξ2 + b2ξ

2
2 , and

Qi1=2(T ) ⊗ Qi2=1(T ) = (a0 + a1ξ1 + a2ξ
2
1 ) ⊗ 1 = a0 + a1ξ1 + a2ξ

2
1 . Here, aj ’s and bj ’s are

constant coefficients that can be determined by using the sample values of T (r, ξ ).
To obtain Qi1 (T ) ⊗ Qi2 (T ) at different combined values of i1 and i2, only the on-chip

temperature distribution excited by the point that belongs to the following sample set
of ξ needs to be known. Given h̄1 = {p1

0} and h̄2 = {p2
0, p2

1, p2
2}, we have

H(3, 2) = (h̄i1=1 ×h̄i2=1) ∪ (h̄i1=1 ×h̄i2=2) ∪ (h̄i1=2 ×h̄i2=1)

=
{[

p1
0, p1

0

]T
}

∪
{[

p1
0, p2

0

]T
,
[

p1
0, p2

1

]T
,
[

p1
0, p2

2

]T
}

∪
{[

p2
0, p1

0

]T
,
[

p2
1, p1

0

]T
,
[

p2
2, p1

0

]T
}

(44)

=
{[

p1
0, p1

0

]T
,
[

p1
0, p2

0

]T
,
[

p1
0, p2

1

]T
,
[

p1
0, p2

2

]T
,
[

p2
0, p1

0

]T
,
[

p2
1, p1

0

]T
,
[

p2
2, p1

0

]T
}

B. ENHANCEMENT STRATEGY OF THE STABILITY OF THE THERMAL YIELD PROFILE
ESTIMATION ENGINE

As shown in Eqs. (34)–(37), |δr∗ | needs to be less than
√

2/π to ensure the stability of
the moment matching process of the skew-normal model. Under this situation, that is,
setting |δr∗ | <

√
2/π in Eq. (37), the skewness of |γ�T̂ (r∗)| that the model can match
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requires

|γ�T̂ (r∗)| <

⎛⎝( 4−π
2

)2/3 2
π

1 − 2
π

⎞⎠3/2

≈ 0.99527. (45)

Comparing with the variance of T̂ (r∗), σT̂ (r∗) = 1, this would be an extreme situation in
the practical application, because the PDF of T̂ (r∗) will be fairly close to the right/left
direction exponential shape, and the probability that the temperature is less/larger
than its nominal value will be near to zero for the positive/negative skewness case.

However, this is indeed the limitation of the skew-normal model. Fortunately, with
the technique proposed in Raphaeli [1996], the PDF of the weighted sum of independent
non-central chi-square random variables, which is exactly consistent with the form of
T̂ (r∗) stated in Eq. (27), can be stably approximated by the series expansion up to any
specific order. Due to the limitation of space, please refer to Raphaeli [1996] for the
details. Although the technique stated in Raphaeli [1996] is stable for any specific order,
its complexity is higher than that of the skew-normal moment matching technique if the
three-order approximation is proceed. Therefore, we can still apply the skew-normal
model for the temperature as its skewness satisfies Eq. (45), and apply the formula
stated in Raphaeli [1996] for the temperature as the skewness violates Eq. (45). Since
the situation of violating Eq. (45) is extreme, only a small amount of grids need to
perform the formula stated in Raphaeli [1996]. Therefore, the efficiency of the thermal
yield estimation can still be preserved.

C. EXTENSION OF THERMAL YIELD PROFILE ESTIMATION ENGINE FOR THE
SECOND-ORDER POLYNOMIAL WITH CROSS PRODUCT TERMS

With level l in Smolyak sparse grid formulation being 2, the interpolation polynomial of
statistical temperature at an arbitrary location r∗ can be approximated as the following
quadratic form.

T̂ (r∗, ξ ) = ξT A(r∗)ξ + bT (r∗)ξ + c(r∗). (46)

Here, A(r∗) is an NKL × NKL matrix with its i jth entry aij being the leading coefficient
corresponding to ξiξ j for 1 ≤ i, j ≤ NKL, b(r∗) is the 1 × NKL vector with its kth entry bk
being the leading coefficient corresponding to ξk for 1 ≤ k ≤ NKL, and c(r∗) is a constant.

Utilizing the eigenvalue decomposition, A(r∗) can be written as

A(r∗) = V T (r∗)D(r∗)V (r∗), (47)

where V (r∗) and D(r∗) are the eigenvector matrix and the diagonal eigenvalue matrix
of A(r∗), respectively. Plugging Eq. (47) into Eq. (46) and representing z(r∗) = V (r∗)ξ ,
we have

T̂ (r∗, ξ ) = T̂ (r∗, z(r∗)) = zT (r∗)D(r∗)z(r∗) + b̂
T

(r∗)z(r∗) + c(r∗). (48)

Here, b̂(r∗) = V (r∗)b. Since each ith entry of z(r∗), zi(r∗) is the linear combination of
Gaussian random variables ξk’s in ξ , it is still a Gaussian random variable. Moreover,
D(r∗) is a diagonal matrix, Eq. (48) is consistent with the form in Eq. (27). Therefore,
after performing the proceding manipulation, the proposed thermal yield profile esti-
mation engine can also handle the second-order polynomial with cross-product terms.

Comparing with the level 1 Smolyak sparse grid formulation, we need to per-
form O(N2

KL) deterministic electrothermal simulations for generating the cross-product
terms in Eq. (46). In this situation, our mixed-mesh thermal yield estimation can gain
more benefits on efficiency, since the crossproduct terms contribute the values on vari-
ance and skewness, and these values can be computed with a coarser mesh.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 3, Article 41, Pub. date: July 2013.



An Efficient Method for Analyzing On-Chip Thermal Reliability 41:31

REFERENCES

AZZALINI, A. 2005. The skew-normal distribution and related multivariate families. Board Found. Scandina-
vian J. Stat. 32, 159–188.

BARTHELMANN, V., NOVAK, E., AND RITTER, K. 2000. High dimensional polynomial interpolation on sparse grids.
Adv. Comput. Math. 12, 4, 273–288.

BHARDWAJ, S., VRUDHULA, S., AND GOEL, A. 2008. A unified approach for full chip statistical timing and leakage
analysis of nanoscale circuits considering intradie process variations. IEEE Tran. Comput. Aid. Des.
Integ. Circ. Syst. 27, 10, 1812–1825.

BIENACEL, J., BARGE, D., BIDAUD, M., EMONET, N., ROY, D., VISHNUBHOTLA, L., POUILLOUX, I., AND BARLA, K. 2004.
Anticipation of nitrided oxides electrical thickness based on XPS measurement. Mater. Sci. Semiconduct.
Process. 7, 4–6, 181–183.

BOTA, S., ROSALES, M., ROSELLO, J., KESHAVARZI, A., AND SEGURA, J. 2004. Within die thermal gradient impact
on clock-skew: A new type of delay-fault mechanism. In Proceedings of the IEEE International Test
Conference. 1276–1283.

CHAKRABORTY, A., DURAISAMI, K., SATHANUR, A., SITHAMBARAM, P., BENINI, L., MACII, A., MACII, E., AND PONCINO, M.
2008. Dynamic thermal clock skew compensation using tunable delay buffers. IEEE Trans. Very Large
Scale Integr. Syst. 16, 6, 639–649.

CHANG, H. AND SAPATNEKAR, S. S. 2007. Prediction of leakage power under process uncertainties. ACM Trans.
Des. Autom. Electron. Syst. 12, 2.

CHANG, H. C., HUANG, P. Y., LI, T. J., AND LEE, Y. M. 2010. Statistical electro-thermal analysis with high
compatibility of leakage power models. In Proceedings of the IEEE International SOC Conference. 139–
144.

CHENG, L., GUPTA, P., SPANOS, C. J., QIAN, K., AND HE, L. 2011. Physically justifiable die-level modeling of
spatial variation in view of systematic across wafer variability. IEEE Trans. Comput. Aid. Des. Integr.
Circ. Syst. 30, 3, 388–401.

CLINE, B., CHOPRA, K., BLAAUW, D., AND CAO, Y. 2006. Analysis and modeling of CD variation for statistical
static timing. In Proceedings of the International Conference on Computer Aided Design. ACM, 60–66.

GAO, M., YE, Z., ZENG, D., WANG, Y., AND YU, Z. 2011. Robust spatial correlation extraction with limited sample
via L1-norm penalty. In Proceedings of the Asia and South Pacific Design Automation Conference. IEEE
Press, 677–682.

HAGHDAD, K. AND ANIS, M. 2012. Power yield analysis under process and temperature variations. IEEE Trans.
Very Large Scale Integr. Syst. 20, 10, 1794–1803.

HAN, Y. AND KOREN, I. 2007. Simulated annealing based temperature aware floorplanning. J. Low Power
Electron. 3, 2, 141–155.

HUANG, P. Y. AND LEE, Y. M. 2009. Full-chip thermal analysis for the early design stage via generalized integral
transforms. IEEE Trans. Very Large Scale Integr. Syst. 17, 5, 613–26.

HUANG, P. Y., LEE, Y. M., AND PAN, C. W. 2012. On-chip statistical hot-spot estimation using mixed-mesh
statistical polynomial expression generating and skew-normal based moment matching techniques. In
Proceedings of the Asia and South Pacific Design Automation Conference. 603–608.

HUANG, P. Y., WU, J. H., AND LEE, Y. M. 2009. Stochastic thermal simulation considering spatial correlated
within-die process variations. In Proceedings of the Asia and South Pacific Design Automation Confer-
ence. 55–60.

HUANG, W., GHOSH, S., VELUSAMY, S., SANKARANARAYANAN, K., SKADRON, K., AND STAN, M. R. 2006. HotSpot: A
compact thermal modeling methodology for early-stage VLSI design. IEEE Trans. Very Large Scale
Integr. Syst. 14, 5, 501–513.

ITRS. 2010. International technology roadmap for semiconductors. http://www.itrs.net/.
JAFFARI, J. AND ANIS, M. 2008. Statistical thermal profile considering process variation: Analysis and applica-

tions. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 27, 6, 1027–1040.
KUMAR, R. AND KURSUN, V. 2006. Reversed temperature-dependent propagationdelay characteristics in

nanometer CMOS circuits. IEEE Trans. Circ. Syst. Express Briefs 53, 10, 1078–1082.
LALLEMENT, F., DURIEE, B., GROUILLET, A., AMAUD, F., TAVEL, B., WACQUANT, F., STALK, P., WOO, M., EROKHIN, Y.,

SCHEUER, J., GADET, L., WEEMAN, J., DISTASO, D., AND LENOBLEE, D. 2004. Ultra-low cost and high perfor-
mance 65nm CMOS device fabricated with plasma doping. In Proceedings of the Symposium on VLSl
Technology Digest of Technical Papers. 178–179.

LI, X., LE, J., GOPALAKRISHNAN, P., AND PILEGGI, L. T. 2004. Asymptotic probability extraction for non-normal
distributions of circuit performance. In Proceedings of the International Conference on Computer Aided
Design. 2–9.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 3, Article 41, Pub. date: July 2013.



41:32 Y.-M. Lee and P.-Y. Huang

LIU, C., CHEN, R. X., TAN, J., FAN, S., FAN, J., AND MAKKI, K. 2008. Thermal aware clock synthesis considering
stochastic variation and correlations. In Proceedings of the International Symposium on Circuits and
Systems. 1204–1207.

LIU, F. 2007. A general framework for spatial correlation modeling in VLSI design. In Proceedings of the
Design Automation Conference. 817–822.

PANG, L. T. AND NIKOLIC, B. 2009. Measurements and analysis of process variability in 90 nm CMOS. IEEE J.
Solid-State Circ. 44, 5, 1655–1663.

PHILLIPS, G. M. 2003. Interpolation and Approximation by Polynomial. Springer-Verlag, Berlin Heidelberg.
RAPHAELI, D. 1996. Distribution of noncentral indefinite quadratic forms in complex normal variables. IEEE

Trans. Inf. Theory 42, 3, 1002–1007.
REDA, S., COCHRAN, R., AND NOWROZ, A. 2011. Improved thermal tracking for processors using hard and soft

sensor allocation techniques. IEEE Trans. Comput. 60, 6, 841–851.
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