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In this article, we propose a flip-flop merging algorithm based on agglomerative clustering. Compared to
previous state-of-the-art on flip-flop merging, our proposed algorithm outperforms that of Chang et al. [2010]
and Wang et al. [2011] in all aspects, including number of flip-flop reductions, increase in signal wirelength,
displacement of flip-flops, and execution time. Our proposed algorithm also has minimal disruption to original
placement. In comparison with Jiang et al. [2011], Wang et al. [2011], and Chang et al. [2010], our proposed
algorithm has the least displacement when relocating merged flip-flops. While previous works on flip-flop
merging focus on the number of flip-flop reduction, we further evaluate the power consumption of clock tree
after flip-flop merging. To further minimize clock tree wirelength, we propose a framework that determines a
preferable location for relocated merged flip-flops for clock tree synthesis (CTS). Experimental results show
that our CTS-driven flip-flop merging can reduce clock tree wirelength by an average of 7.82% with minimum
clock network power consumption compared to all of the previous works.
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1. INTRODUCTION

In modern SoC design flow, recent researches in industry and academia have discov-
ered that flip-flops in advanced technology require less driving power. Less driving
power for flip-flops implies that multiple flip-flops can be driven by a single inverter.
Thus, the possibility of multi-bit flip-flop emerges in nanometer design. Multibit flip-
flops have the advantage of sharing single inverter, which reduces power consumption
with more compact layout area. In addition, replacing original one-bit flip-flops with
multibit flip-flops can reduce both sink number and sink capacitance. In this context,
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Fig. 1. Ilustration of a multibit flip-flop sharing one inverter.
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Fig. 2. Reduction of sinks in clock tree. (a) Illustration of a clock signal connected to eight one-bit flip-flops.
(b) Nlustration of clock wirelength reduction using multibit flip-flops to reduce the number of flip-flops.

sink capacitance refers to the clk-pin capacitance of a flip-flop. Figure 1 illustrates
the implementation of a two-bit flip-flop, a single clk-pin can trigger both flip-flops
using one inverter. Figure 2 illustrates how sink reduction affects the topology of a
clock tree. It is experimented in Chen et al. [2010] that integrating a multibit flip-
flop library into current commercial tools can significantly reduce clock tree power
consumption.

According to Donno et al. [2004], the power consumption of a clock network is respon-
sible for 40% of total power consumption. Thus, optimizing the clock network can effec-
tively reduce total power consumption. Optimization techniques for clock tree topology
include reduction on total clock tree wirelength by replacing the registers [Hou et al.
2009; Lee and Markov 2011; Wang et al. 2007], optimizing the size of buffers [Shelar
2007], or considering activity factor in placement of registers [Chen et al. 2002; Cheon
et al. 2005].

Implementation of multibit flip-flops can also reduce clock tree power consumption by
reducing the number of sinks. Less sinks implies shorter clock tree wirelength during
clock tree synthesis. However, multibit flip-flops have the drawback of increasing in
signal wirelength. For signals with a high activity factor, the improvement in power
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reduction by greedily merging flip-flops may be saturated by the increase in dynamic
power consumption due to an increase in signal wirelength.

1.1. Previous Works

Previous works on optimization of flip-flops can be categorized to optimizations during
the placement stage and the post-placement stage.

1.1.1. Optimization during the Placement Stage. Regarding flip-flop replacement, Lee and
Markov [2011] integrate a virtual clock tree with a force-directed placer SimPL [Kim
et al. 2010]. In each iteration of placement, a virtual clock tree is constructed to identify
the topology of the clock tree. A contraction force is then applied on each flip-flop to
motivate flip-flops to group into clusters. Eventually, reshaping the clock tree can
reduce the clock tree wirelength. Experimental results show that relocating the sink
position during placement can reduce clock tree wirelength by 30% and dynamic power
consumption by 7%. Cheon et al. [2005] proposed a methodology based on activity-
based register clustering to replace registers with a higher-switching activity factor
to same-leaf clusters in clock trees. Experimental results show that replacement of
register by considering the activity factor of the register can reduce switching power
by 25%.

1.1.2. Optimization at the Post-Placement Stage. In terms of optimization at the post-
placement stage, previous state of the art on flip-flop merging [Jiang et al. 2011; Wang
et al. 2011; Chang et al. 2010] shares similar objectives on reducing the number of flip-
flops in order to reduce total power consumption. Reduction in the number of flip-flops
is achieved by merging flip-flops to a higher-bit multi-bit flip-flop.

Chang et al. [2010] tackles the problem by applying progressive window-based
optimization. As a window sweeps across a given layout, an intersection graph is
constructed with a predefined window size. After the intersection graph is constructed,
a maximal independent set of cliques is identified to select groups of flip-flops for
merging. Similarly to Chang et al. [2010], Wang et al. [2011] applies techniques in
minimum clique partitioning to identify a set of nonconflicting cliques.

In contrast to Wang et al. [2011] and Chang et al. [2010], Jiang et al. [2011] proposed
a linear-size sequence representation for identifying several clustering combinations.
An interval graph is constructed to record a flip-flop’s feasible region on both the X
and Y direction. The X-direction interval graph provides decision points for obtaining
essential flip-flops, and the Y-direction interval graph provides a maximal clique for
each essential flip-flop.

1.2. Our Contributions

In this article, we propose a flip-flop merging algorithm based on agglomerative clus-
tering. In contrast to previous works on post-placement, flip-flops are merged in a
bottom-up fashion. Flip-flop merging is achieved by selecting pair of flip-flops with
least increase to signal wirelength and least perturbation to original placement. Un-
like those of Chang et al. [2010] and Wang et al. [2011], our approach avoids identifying
a maximal clique, which is unnecessary when the multibit flip-flop library is limited.
In addition to flip-flop merging, we further investigate the effects of the relocation of
merged flip-flops on clock network power consumption. In brief, our key contributions
are summarized as follows.

—The proposed flip-flop merging algorithm can efficiently minimize increase in signal
wirelength and perturbation to original placement. Compared to previous works on
flip-flop merging, the signal wirelength connecting to flip-flops can be reduced up to
16.2% and the displacement of flip-flops up to 155.1%.
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—Even with additional consideration of the increase in signal wirelength and per-
turbation to original placement, the proposed flip-flop merging algorithm can still
reduce number of flip-flops by an additional 4.8% and 8.6% compared to Wang et al.
[2011] and Chang et al. [2010], respectively.

—In consideration of the subsequent clock tree synthesis (CTS), we propose a CTS-
driven flip-flop merging which can reduce wirelength in the clock network by 7.82%.

The organization for the rest of the article is as follows. Section 2 formulates the
problem of flip-flop merging and relocation. Section 3 describes the construction of the
intersection graph using the line sweep method. Section 4 introduces the methodology
of flip-flop merging by selecting appropriate merging candidates. Section 5 demon-
strates how to relocate merged flip-flops in favor of clock tree synthesis. Section 6
presents experimental results and Section 7 concludes.

2. PROBLEM FORMULATION

Each flip-flop is connected to an input pin and an output pin. The location of pins cannot
be changed. Thus, change in total signal wirelength can only result from change in
distance between each pair of pin and flip-flop. The signal wirelength of a given flip-
flop is defined as the summation of the Manhattan distance from a flip-flop to all the
pins it connects to. Here, the given input and the problem of flip-flop merging are
defined as follows.

—Area and power value for each flip-flop. Generally, an m-bit flip-flop with a larger m
value has the benefit of lower power and area per bit.

—A netlist of input and output pins to each flip-flop. An m-bit flip-flop has 2m pins. For
example, a one-bit flip-flop has one input and output pin and a two-bit flip-flop has
two input pins and two output pins.

—Location of every pin and flip-flop.

—A slack constraint that is converted to distance for each pair of flip-flop and pin.

—The given layout is partitioned into a set of bins: each bin is given with a predefined
placement density constraint.

The Multibit Flip-Flop Merging Problem. Given a placed design, a set of m-bit flip-flop
libraries, the netlist of flip-flops, and the position of the flip-flops and input/output pins
connected to the flip-flops, minimize the total number of flip-flops by merging flip-flops
to higherbit multibit flip-flop with minimal increase to signal wirelength and minimal
perturbation to original placement. The placement of flip-flops needs to satisfy the
following two constraints.

—Slack Constraint. The final placement of the merged flip-flop must be placed in a
position that does not violate any slack constraint for every pin it connects to.

—Placement Density Constraint. The final placement density after flip-flop merging
must not violate the placement density constraint for all bins.

The primary objective of this work still focuses on the number of flip-flop reductions.
However, increase in signal wirelength and disruption to original placement is taken
into consideration when determining merging priority. Note that the given input and
constraints are entirely different from the benchmark used in Lee and Markov [2011].
Since the ISPD 2005 benchmark does not specify the gate type of the input node, Lee
and Markov [2011] randomly select a set of nodes to be flip-flops and consider the
location of flip-flops during placement stage. In this work and the aforementioned
previous work, flip-flop merging [Jiang et al. 2011; Wang et al. 2011; Chang et al. 2010]
is performed at the post-placement stage. The given input is a set of placed designs
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Fig. 3. Flowchart of flip-flop merging based on agglomerative clustering.

where only the location of flip-flops can be changed while not violating the given slack
and density constraints.

3. CONSTRUCTION OF THE INTERSECTION GRAPH

Figure 3 is a flowchart on flip-flop merging. The proposed methodology on flip-flop
merging is divided to three main parts; the first part constructs an intersection graph
using the line sweep method and determines edge cost for all edges. The second part
merges flip-flops based on agglomerative clustering by selecting mergeable candidate
with the lowest cost. Finally, the third part places flip-flops by projecting optimal
locations to valid mergeable zones followed by a breadth-first search to look for a valid
location in which to place the merged flip-flop.

The slack value for a flip-flop can be treated as a distance budget. The farther away a
flip-flop is moved from its input pins or output pins, the less slack value a flip-flop has.
In this work, the slack value for a flip-flop is modeled as a distance budget. We define
the movable zone of a flip-flop as the region where a flip-flop can be arbitrary positioned
without violating any of the slack constraints. Since distance between two points in
a chip design is measured in Manhattan distance, the movable zone of a flip-flop is a
45-degree tilted rectangle. Variable A and variable B are used to represent the four
y-intercepts of the tilted rectangle. The tilted rectangle is illustrated in Figure 4.

The mergeable zone of two flip-flops is defined as the overlapping region of two flip-
flops’ movable zone. Figure 5 is an illustration of a mergeable zone of two flip-flops.
The mergeable zone can be regarded as an edge in graph representation. To merge two
flip-flops, the movable zones of the two flip-flops must overlap such that the merged
flip-flop can be placed inside the overlapping region without violating any of the slack
constraints for both flip-flops. For any pair of flip-flops ff; and ff;, an edge e;; exists if
and only if the movable zones of ff; and ff; overlap one another.

To find all of the merge zones, the naive implementation has time complexity of
O(N?), which is compared to every movable zone of a flip-flop with every other movable
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Fig. 4. The rotated coordinate system for representing movable and mergeable zones of a flip-flop.
(a) Illustration of the rotated coordinate system by 45 degrees. (b) Coordinates for the rotated rectangle
using y-intercept.

Slack Zone for FF1 to Output Pin Mergéable Zone for FF1 & FF2

{FF1]
Slack Zone for FF1 to Input Pin Movable Zone for FF1

Fig. 5. Illustration of the movable zone for a flip-flop and the mergeable zone for multiple flip-flops. The
movable zone is the region where a flip-flop can be arbitrary placed without violating any of the slack
constraints. The mergeable zone is the overlapping region between two movable zones for two flip-flops.

zones. However, this approach iterates through all possible scenarios, which is in-
efficient. A more efficient approach is to sort all the of movable zones on the X-
coordinate and then find overlapping segments in the Y-coordinate. This approach,
derived from Cormen et al. [2001], can effectively reduce the number of comparisons. A
similar technique for identifying mergeable zones is also adopted in Wang et al. [2011].

Algorithm 1 describes the procedure for constructing intersection graph for N num-
ber of the flip-flops. First, the sorted left and right X-coordinates of all movable zones
are stored in an array X. A sweep line begins to scan the elements in array X. During
line sweep, if the selected element corresponds to the left X-coordinate of a certain
movable zone, the movable zone is stored to a container P and checks for overlap with
all other movable zones stored in P. Since all movable zones are already sorted by their
X-coordinates, only the Y-coordinate needs to be examined to determine whether two
movable zones have overlap in Y-coordinates. When the right X-coordinate of a movable
zone is selected during line sweep, the movable zone is removed from container P. The
construction of the intersection graph is complete when the line sweep reaches the end
of array X.

Figure 6 demonstrates an example using the line sweep method. In Figure 6(a),
the sweep line first enters movable zone A, and movable zone A is stored in P. In
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Fig. 6. The sweep line method first sorts the rectangle based on its X-coordinate. When the sweep line
touches a rectangle, the rectangle is compared with all the rectangles stored in P. When a sweep line leaves
a rectangle, that rectangle is removed from P.

ALGORITHM 1: Line Sweep Method to Identify Overlapping Rectangle

fori=0—->i<N-1do
| X < XUnpepx Unrighex
end
Sort X in non-decreasing order for x € X do
if x is leftX for n; then
for n; € P do
if Segment-Overlap(n;, n;)=true then
| Create new edge e;; between n; and n;
end
end
P<~Pun
end
else
| P« P-n
end
end

Figure 6(b), the sweep line enters movable zone D. Movable zone D is then compared
with movable zone A and B to check whether if there exists an overlapping region.
In Figure 6(c), the sweep line leaves movable zone D, which is then removed from P.
Finally, in Figure 6(d), the sweep line leaves movable zone E, and movable zone E is
removed from P.

In the worst-case scenario in which every movable zone overlaps with every other
movable zone, the graph representation of such a scenario is a complete graph. The
time complexity for the line sweep method in a complete graph is O(N2), since no mov-
able zone will be removed from P during the line sweep, and every inserted movable
zone must compare with every other movable zone stored in P. Table I analyzes the
distribution of flip-flops for obtained testcases. Each flip-flop has a movable zone. Dur-
ing the line sweep, each scan needs to compare with an average 4.00% of flip-flops. The
maximum size of P or the maximum overlaps among all movable zones ranges from
1.18% to 43.88% of the total number of flip-flops.

4. FLIP-FLOP MERGING BASED ON AGGLOMERATIVE CLUSTERING

After the intersection graph is constructed, the main challenge lies in determining an
appropriate objective cost for agglomerative clustering for optimization [Ward 1963].
In order to achieve more flip-flop reduction while considering increases in signal wire-
length, the edge cost should reflect the following two criteria: (1) number of edges
removed from the intersection graph and (2) increase in signal wirelength. The first
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Table I. Maximum and Average Size of P

Testcase | FF# | Max. Size P | Avg. Size P | Max. Size P/FF# | Avg. Size P/FF#
cl 98 43 12 43.88% 12.24%
c2 423 92 24 21.75% 5.67%
c3 1,692 187 50 11.05% 2.96%
c4 5,128 349 86 6.81% 1.68%
c5 10,575 472 124 4.46% 1.17%
c6 169,200 1,993 499 1.18% 0.29%
| Avg. | —] — \ — \ 14.86% \ 4.00% \

criteria aims to minimize perturbation to the intersection graph, and the second criteria
aims to minimize perturbation to original placement.

4.1. Agglomerative Clustering of Flip-Flops

To simultaneously consider both criteria into edge cost, the Euclidean distance between
two flip-flops is used to determine the edge cost. Although signal wirelength is measured
in Manhattan distance, it does not accurately reflect the magnitude of displacement.
Using Euclidean distance is more accurate in reflecting the distance between two flip-
flops. Displacement of flip-flops can be minimized when flip-flops are merged within
the shortest distance. Minimal displacement implies less increase to signal wirelength
and less disruption to original placement.

To calculate the edge cost between flip-flop i and flip-flop j, mean points M; and M; of
all pins connected to flip-flop i and flip-flop j are calculated. The edge cost between flip-
flopi and flip-flop j is set to the Euclidean distance between M; and M;. In Equation (1),
M; is the mean point of all pins connected to flip-flop i, where n is the total number of
pins connected to flip-flop i. In Equation (2), Cost; ; is the edge cost between flip-flop i
and flip-flop j.

i<n-1 isn—1
M _ (st My) — (Zi:o pL,x’ ZL:O pz,y> : (1)
n n
Costij = |(Mis — My )% + My, — M2, 2)

For two flip-flops to be mergeable, a valid n-bit flip-flop in a given flip-flop library! is
required. For example, if FF-A is one-bit, FF-B is two-bit, and a three-bit flip-flop does
not exist in the given flip-flop library, FF-A and FF-B can not be merged. During flip-flop
merging, the edge with minimum cost is selected. If two flip-flops can be successfully
merged, a new node representing the merged flip-flop is added to the intersection graph.
Flip-flops being merged and edges connected to them are removed from the intersec-
tion graph. New edges connected to merged flip-flops are added to the intersection
graph.

The algorithm terminates when there is no more edge left in the intersection graph.
In Figure 7(a), the edge that connects node A and node B, is selected. Node A, node B,
and all edges connected to node A and node B are removed from the intersection graph.
Then, the new node Myp is created and added to the intersection graph. Figure 7(c)
illustrates an example that merges M g and node M¢p to a four-bit node Mapcp. A
new edge is created between two nodes if and only if all the nodes form a clique in the
intersection graph. Since there is no edge between Mg and E, no new edge is created

1Agglomerative clustering can handle situations in which a certain flip-flop type is not available in the given
library. A pseudo flip-flop type can be added to overcome this issue. When clustering is completed, clusters
with this pseudo flip-flop type is recursively declustered until no pseudo flip-flop type is found for all clusters.
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Fig. 7. Example of agglomerative clustering in flip-flop merging. (a) Intersection graph; (b) nodes A and B
are merged to a two-bit node Mg, and new edges are created between node Mg to C and Mg to D; (c) nodes
C and D are merged to a two-bit node M¢p, and a new edge is created between Mg and M¢p; (d) node Myp
and M¢p are merged to a four-bit node Mapcp.
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Fig. 8. Placement of merged flip-flops. Blue circle denotes flip-flop and red square denotes pin. (a) Original
flip-flop location; (b) movable zone of flip-flops; (¢c) mergeable zone of two flip-flops; (d) mean point of all pins
connected to flip-flops that are being merged; (e) projection of mean point to mergeable zone; (f) placement
of merged flip-flop.

between Mapcp and E. The algorithm terminates in Figure 7(d), since there is no more
edge in the intersection graph.

4.2. Placement of Merged Flip-Flops
For a merged flip-flop to be successfully relocated, three conditions must be satisfied.

—Slack constraint must be met for all flip-flops.
—Placement density for all bins can not be violated.
—The position of the merged flip-flop must not overlap with other merged flip-flops.

The given layout is partitioned into a set of bins with a given placement density con-
straint. Figure 8 illustrates an example of merged flip-flop placement while satisfying
the density constraint. To place a merged flip-flop, the mean point of all the pins con-
nected to merged flip-flop is first calculated. Then the location of the mean point is
projected onto the boundary of the mergeable zone of two flip-flops.

The projection point is selected as the relocation point. Before placing the merged flip-
flop at the relocation point, the relocation point is first checked to determine whether
it is being occupied and whether the placement density constraint of the placed bin is
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Fig. 9. Illustration on reduction in clock network wirelength by moving sinks to different locations. (a) Orig-
inal position of sinks, wirelength = 54 unit; (b) position of sinks after moving sinks toward the position of
the grandparent node in binary tree representation of merging points, wirelength = 30 unit; (¢) Position
of sinks after moving sinks toward the position of the great-grandparent node in binary tree representation
of merging points, wirelength = 42 unit; (d) position of sinks after moving sinks toward the mean point of
all sinks, wirelength = 48 unit.

violated. If violated, a breadth-first search is conducted to search for the nearest unoc-
cupied point in which both slack and placement density constraints are not violated.

5. CLOCK TREE SYNTHESIS-DRIVEN FLIP-FLOP MERGING AND RELOCATION

The relocated position of a merged flip-flop is essential to the power consumption of the
clock tree. Without considering clock tree topology, a merged flip-flop only needs to be
placed in a position that minimizes increase in signal wirelength. However, within the
scope of clock tree synthesis, the positions of flip-flops are preferably placed in clusters.
Thus, when relocating merged flip-flops, the merging points in the clock tree should be
taken into consideration. Thus, as an extended version to the original flip-flop merging
problem, the problem of CTS-driven flip-flop merging is defined as follows.

Clock Tree Synthesis-Driven Flip-Flop Merging Problem. Given a set of m-bit flip-
flops with corresponding location and the netlist of flip-flops, place the merged flip-flops
in clusters where clock tree wirelength can be reduced.

To consider clock tree topology during flip-flop merging, a pseudo clock tree based
on Chang et al. [2012] is constructed every time after flip-flop merging. Chang et al.
[2012], constructed clock tree in a bottom-up fashion, and the merging points of the
clock tree are represented by a binary tree. The organization of this section is as follows.
We first explain on how to choose an appropriate sink position and then describe the
framework integrating CTS with flip-flop merging.

5.1. Selecting the Appropriate Position to Relocate Merged Flip-Flops

A Deferred Merge Embedding (DME) [Edahiro 1993] based clock tree can be repre-
sented by a binary tree in which each sink is represented by a leaf node and nodes
in each hierarchy level of binary tree represents merging points at different stages.
A common practice in clock tree optimization is to position sinks in cluster such that
the clock tree wirelength can be reduced [Papa et al. 2011]. Moving sinks towards the
merging points in clock tree can orient placement of flip-flop such that they are placed
in compact fashion. In this work, the clustering of sinks is achieved by moving sinks
closer to the merging points of clock tree. Figure 9 illustrates different scenarios on
moving sinks towards different merging points. Through empirical analysis, moving
sinks toward the position of grandparent node in binary tree representation of merging
points is most effective in reducing wirelength of clock network.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 3, Article 40, Pub. date: July 2013.



Agglomerative-Based Flip-Flop Merging and Relocation 40:11

Elip-Flop Merge Clock Tree Synthesis Elip-Flop Placement
2 ] v L
v Identify k clusters Update matched edge in
- ) using k-means intersection graph with
Add n-bit Flip-Flop in clustering ferred ; int
—Dr Flip-Flop Library * preferre n:rglng poin
v Use identified clusters Multi-bit flip flop
Construct as initial merging placement
Intersection Graph candidate for CTS *
* * | n=n+1 |
- Compare each edge in
Conduct Flip-Flop CTS with edge in
Merging intersection graph w
I 1
—— | e—
YES NO
\ 4
| Finish |

Fig. 10. Flowchart of integrating clock tree synthesis in flip-flop merging. N, denotes the given maximum
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Fig. 11. Illustration on selecting an initial merging candidate of sinks using k-means clustering.

5.2. Integrating Clock Tree Synthesis with Flip-Flop Merging

In this section, we present the CTS-driven flip-flop merging algorithm. Two graphs
are constantly reconstructed. One graph is the intersection graph in flip-flop merging,
and the other graph is the binary tree representation of merging points in clock tree.
Figure 10 is a flow chart of the proposed framework.

A pseudo CTS is performed every time after flip-flop merging. During construction
of the clock tree, the selection of pairs of sinks to be merged significantly affects the
quality of the clock tree. To achieve zero skew, a poor selection of merging candidates
creates additional snaking wirelength, which increases the power consumption. To
obtain a global view over the distribution of sinks, k-means clustering is performed to
identify cluster of sinks within near proximity. The identified clusters then serve as the
initial merging candidates for CTS. Figure 11 is an example using k-means clustering
to construct clock tree topology. A similar technique is also applied in Papa et al. [2011]
for latch bundling. When pseudo CTS is completed, each connected pair of nodes in

CTS is compared with the edges in the intersection graph. If there is a match between
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Fig. 12. An example of CTS-driven flip-flop merging. (a) Original intersection graph; (b) synthesized clock
tree of the initial sink position; (c) identified preferable merging points for relocated merged flip-flops; (d)—(e)
the merged two-bit flip-flop is moved as close to its preferable merging point as possible; (f)—(g) intersection
graph after merging two-bit flip-flops; (h) identified preferable merging point; (i)—(j) the merged four-bit
flip-flop is moved as close to its preferable merging point as possible.

a connected pair of sinks in CTS with an edge in the intersection graph, the edge in
the intersection graph will be updated with a preferred merging point.

In the original flip-flop merging problem, flip-flops are iteratively merged until there
is no more edge left in the intersection graph. To integrate with CTS, pseudo CTS
needs to be performed to determine a preferable merging location before flip-flops can
be merged in the next iteration. The preferable merging location for a pair of sinks
is the position of the mutual grandparent node in a binary tree representation of a
DME-based clock tree.

The detail of the framework is described as follows. The flip-flop library begins with
one-bit or two-bit flip-flop type. One iteration of CTS is performed to construct the
binary tree. Flip-flop merging is performed after one iteration of CTS; the maximum
bit number of the multibit flip-flops is limited to two-bit. If there is a matched edge
between the binary tree of the DME-based clock tree and the intersection graph, the
merged flip-flop is positioned as close to the preferable merging point as possible.
Figure 12 is an example of CTS driven flip-flop merging. Figure 12(a) is the intersection
graph and Figure 12(b) is the constructed clock tree. Figure 12(c) identifies the position
of the merging point, as illustrated in Figure 12(d). In Figure 12(e), the merged
flip-flop is positioned as close to the preferred merging point without violating slack
constraint. Figure 12(g)—(j) repeat the process by adding four-bit flip-flops to the flip-
flop library. The process terminates when all flip-flop types are added to the flip-flop
library.

6. EXPERIMENTAL RESULT

To evaluate the effectiveness of our proposed algorithm, our algorithm is com-
pared with previous works on flip-flop merging [Jiang et al. 2011; Wang et al.
2011; Chang et al. 2010]. Six testcases (c1~c6) and flip-flop libraries are obtained
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Table II. Comparison with Original Input and Jiang et al. [2011] on Number of Flip-Flop Reductions

Original [Jiang et al. 2011] Our work on FF merging
# 1/2/4-bit FF Total | Norm.| 1/2/4-bit FF | Total | Norm. 1/2/4-bit FF Total | Norm.
cl 76,22,0 98 2.722 0,4,28 32 | 0.889 2,9,25 36 | 1.000
c2 366,57,0 423 | 2.938 0,6,117 123 | 0.854 8,36,100 144 | 1.000
c3 1464,228,0 1692 | 2.958 0,14,473 487 | 0.851 28,142,402 572 | 1.000

c4 4378,751,0 5128 | 2.922 | 2,21,1459 1482 | 0.844 80,450,1225 1755 | 1.000
c5 9150,1425,0 10575 | 2971 | 2,33,2983 | 3018 | 0.848 160,880,2520 3560 | 1.000
c6 |146400,22800,0 | 169200 | 2.977 | 18,113,47939 | 48070 | 0.846 | 2440,14020,40380 | 56840 | 1.182

[Avg. | — | — [2914] — | — [0.856 — | — [1.000 ]

Table Ill. Comparison with Wang et al. [2011] and Chang et al. [2010] on Number of Flip-Flop Reductions

[Wang et al. 2011] [Chang et al. 2010] Our work on FF merging
# 1/2/4-bit FF Total | Norm. 1/2/4-bit FF Total | Norm. 1/2/4-bit FF Total | Norm.
cl 6,7,25 38 |1.056 8,10,23 41 ]1.139 2,9,25 36 |1.000
c2 16,30,101 147 |1.021 24,36,96 156 | 1.083 8,36,100 144 | 1.000

3 70,125,400 595 | 1.040 | 84,146,386 616 | 1.077 | 28,142,402 572 | 1.000
cd | 232,402,1211 |1845|1.051| 242.469,1175 | 1886 |1.075| 80,450,1225 | 1755 | 1.000
c5 | 484,806,2476 | 3766 |1.058| 480,920,2420 | 3820 | 1.073| 160,880,2520 | 3560 | 1.000
¢6 |7580,13508,39351|60439| 1.063 |7320,14780,38780/60880| 1.071 |2440,14020,40380|56840 | 1.182

Avg.| — | — [1.048] — | — [1.086] — | — [1.000]

[Chang et al. 2010]. Binary executables of the works [Jiang et al. 2011; Wang et al.
2011; Chang et al. 2010] are obtained from their respective corresponding authors.
Executables from Jiang et al. [2011], Wang et al. [2011], and our work on flip-flop
merging are performed under an Intel Xeon CPU 5160 Cent OS workstation running
at 3.0 GHz. Executables from Chang et al. [2010] are performed under an Intel Core i3
CPU 550 Ubuntu workstation running at 3.2 GHz, since it is compiled with g++ 4.5.4.

An evaluator is implemented to evaluate the number of flip-flop reductions, signal
wirelength, and displacement of flip-flops. The evaluated results for executables are
verified with the corresponding authors [Chang et al. 2010; Wang et al. 2011; Jiang
et al. 2011]. Note that Wanget al. [2011] has a parameter A to adjust weighting between
the number of clock sinks and the signal wirelength and Jiang et al. [2011] have an
additional signal wirelength-driven mode. Both binaries we obtained are configured to
maximize the number of flip-flop reductions.

The CTS engine from Chang et al. [2012] is used to perform clock tree synthesis
for all binaries after flip-flop merging is completed. This CTS engine is a DME-based
CTS engine which can meet stringent slew and slack constraints considering process
variation in the ISPD 2011 Clock Tree Synthesis Contest [Sze 2010]. A converter is
implemented to convert the result after flip-flop merging to ISPD 2011 CTS benchmark
format. In this work, process variation is set to zero, since the effect of process variation
is not our primary concern.

6.1. Flip-Flop and Signal Wirelength Reduction

Tables IT and III present the results of flip-flop number reduction. Compared with the
original benchmark without flip-flop merging, our algorithm can reduce the number
of flip-flops by 65.7%. In comparison with Chang et al. [2010] and Wang et al. [2011],
our proposed algorithm has 8.6% and 4.9% less flip-flops, respectively. In compari-
son with Jiang et al. [2011], our algorithm have an additional 16.9% more flip-flops.
Figure 13 illustrates distribution of sinks after flip-flop merging.
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Fig. 13. Placement of flip-flops for testcase c3 after flip-flop merging. (a) Original placement of flip-flops;
(b) placement of flip-flops after flip-flop merging in Chang et al. [2010]; (c) placement of flip-flops after flip-
flop merging in Wang et al. [2011]; (d) placement of flip-flops after flip-flop merging in Jiang et al. [2011];
(e) placement of flip-flops after our work on flip-flop merging; (f) placement of flip-flops after our work on
CTS-driven flip-flop merging.

Table IV. Comparison on Increase in Signal Wirelength and Execution Time after Flip-Flop Merging

[Jiang et al. 2011] [Wang et al. 2011] [Chang et al. 2010] Our FF merging

# WL(nm) [Norm.Sec., WL(1nm) [Norm. Sec.| WL(nm) |Norm. Sec.| WL(nm) [Norm. Sec.
cl 8606500 |1.061| 0 8215500 [1.013| 0 8196500 |1.010|0.01| 8112500 |1.000| O
c2 | 35495000 [1.162| 0 | 31017000 |1.016|0.06| 33032000 |1.081|0.03| 30534000 |1.000|0.02
c3 | 144232000 [1.174|0.04| 123585000 |1.006|0.29 | 132321000 |1.078|0.07 | 122790000 | 1.000|0.13
cd | 445319500 [1.174|0.11| 379692500 |1.001|0.79 | 405594500 |1.069| 0.2 | 379287500 | 1.000| 0.5
¢5 | 911912000 |1.207(0.25| 755695000 |1.000| 1.95 | 827580000 |1.095|0.49 | 769890000 |1.019| 1
c6 14654546000/ 1.191(3.31{12309247000| 1.000 |36.45(13245195000/1.076 (92.64/12338170000| 1.002 [21.86

Avg] — [L162]1.000 —  [1.006[11.01] —  [1.06827.99 —  [1.004/6.60]

In Table IV, regarding an increase in signal wirelength, greedy flip-flop number
reduction in Jiang et al. [2011] results in most increase in signal wirelength on
all six testcases. In contrast, our work have 16.2% less signal wirelength compared
to Jiang et al. [2011]. In comparison to Wang et al. [2011] and Chang et al. [2010],
our work has 0% to 6.8% less signal wirelength while having more flip-flop number
reductions.

When switching activity is high, an additional increase in dynamic power of signal
wirelength may saturate power reduction in clock network. Table V presents total
capacitance, including clock network and signal wirelength, in response to different
adjustment of activity factor. Unit wire capacitance is set to 0.0002fF/nm, which follows
the configuration in the ISPD 2010 CTS Contest [Sze 2010]. Switching activity is
set to 1.00 for clock network and incrementally adjusted from 0.00 to 0.20 for signal
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Table V. Total Capacitance Including Clock Network Capacitance (Buffer + Sink 4+ Wire) and Capacitance of
Signal Wirelength Multiplied by Different Activity Factor

[Jiang et al. 2011] [Wang et al. 2011] [Chang et al. 2010] [Liu et al. 2012]
Capacitance (fF) Capacitance (fF) Capacitance (fF) Capacitance (fF)
o Sig. Ttl. Nm.| Sig. Ttl. Nm.| Sig. Ttl. Nm.| Sig. Ttl. Nm.

0.00 0.00| 1210.71|1.01 0.00| 1202.28/1.00 0.00| 1224.43|1.02 0.00| 1202.88|1.00
0.05 86.07| 1296.77/1.01 81.97| 1284.24/1.00 86.07| 1310.50/1.02 81.13| 1284.01/1.00
cl/0.10| 172.13| 1382.84/1.01| 163.93| 1366.21/1.00| 172.13| 1396.56/1.02| 162.25| 1365.13|/1.00
0.15| 258.20| 1468.90|1.02| 24590 1448.17/1.00| 258.20| 1482.63|/1.03| 243.38| 1446.26|1.00
0.20| 344.26| 1554.97|1.02| 327.86| 1530.14/1.00| 344.26| 1568.69/1.03| 324.50| 1527.38(1.00
0.00 0.00| 4685.12|1.00 0.00| 4891.21|1.04 0.00| 4905.12|1.05 0.00| 4815.78|1.03
0.05| 354.95| 5040.07|/1.00| 310.17, 5201.38{1.03| 330.32| 5235.44/1.04| 305.34| 5121.12|1.02
c2/0.10| 709.90| 5395.02/1.00| 620.34| 5511.55/1.02| 660.64| 5565.76/1.03| 610.68| 5246.46|1.01
0.15| 1064.85| 5749.97|1.00| 930.51| 5821.72/1.02| 990.96| 5896.08/1.03| 916.02| 5731.80(1.00
0.20| 1419.80| 6104.92|1.01| 1240.68| 6131.89|1.02| 1321.28| 6226.40/1.03| 1221.36| 6037.14|1.00
0.00 0.00| 18282.07|1.00 0.00| 19053.72|1.04 0.00| 19221.31|1.05 0.00| 18799.74|1.03
0.05| 1442.32| 19724.39|1.00| 1235.85| 20289.57|1.03| 1323.21| 20544.52|/1.04| 1227.90| 20027.64|1.02
c3(0.10| 2884.64| 21166.71|1.00| 2471.70| 21525.42|1.02| 2646.42| 21867.73|1.03| 2455.80| 21255.54|1.00
0.15| 4326.96| 22609.03|1.01| 3707.55| 22761.27|1.01| 3969.63| 23190.94|1.03| 3683.70| 22483.44|1.00
0.20| 5769.28| 24051.35|1.01| 4943.40| 23997.12|/1.01| 5292.84| 24514.15/1.03| 4911.60| 23711.34|1.00
0.00 0.00| 51366.42|1.00 0.00| 54474.26|1.06 0.00| 55419.02|1.08 0.00| 53382.78|1.04
0.05| 4453.20| 55819.62|1.00| 3796.93| 58271.16|1.04| 4055.95| 59474.96/1.07| 3792.88| 57175.65|1.02
c4/0.10| 8906.39| 60272.81/1.00| 7593.85| 62068.09|1.03| 8111.89| 63530.91|1.05| 7585.75| 60968.53|1.01
0.15(13359.59| 64726.01|1.00|11390.78| 65865.01|1.02|12167.84| 67586.85/1.04|11378.63| 64761.40|1.00
0.20(17812.78| 69179.20|1.01|15187.70| 69661.94|1.02|16223.78| 71642.80|1.05/15171.50| 68554.28|1.00
0.00 0.00(114012.97|1.00 0.00|119078.82|1.04 0.00|120844.52|1.06 0.00(118176.71|1.04
0.05| 9119.12{123132.09|1.00| 7556.95|126635.77|1.03| 8275.80|129120.32|1.05| 7698.90|125875.61|1.02
¢5/0.10|18238.24|132251.21|1.00(15113.90|134192.72|1.01|16551.60|137396.12| 1.04|15397.80|133574.51|1.01
0.15|27357.36{141370.33|1.00(22670.85(141749.67|1.00|24827.40|145671.92|1.03|23096.70141273.41|1.00
0.20(36476.48150489.45|1.01|30227.80|149306.62|1.00{33103.20|153947.72|1.03|30795.60|148972.31|1.00

Note: a stands for switching activity for signal wirelength, Nm. for normalize, Sig. for capacitance of sig-
nal wirelength multiplied by «, Ttl. for summation of capacitance of clock network and signal wirelength
multiplied by «.

wirelength. Our work on flip-flop merging has the least total capacitance on 10 out of
25 settings, while Jiang et al. [2011] has the least capacitance on 13 out 25 settings.
In general, out work is more suitable for designs when switching activity is 0.15 or
above, and Jiang et al. [2011] is more suitable for designs when the activity factor is
0.10 or less.

6.2. Average Displacement Distance for Merged Flip-Flops

In addition to analyzing a flip-flop’s power and signal wirelength, we also analyze
the average displacement of each merged flip-flop. Minimizing displacement of flip-
flops will try to create least perturbation to original placement. Table VI presents
the results of the average displacement of merged flip-flops. For each merged flip-flop,
we can identify which of the original flip-flops it merged together. Then displacement
between the remembering flip-flop’s original location and its final relocation position
can be calculated. In all six testcases, the original flip-flop is given in one-bit or two-
bit. We perform analysis on all of the testcases for each executable and present the
results by taking the average displacement for one-bit and two-bit flip-flops. Based
on observation, the benefit of agglomerative clustering is two fold: it increases the
least signal wirelength and creates the least perturbation to the original layout. In
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Table VI. Comparison on Average Displacement Distance of Flip-Flops from Original Position to
Relocated Position

Circuit [Jiang et al. 2011] [Wang et al. 2011] [Chang et al. 2010] Our
Testcase | 1-bit(nm) | 2-bit(nm) | 1-bit(nm) | 2-bit(nm) | 1-bit(nm) | 2-bit(nm) | 1-bit(nm) | 2-bit(nm)

cl 37658 49309 41875 19500 41426 22333 38270 19477
c2 40208 47922 38999 19760 38827 21350 36989 18907
c3 40717 48353 39820 19761 38399 21121 37222 18907
c4 41044 48129 40006 20361 38363 21098 37433 19041
c5 41027 48662 39429 20155 38159 21090 37362 18907
c6 41021 48898 39810 20395 38047 21103 37430 18907
Avg. 40279 48546 39990 19989 38870 21349 37451 19027
Norm. 1.076 2.551 1.068 1.050 1.038 1.122 1.000 1.000
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Fig. 14. Illustration on the tradeoff curve between the number of flip-flops and signal wirelength. Our
proposed algorithm can obtain an empirically smooth trade-off between signal wirelength reduction and
number of flip-flop reductions.

contrast, clique-based approaches [Wang et al. 2011; Chang et al. 2010] greedily reduce
the number of flip-flops and neglect information on the physical location of flip-flops.
Regarding Table VI, our algorithm has the least displacement out of all works on
flip-flop merging.

Our agglomerative-based approach offers flexibility in optimizing between signal
wirelength and flip-flop number reduction. An upper bound on flip-flop displacement
can be established by limiting the maximum displacement of flip-flops. Figure 14 is a
trade-off curve between signal wirelength and flip-flop number reduction by altering
the upper bound of flip-flop displacement for test-case ¢3; it can be observed that our
work on flip-flop merging can obtain an empirical smooth trade-off curve. Points on
the upper right of the curve [Wang et al. 2011; Chang et al. 2010] are less optimal
points.

6.3. Result of Clock Tree Synthesis after Flip-Flop Merging

In this section, flip-flop location after flip-flop merging is converted to the ISPD 2010
benchmark format. Slew limit is set to 100 ps; skew limit is set to 7.5 ps; and process
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Table VII. Comparison on Capacitance of Clock Network Using Location of Merged Flip-Flops as Input to CTS
Engine [Chang et al. 2012]

Circuit Testcase cl c2 c3 c4 c5 Norm.
Skew (ps) 0.200 1.586 2.104 2.069 2.860| —
Sink (fF) | 398.440 | 1624.140 | 6496.560 | 19844.020 | 40603.500| —

Original Buffer(fF) | 485.800| 1927.800 | 7036.600 | 31911.100 | 65983.500 | —

Wire (fF) | 586.426 | 2604.800 | 10873.250 | 34426.621 | 70841.548| —
Total (fF) | 1470.666 | 6156.740 | 24406.410 | 86181.740 | 177428.548 | 1.556

Skew (ps) 0.408 0.490 0.992 2.063 1.997| —
Sink (fF) | 327.320 | 1313.760 | 5249.440 | 16065.700 | 32780.020| —
[Jiang et al. 2011] Buffer(fF)| 485.800| 1763.000 | 6377.400 | 14699.800 | 38431.000| —

Wire (fF) | 397.587| 1608.361 | 6655.228 | 20600.921 | 42801.949| —
Total (fF) | 1210.707 | 4685.121 | 18282.068 | 51366.421 | 114012.969 | 1.000

Skew (ps) 0.252 1.145 0.870 2.834 1.829| —
Sink (fF) | 336.140 | 1339.520 | 5365.500 | 16456.160 | 33584.000| —
[Wang et al. 2011] Buffer(fF)| 485.800| 1763.000| 6377.400 | 16183.000 | 39883.300| —

Wire (fF) | 380.335| 1788.710 | 7310.818 | 21835.078 | 45611.517| —
Total (fF) | 1202.275 | 4891.230 | 19053.718 | 54474.238 | 119078.817 | 1.037

Skew (ps) 0.037 0.824 0.681 2.796 1.967| —
Sink (fF) | 339.360 | 1349.040 | 5388.040 | 16501.380 | 33644.800| —
[Chang et al. 2010] Buffer(fF)| 485.800| 1763.000| 6377.400 | 16183.000 | 39749.400| —

Wire (fF) | 399.274 | 1793.078 | 7455.872 | 22734.639 | 47450.315| —
Total (fF) | 1224.434 | 4905.118 | 19221.312 | 55419.019 | 120844.515 | 1.050

Skew (ps) 0.015 1.097 0.716 2.407 1.658| —
Sink (fF) | 334.180| 1336.720 | 5342.680 | 16366.000 | 33376.000| —
Our FF-Merge Buffer(fF)| 485.800| 1763.000| 6377.400 | 15523.800 | 39749.400| —

Wire (fF) | 382.901| 1716.058 | 7079.658 | 21492.976 | 45051.305| —
Total (fF) | 1202.881 | 4815.778 | 18799.738 | 53382.776 | 118176.705 | 1.025

Skew (ps) 0.297 0.662 2.392 2.324 2.024| —
Sink (fF) | 334.180 | 1341.200| 5357.240 | 16392.880 | 33440.960| —
Our CTS-Driven FF-Merge | Buffer(fF) | 485.800 | 1763.000 | 4811.800 | 14123.000 | 39749.400| —
Wire (fF) | 346.219| 1557.159 | 6342.141| 20601.140 | 42482.960 | —
Total (fF) | 1166.199 | 4661.359 | 16511.181 | 51117.020 | 115673.320 | 0.974

variation is set to 0.00. Capacitance of the sink for a one-bit flip-flop is set to 3.5 fF, 6.02
fF for a two-bit flip-flop, and 10.92 fF for a four-bit flip-flop. Table VII presents the total
capacitance of clock network for all works, and Figure 15 presents the synthesized
clock tree after flip-flop merging on testcase c3.

According to observations, the biggest gain from sink number reduction comes from
power reduction in clock tree wirelength, rather than reduction in sink capacitance.
Regarding testcase c¢5 in Table VII, our work on flip-flop merging yields 542 additional
sinks, which reflects a 595.98 fF increase in sink capacitance and 2249.356 {F increase
in wire capacitance. The increase in wire capacitance is roughly three times more
than the increase in sink capacitance. We can overcome this gap by carefully relocating
merged flip-flops in favor of clock tree synthesis. As seen in Table VII, our work on CT'S-
driven flip-flop merging can reduce wire capacitance in the clock network by an average
of 7.82% and can reduce buffer capacitance in the clock network by an average of 6.71%.
Figure 16 plots the sink capacitance and wire capacitance of the synthesized clock
network. In Figure 16, the magnitude on the reduction of sink capacitance due to flip-
flop merging is not as obvious as the reduction in wire capacitance. In Figure 16(b), wire
capacitance can be effectively reduced by carefully choosing the relocation positions of
merged flip-flops.
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(a) Wire capacitance = (b) Wire capacitance =

10873.25 fF. 7455.872 fF.

6655.228 fF. 7079.658 fF.

(d) Wire capacitance = (e) Wire capacitance =

A

S.S.-Y. Liuetal.

Jas
T

(c) Wire capacitance =
7310.818 {F.

o

(f) Wire capacitance =
6342.141 fF.

Fig. 15. Synthesized clock tree using Chang et al. [2012] for testcase C3 after flip-flop merging. (a) Syn-
thesized clock tree on original location of sinks; (b) synthesized clock tree after flip-flop merging in Chang
et al. [2010]; (c) synthesized clock tree after flip-flop merging in Wang et al. [2011]; (d) synthesized clock tree
after flip-flop merging in Jiang et al. [2011]; (e) Synthesized clock tree after our work on flip-flop merging;
(f) synthesized clock tree after our work on CTS-driven flip-flop merging.
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Fig. 16. Comparison of sink capacitance and wire capacitance in a synthesized clock network. The values
of sink capacitance and wire capacitance are normalized to our work in flip-flop merging. (a) Comparison
of sink capacitance of a clock network normalized to our work on flip-flop merging; (b) comparison of wire
capacitance of a clock network normalized to our work on flip-flop merging.
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7. CONCLUSIONS

In this article, we proposed a flip-flop merging algorithm based on agglomerative clus-
tering. Compared to previous works, our proposed algorithm can effectively minimize
disruption to original placement while having more precise control over the increase
in signal wirelength. In spite of additional considerations regarding increase in signal
wirelength and disruption to original placement, our proposed flip-flop merging algo-
rithm still outperforms those of Chang et al. [2010] and Wang et al. [2011] on all aspects
in terms of number of flip-flop reductions, increase in signal wirelength, and execution
time. Out of all binaries we have obtained, our proposed algorothm has minimum dis-
placement of merged flip-flops. In consideration of clock tree power consumption, we
further investigate the effect of flip-flop relocation on clock tree wirelength. Our pro-
posed CTS-driven flip-flop merging can effectively reduce power consumption of the
synthesized clock tree after flip-flop merging.
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