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A Two-Omni-Camera Stereo Vision System With
an Automatic Adaptation Capability to Any System

Setup for 3-D Vision Applications
Shen-En Shih and Wen-Hsiang Tsai, Senior Member, IEEE

Abstract—A stereo vision system using two omni-cameras for
3-D vision applications is proposed, which has an automatic adap-
tation capability to any system setup before 3-D data computation
is conducted. The adaptation, which yields the orientations and
distance of the two omni-cameras, is accomplished by detecting
and analyzing the horizontal lines appearing in the omni-images
acquired with the cameras and a person standing in front of
the cameras. Properties of line features in environments are
utilized for detecting more precisely the horizontal lines that
appear as conic sections in omni-images. The detection work is
accomplished through the use of carefully chosen parameters and
a refined Hough transform technique. The detected horizontal
lines are utilized to compute the cameras’ orientations and
distance from which the 3-D data of space points are derived
analytically. Compared with a traditional system using a pair
of projective cameras with nonadjustable camera orientations
and distance, the proposed system has the advantages of offering
more flexibility in camera setups, better usability in wide areas,
higher precision in computed 3-D data, and more convenience for
nontechnical users. Good experimental results show the feasibility
of the proposed system.

Index Terms—3-D vision applications, automatic adaptation,
omni-camera, omni-image, stereo vision, system setup.

I. Introduction

W ITH the advance of technologies, various types of
vision systems have been designed for many applica-

tions, such as virtual and augmented reality, video surveillance,
environment modeling, TV games. Among these applications,
human–machine interaction is a critical area [1]–[4]. For
example, Microsoft Kinect [5] is a controller-free gaming
system in the home entertainment field, which uses several
sensors to interact with players. Most of these human–machine
interaction applications require acquisitions of the 3-D data
of human bodies, meaning, in turn, the need of precise
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system calibration and setup works to yield accurate 3-D data
computation results in the application environment. However,
from a consumer’s viewpoint, it is unreasonable to ask a user
to set up a vision system very accurately, requiring, e.g., the
system cameras to be affixed at accurate locations in precise
orientations. Contrarily, it is usually preferable to allow a user
to choose freely where to set up the system components.

In addition, many interactive systems used for the previously
mentioned applications are composed of traditional projective
cameras that collect less visual information than systems using
omni-directional cameras (omni-cameras). To overcome these
difficulties, a 3-D vision system that consists of two omni-
cameras with a capability of automatic adaptation to any
camera setup is proposed. While establishing the system,
the user is allowed to place the two cameras freely in any
orientations with any displacement.

Human–machine interaction has intensively been studied for
many years. Laakso and Laakso [6] proposed a multiplayer
game system using a top-view camera, which maps player
avatar movements to physical ones, and uses hand gestures to
trigger actions. Magee et al. [7] proposed a special human-
machine interface, which uses the symmetry between the left
and right human eyes to control computer applications. Zabulis
et al. [8] proposed a vision system composed of eight cameras
mounted at room corners and two cameras mounted on the
ceiling to localize multiple persons for wide-area exercise
and entertainment applications. Starck et al. [9] proposed an
advanced 3-D production studio with multiple cameras. The
design considerations are first identified in that study, and some
evaluation methods are proposed to provide an insight into
different design decisions.

Geometric features, such as points, lines, spheres, in
environments encode important information for online cali-
brations and adaptations [10], [11]. Several methods have been
proposed to detect such features in environments. Ying [12],
[13] proposed several methods for detecting geometric features
when calibrating catadioptric cameras, which use the Hough
transform to find the camera parameters by fitting detected
line features into conic sections. Duan et al. [14] proposed a
method for calibrating the effective focal length of the central
catadioptric camera using a single space line under the condi-
tion that other parameters have been calibrated previously. Von
Gioi et al. [15] proposed a method for detecting line segments
in perspective images, which gives accurate results with a
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controlled number of false detections and requires no
parameter tuning. Wu and Tsai [16] proposed a method for
detecting lines directly in an omni-image using a Hough
transform process without unwarping the omni-image.
Maybank et al. [17] proposed a method based on the
Fisher–Rao metric to detect lines in paracatdioptric images,
which has the advantage that it does not produce multiple
detections of a single space line. Yamazawa et al. [18]
proposed a method for reconstructing 3-D line segments in
images that are taken with three omni-cameras in known
poses based on trinocular vision by the use of the Gaussian
sphere and a cubic Hough space [19]. Li et al. [20] proposed
a vanishing point detection method based on cascaded 1-D
Hough transforms, which requires only a small amount of
computation time without losing accuracy.

In this paper, we propose a new 3-D vision system using two
omni-cameras, which has a capability of automatic adaptation
to any system setup for convenient in-field uses. Specifically,
the proposed vision system, as shown in Fig. 1, consists of two
omni-cameras facing the user’s activity area. Each camera is
affixed firmly to the top of a rod, forming an omni-camera
stand, with the camera’s optical axis adjusted to be horizontal
(i.e., parallel to the ground). The cameras are allowed to
be placed freely in the environment at any location in any
orientation, resulting in an arbitrary system setup. Then, by the
use of space line features in environments, the proposed vision
system can adapt automatically to the arbitrarily established
system configuration by just asking the user to stand still
for a little moment in the middle region of the activity area
in front of the two cameras. After this adaptation operation,
3-D data can be computed precisely, as will be shown by the
experimental results in this paper.

As an illustration of the proposed system, Fig. 1(c) shows
the case of a user using a cot-covered fingertip as a 3-D
cursor point, which is useful for 3-D space exploration in video
games, virtual/augmented reality, 3-D graphic designs, and so
on. The fingertip is detected and marked as red in that figure,
whose 3-D location can be computed by triangulation.

In contrast with a conventional vision system with two
cameras whose configuration is fixed, the proposed system
has several advantages. First, the system can be established
freely, making it suitable for wide-ranging applications. This is
a highly desired property, especially for consumer electronics
applications such as home entertainment or in-house surveil-
lance since the user can place the system components flexibly
without the need to adjust the positions of the existing furniture
in the application environment. Second, since the proposed
vision system uses omni-cameras, the viewing angle of the
system is very wide. This can be seen as an improvement
over commercial products such as Microsoft Kinect since the
player can now move more freely at a close distance to the
sensors. This advantage is very useful for people who only
have small spaces for entertainments. Also, the two cameras
in the proposed system are totally separated from each other at
a larger distance, resulting in the additional merit of yielding
better triangulation precision and 3-D computation results due
to the resulting longer baseline between the two cameras.

In the remainder of this paper, an overview of the proposed

Fig. 1. Configuration and an illustration of the usage of proposed system.
(a) Illustration. (b) Real system used in this paper. (c) Omni-image of a user
wearing a finger cot (marked as red).

system is described in Section II, and the details of the
proposed techniques for use in the system are presented in
Sections III–VI. Experimental results are included in
Section VII, followed by conclusions in Section VIII.

II. Overview of Proposed System

The use of the proposed system for 3-D vision applications
includes three stages: 1) in-factory calibration; 2) in-field
system adaptation; and 3) 3-D data computation. The goal
of the first stage is to calibrate the camera parameters
efficiently in the factory environment. For this, a technique
using landmarks and certain conveniently measurable system
features is proposed. In the second stage, an in-field adaptation
process is performed, which uses line features in environments
to automatically compute the orientations of the cameras and
the distance between them (i.e., the baseline of the system).
In this stage, a user with a known height is asked to stand in
the middle region in front of the two cameras to complete the
adaptation. Subsequently, the 3-D data of any feature point
(such as the finger tip shown in Fig. 1(c)) can be computed
in the third stage.

A sketch of the three operation stages of the proposed
system is described in the following algorithm (Algorithm 1).
To simplify the expressions, we will call the left and right
cameras as Cameras 1 and 2, and their camera coordinate
systems (CCSs) as CCSs 1 and 2, respectively.

Via Algorithm 1, the meaning of system adaptation, which
is the main theme of this paper, can be made clearer now:
only with the input of the knowledge of the user’s height (see
Step 6.3), the proposed system can infer the required values
of the cameras’ orientations β1 and β2 and baseline D for use
in computing the 3-D data of space points. This is not the
case when using a conventional stereo vision system with two
cameras, in which the configuration of the cameras is fixed
with their orientations and baseline unchangeable. This merit
of the proposed system makes it easy to conduct a system
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Algorithm 1 Sketch of the Proposed System’s Operation

Stage 1. Calibration of omni-cameras.
Step 1. Set up a landmark and select at least two feature

points Pi on it, called landmark points.
Step 2. Perform the following steps to calibrate Camera 1.

2.1. Measure manually the radius of the mirror base of
the camera as well as the distance between the
camera and the mirror, as stated in Section VII-A.

2.2. Take an omni-image I1 of landmark points Pi with
Camera 1 and extract the image coordinates of those
pixels pi which correspond to Pi.

2.3. Detect the circular boundary of the mirror base in
I1, compute the center of the boundary as the
camera center, and derive accordingly the focal
length f1 of the camera, as described in
Section VII-A.

2.4. Calculate the eccentricity ε1 of the hyperboloidal
mirror shape using the coordinates of pi and those
of Pi, as stated in Section VII-A.

Step 3. Take an image I2 of landmark points Pi with
Camera 2 and perform operations similar to those
of the last step to calibrate the camera to obtain its
focal length f2 and eccentricity ε2.

Stage 2. Adaptation to the system setup.
Step 4. Place the two camera stands at proper locations

with appropriate orientations to meet
the requirement of the application activity.

Step 5. Perform the following steps to calculate the included
angle φ between the two optical axes of the cameras
as shown in Fig. 1(a).

5.1. Capture two omni-images I1 and I2 of the application
activity environment with Cameras 1 and 2,
respectively.

5.2. Detect space line features Li in omni-image I1 using
the Hough transform technique as well as the
parameters f1 and ε1, as described in Section IV.

5.3. Detect space line features Ri in omni-image I2

similarly with the use of the parameters f2 and ε2.
5.4. Calculate angle φ using the detected line features Li

and Ri in a way as proposed in Section V.
Step 6. Perform the following steps to calculate the

orientations of the two cameras and the baseline
between them.

6.1. Ask a user of the system to stand in the middle
region in front of the two omni-cameras and take
two images of the user using the cameras.

6.2. Extract from the acquired images a pre-selected
feature point on the user’s body, and compute the
respective orientations β1 and β2 of the two
cameras using the angle φ, as described in
Section VI-A.

6.3. Detect the user’s head and foot in the images,
compute the in-between distance up to a scale, and
use the distance as well as the corresponding
known height of the user to calculate the baseline D

between the cameras, as described in Section VI-C.
Stage 3. Acquisition of 3-D data of space points.

Step 7. Take two omni-images of a selected space feature
point P (e.g., a fingertip, a handed light point, a
body spot, etc.) with both cameras, and extract the
corresponding pixels p1 and p2 in the taken images.

Step 8. Calculate as output the 3-D position of P in terms
of the coordinates of p1 and p2, the focal lengths f1

andf2, the eccentricities ε1 and ε2, the orientations
β1 and β2, and the baseline D, using a triangulation
based method described in Section VI-B.

setup in any room space by any people for more types of
applications, as mentioned previously.

III. Structure of Omni-Cameras

The structure of omni-cameras used in this paper and the
associated coordinate systems are defined as shown in Fig. 2.
An omni-camera is composed of a perspective camera and
a hyperboloidal-shaped mirror. The geometry of the mirror
shape can be described in the CCS as

(Z − c)2

a2
− X2 + Y 2

b2
= 1, a2 + b2 = c2, Z < c.

The relation between the camera coordinates (X, Y, Z) of
a space point P and the image coordinates (u, v) of its
corresponding projection pixel p may be described [22] as

tan α =
Z√

X2 + Y 2
=

(ε2 + 1) sin β − 2ε

(ε2 − 1) cos β
(1)

cos β =
r√

r2 + f 2
sin β =

f√
r2 + f 2

r =
√

u2 + v2 (2)

where ε is the eccentricity of the mirror shape with its value
equal to c/a, and α is the elevation angle of P , respectively.
The azimuth angle θ of P can be expressed in terms of the
image and camera coordinates as

cos θ=
X√

X2 + Y 2
=

u√
u2 + v2

sin θ=
Y√

X2 + Y 2
=

v√
u2 + v2

.

(3)

IV. Space Line Detection in Omni-Images

We now describe the proposed method for detecting hori-
zontal space lines in omni-images. Several ideas adopted to
design the method are emphasized first. First, it is desired to
eliminate initially as many nonhorizontal space lines in each
acquired image as possible since only horizontal space lines
are used to find the included angle φ, as described in Section V.
Second, it is hoped that the method can deal with large
amounts of noise so that it can be used in an automatic process.
Third, it is preferable to utilize certain properties in man-made
environments to improve the detection result, including the two
properties that space lines are mostly horizontal or vertical,
and that space line edges are usually not close to one another.

This section is organized as follows. First, a quadratic
formula describing the projection of a space line in an omni-
image is derived in Section IV-A. Next, a refined Hough
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Fig. 2. Camera and hyperboloidal-shaped mirror structure.

transform technique for detecting space lines is proposed in
Section IV-B, which uses a novel adaptive thresholding scheme
to produce robust detection results. Also, the projection of a
vertical space line is derived and analyzed in Section IV-C. A
peak cell extraction technique proposed for use in the refined
Hough process is described in Section IV-D.

A. Projection of a Space Line in an Omni-Image

Given a space line L, we can construct a plane S that goes
through L and the origin Om of a CCS, as shown in Fig. 3. Let
NS = (l, m, n) denote the normal vector of S. Then, any point
P = (X, Y, Z) on L satisfies the following plane equation:

NS ·P = lX + mY + nZ = 0 (4)

where “.” denotes the inner-product operator. Combining (4)
with (1) and (3), we get

lRcosθ + mRsinθ + nRtanα = 0 (5)

where R =
√

X2 + Y 2. Dividing (5) by R
/√

l2 + m2 + n2 leads
to

l cos θ√
l2 + m2 + n2

+
m sin θ√

l2 + m2 + n2
+

n tan α√
l2 + m2 + n2

= 0

that can be transformed into the following form:

A cos θ +
√

1 − A2 − B2 sin θ + B tan α = 0 (6)

with the two parameters A and B being defined as

A =
l√

l2 + m2 + n2
, B =

n√
l2 + m2 + n2

. (7)

Accordingly, the normal vector NS of plane S, originally being
(l, m, n), can now be expressed alternately as

NS = (A,
√

1 − A2 − B2, B). (8)

It is assumed that m ≥ 0 in (6) and (8). In the case that
m < 0, we may consider NS = (−l, −m, −n) instead, which
also represents the same space plane S. Also, it can be
seen from (7) that parameters A and B satisfy the constraint
A2 + B2 = 1, implying that the Hough space is of a circle
shape.

Parameters A and B are used in the Hough transform to
detect space lines in omni-images. These two parameters are
skillfully defined in (7), leading to several advantages. First,
removals of vertical space lines can easily be achieved by
ignoring periphery regions, as described in Section IV-C. Next,

Fig. 3. Illustration of a space line L projected on an omni-image as IL.

since the possible values of A and B range from −1 to 1, the
size of the Hough space is fixed within this range. This is a
necessary property to use the Hough transform technique, and
is an improvement on a previous work [16]. Also, parameters
A and B are used directly to describe the directional vector
of the space line L, as will be shown in (14). Hence, one
may divide the Hough space into more cells to yield a better
precision.

Combining (6) with (1) through (3), we can derive a conic
section equation to describe the projection of a space line L
onto an omni-image as follows:

FA,B(u, v) = C1u
2 + C2uv + C3v

2 + C4u + C5v + C6 = 0 (9)

where the coefficients C1 through C6 are

C1 = A2 − B2
(
C2

7 − 1
)

C2 = 2A
√

1 − A2 − B2

C3 = 1 − A2 − C2
7B

2 C4 = 2ABC7f

C5 = 2BC7

√
1 − A2 − B2f C6 = B2f 2

C7 =
ε2 + 1

ε2 − 1
.

The quadratic formula (9) will be called the target equation
in the Hough transform subsequently, since the goal of the
detection process is to find curves described by it in an omni-
image.

B. Hough Space Generation With Adaptive Thresholding

We define the Hough space to be 2-D with the parameters
A and B described previously. Furthermore, we define the
cell support for a cell at (A, B) in the Hough space as the
set of those pixels that contribute to the accumulation of the
value of that cell. Let L denote a space line described by the
two parameters (A, B). Two properties of cell supports are
desirable: 1) the pixels of the projection IL of L onto the
omni-image are all included in the cell support for the cell
(A, B); and 2) the pixels not on IL are not included in this
cell support. Furthermore, it is desired that the shape of the
cell support is of a certain fixed width and not too “thin” so
that (edge) pixels originally belonging to IL, but with small
detection errors, can still contribute to the cell value. In short,
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Fig. 4. Shapes of cell supports of four chosen Hough cells yielded by three
methods. (a) Using traditional accumulation method. (b) Using a threshold
δ = 3000. (c) Using the proposed technique.

a cell support is desired to be a space line projection with
a certain width everywhere along the line, which is called
an equal-width projection curve hereafter. In this section, we
first show that commonly used curve detection methods do
not generate desired equal-width projection curves as cell
supports, as shown in Fig. 4(a) and (b); thus, we propose in
this paper an adaptive method for solving this problem to yield
better results such as that shown in Fig. 4(c).

A commonly used method for curve detection to calculate
the cell support is as follows [30]–[32]: for each pixel at
coordinates (u, v), find all the Hough cells with their parameter
values (A, B) satisfying the target equation (9), and increment
the value of each cell so found by one. Some cell supports
calculated by this method are shown in Fig. 4(a), showing that
the cell supports for some cells are not with equal widths.

Another straightforward method for calculating the cell
support is as follows [16]–[33]: define a threshold δ first, and
for each (edge) pixel with coordinates (u, v), find all the Hough
cells with their parameters (A, B) satisfying the equation

∣∣FA,B(u, v)
∣∣ =

∣∣C1u
2 + C2uv + C3v

2 + C4u + C5v + C6

∣∣ ≤ δ

(10)
and increment the value of each cell so found by one. However,
as shown in Fig. 4(b), it is impossible to find a good threshold
δ that makes all the projection curves be with equal widths. To
solve this problem, it is necessary to develop a new method for
adaptively determining the threshold value δ for each different
cell support and each different pixel.

Conceptually, to draw an equal-width curve of F = 0, we
have to compute the function values of F on the projection
curve boundary, and define the threshold δ accordingly. To
this aim, the method that we propose makes a novel use of
total derivatives to estimate the function values of F on the
boundary, and sets the threshold value δ in (10) accordingly.
More specifically, δ is set in the proposed method to be

δ(A, B, u, v) = max
(�u,�v)=(±1,±1)

(
∂FA,B

∂u
�u +

∂FA,B

∂v
�v

)
(11)

for different Hough cells with parameters (A, B) and different
pixels at coordinates (u, v). Accordingly, as shown in Fig. 4(c),
the drawn curves are now with uniform widths.

In summary, the Hough space can be generated using (10)
with threshold δ calculated by (11). With this improvement, the

cell supports become equal-width projection curves, making
the Hough transform process more robust to yield a precise
peak value that represents a detected space line.

C. Additional Constraint on Vertical Space Lines

In man-made environments, most lines are either parallel
to the floor (that is called horizontal space lines hereafter) or
perpendicular to the floor (that is called horizontal space lines).
If we can eliminate vertical space lines from the detection
results, the rest of them are much more likely to be horizontal
ones that are desired, as stated in Section V. In this section, a
constraint on the vertical space line is derived for the purpose
of removing such lines.

As mentioned earlier, the omni-camera stands are vertically
placed on the floor with the y-axis of the camera coordinate
system being a vertical line, as depicted in Fig. 1(a). As a
result, the directional vector vL of a vertical space line L is
just (0, 1, 0). Let S be the space plane going through L and the
origin Om that is at camera coordinates (0, 0, 0). Also, let NS =
(l, m, n) be the normal vector of plane S. By definition, normal
vector NS is perpendicular to vL, leading to the constraint

NS · vL = (l, m, n) (0, 1, 0) = m = 0.

This constraint, when combined with (7), results in the equality
A2 + B2 = 1, which shows subtly that the Hough cells of
vertical space lines are located in the periphery region of
the circular Hough space (as mentioned in Section IV-A).
As a result, vertical space lines can easily be removed by
just ignoring the periphery region of the Hough space. In the
proposed method, this is achieved automatically by applying
a filter on the Hough space, as described in Section IV-D.

Note that, in general, vertical and horizontal space lines do
not correspond to curve segments with vertical and horizontal
chords in omni-images. In fact, the projections of horizontal
space lines may be with any direction, as shown in Fig. 11(f).
Also, the removal of a vertical space line will sometimes also
eliminate a few horizontal space lines lying on the plane that
goes through the vertical space line and the origin of the
camera coordinate system. However, as shown in Figs. 7(a),
(b) and 11(e) and (f), many horizontal space lines can still be
extracted.

D. Peak Cell Extraction

After the Hough space is generated, the last thing to
do is to extract cells with peak values, called peak cells,
which represent the detected space lines. The simplest way to
accomplish this is to find the cells with large values. However,
if we do so to get peak cells such as those shown in Fig. 5(a),
we might get a bad detection result such as that shown in
Fig. 5(b) with many of the detected space lines being too
close to one another, from which less useful space lines may
be extracted.

To solve this problem, we notice that the line edges in an
environment mostly are not so close mutually, meaning that
two detected horizontal lines usually are separated for a certain
distance. This, in turn, means that extracted peak cells should
not be too close to one another. To find the peak cells that are
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Algorithm 2 Detection of horizontal space lines in the form of conic
sections in an omni-image.

Input: an omni-image I.
Output: 2-tuple values (Ai, Bi) as defined in (7) which

describe detected horizontal space lines in I.
Step 1. Extract the edge points in I by an edge detection

algorithm [25].
Step 2. Set up a 2-D Hough space H with two parameters

A and B, and set all the initial cell values to be zeros.
Step 3. For each detected edge point at coordinates (u, v)

and each cell C with parameters (A, B), if
(u, v, A, B) satisfies (10) in which the threshold value
δ is adaptively calculated by (11), then increment
the value of C by one.

Step 4. Apply the filter described by (12) to Hough space
H, choose those cells with maximum values, and
take their corresponding parameters (Ai, Bi)
as output.

not too close to each other, a filter as follows is applied on
the Hough space:

1

25

⎡
⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 24 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎦ . (12)

Then, we extract peak cells by choosing the cells with large
values in the filtered Hough space to yield a better detection
result, as shown in Fig. 5(c) and (d).

Furthermore, it is noted that when applying the filter to
the Hough space, one of the side effects is the removal of
the periphery region. This is a desired property mentioned in
Section IV-C: the removal of the periphery region is equivalent
to the removal of vertical space lines. Thus, expectedly, we
can get more horizontal lines as desired. To sum up, we
have proposed a new method for detecting horizontal space
lines in omni-images with several novel techniques also being
proposed in Sections IV-A–IV-D to improve the detection
result. The proposed method for horizontal space line detection
is summarized as Algorithm 2.

V. Calculation of Included Angle φ Between Two

Cameras’ Optical Axes Using Detected Lines

In the proposed vision system, the omni-cameras are
mounted on two vertical stands with the optical axes being
parallel to the floor plane as mentioned previously, but the
cameras’ optical axes are allowed to be nonparallel, making
an included angle φ as depicted in Fig. 1(a). To accomplish the
3-D data computation work under an arbitrary system setup,
the included angle φ must be calculated first. A method for cal-
culating the angle φ using a single manually chosen horizontal
space line is proposed first in Section V-A. However, in order
to conduct the adaptation process automatically, we have to
calculate the angle φ using multiple automatically extracted
horizontal space lines. To achieve this, a novel method is

Fig. 5. Comparison of the traditional peak cell extraction method and the
proposed one. (a) Hough space. (b) Fifty detected space lines using traditional
method. (c) Post-processed Hough space. (d) Fifty detected space lines using
proposed method.

proposed in Section V-B, which utilizes all the detected space
lines from the two omni-images taken with the cameras.

The proposed method has several advantages. First, only
the directional information of the space line, which is a robust
feature against noise, is used. Next, no line correspondence
between the two omni-images need be derived; that is, it is
unnecessary to decide which line in the left omni-image corre-
sponds to which one in the right omni-image. This makes the
proposed method fast, reliable, and suitable for a wide-baseline
stereo system such as the one proposed in this paper. Also, the
proposed method makes use of a good property of the man-
made environment—many line edges in such environments
are parallel to one another, leading to an improvement on the
robustness and correctness of the computation result.

A. Calculating Angle φ Using a Single Horizontal Space Line

In this section, a method for calculating the angle φ between
the two cameras’ optical axes is proposed, using a single
horizontal space line L in the environment. Let (A1, B1) be
the parameters corresponding to line L in an omni-image taken
with Camera 1, vL = (vx, vy, vz) be the directional vector of L
in CCS 1, and S1 be the space plane going through line L and
the origin of CCS 1. The normal vector of S1 can be derived,
according to (8), to be

n1 = (A1,

√
1 − A2

1 − B2
1, B1).

Since S1 goes through line L, we get to know that vL and n1

are perpendicular, resulting in

vL·n1 = vxA1 + vy

√
1 − A2

1 − B2
1 + vzB1 = 0. (13)

Furthermore, since L, being horizontal, is parallel to the xz-
plane as shown in Fig. 1(a), we get another constraint vy = 0.
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Fig. 6. Illustration of the angles φ1, φ2, and φ. (a) Definition of φ1.
(b) Relation between φ1, φ2, and φ.

This constraint can be combined with (13) to get

vL = (vx, vy, vz) = (B1, 0, −A1). (14)

Next, by referring to Fig. 6(a), it can be seen that the angle
φ1 between the x-axis of CCS 1 and space line L is

φ1 = tan−1(−A1/B1).

Similarly, let (A2, B2) be the parameters corresponding to
the horizontal space line L in Camera 2. By following the
same derivations described above, the angle φ2 between the
x-axis of CCS 2 and line L can be derived to be

φ2 = tan−1(A2/B2).

As depicted in Fig. 6(b) where L1 and L2 specify identically
the single horizontal space line L, the angle φ between the two
cameras’ optical axes can now easily be computed to be

φ = φ1 − φ2 = tan−1( A1/B1) − tan−1( −A2/B2). (15)

B. Calculating Angle φ Reliably Using Several Detected Lines

Horizontal space lines can be detected from an omni-
image using Algorithm 2, as described in Section IV. Let L1

be a space line so detected from the left omni-image with
parameters (A1, B1), and let L2 be another detected similarly
from the right omni-image with parameters (A2, B2). As stated
previously, the angle φ can be calculated using (15) if the space
lines L1 and L2 are an identical horizontal space line L in the
environment.

However, the line correspondence problem of deciding
whether L1 and L2 are identical or not is difficult for several
reasons, especially for a wide-baseline stereo system such as
the one proposed in this paper. First, the respective viewpoints
and viewing fields of the two cameras differ largely. Thus,
environment features, such as lighting and color, involved in
the image-taking conditions at the two far-separated cameras
might vary largely as well. Also, the extrinsic parameters of the
two cameras are unknown; therefore, the involved geometric
relationship is not available for use to determine the line
correspondences. To get rid of these difficulties, we propose
a novel statistics-based method for reliably finding the angle
φ without the need to find such line correspondences.

More specifically, the proposed method makes use of two
important properties. First, it is noticed that the correct value
of the angle φ can still be calculated using (15) even when the
two space lines L1 and L2 are not an identical one, but are
parallel to each other. This can be seen from the fact that the

angles φ1 and φ2 remain the same if L1 and L2 are parallel so
that the computed angle φ is still correct, as desired. Second, it
can be seen that in man-made environments, many of the line
edges are parallel to one another to make the environment neat
and orderly. For example, tables, shelves, and lights are always
placed to be parallel to walls and to one another. Combining
these two properties, we can conclude that any two detected
space lines L1 and L2 are very likely to be parallel to each
other. Based on this observation, we assume every possible
line pair L1 and L2 to be parallel, and compute accordingly a
candidate value for angle φ, where L1 is one of the space lines
detected from the left omni-image, and L2 is another detected
from the right omni-image. Then, we infer a correct value for
angle φ from the set of all the computed candidate values via
a statistical approach based on the concept of voting.

In more detail, the proposed method is designed to include
three main steps. First, we extract space lines from the left
omni-image as described in Algorithm 2, and denote their line
parameters (A and B) as li. Similarly, we detect space lines
from the right omni-image with their parameters denoted as
rj . In addition, we define two weights w(li) and w(rj) for li
and rj , respectively, to be the cell values in the post-processed
Hough space derived in Step 4 of Algorithm 2, which represent
the trust measures of the detected space lines. Then, from each
possible pair (li, rj), we calculate a value φij for angle φ using
(15), and a third weight wij defined as w(li) · w(rj). The value
wij may be regarded as the trust measure of the calculated
angle φij . Finally, we set up a set of bins, each for a distinct
value of φ, and for each computed value φij , we increase the
value of the corresponding bin by the weight wij . After such
a weight accumulation work is completed, the bin with the
largest value is found and the corresponding angle φij is taken
as the desired value for angle φ.

An experimental result so obtained is shown in Fig. 7.
In Fig. 7(a) and (b), 50 space lines with parameters li and
rj were detected using Algorithm 2 from the left and right
omni-images, respectively. For each possible pair (li, rj) where
1 ≤ i, j ≤ 50, the corresponding angle φij and weight
wij were calculated and accumulated in bins, as described
previously. The accumulation result is shown in Fig. 7(c) with
the maximum occurring at φ = −23°, which is taken finally
as the derived value of angle φ.

VI. Proposed Technique for Baseline Derivation

and Analytic Computation of 3-D Data

The world coordinate system X–Y–Z is defined as depicted
in Fig. 8. The x-axis goes through the two camera centers O1

and O2, the y-axis is taken to be parallel to the Y -axes of
both CCSs, the z-axis is defined to be perpendicular to the
XY -plane, and the origin is defined to be the origin O1 of
CCS 1. It is noted here that since the two omni-cameras are
affixed firmly on the omni-camera stands and adjusted to be
of an identical height as described in Section I, the axes X, Z,
X1, Z1, X2, and Z2 are all on the same plane, as illustrated
in Fig. 8.

Since the two omni-cameras are allowed to be placed
arbitrarily at any location with any orientation, it is necessary



SHIH AND TSAI: TWO-OMNI-CAMERA STEREO VISION SYSTEM WITH AN AUTOMATIC ADAPTATION CAPABILITY 1163

Fig. 7. Experimental result of the proposed adaptation method for detecting
included angle φ. (a), (b) Left and right omni-images with the detected
space lines superimposed on it. (c) Accumulation result for φ with maximum
occurring at φ = −23°.

to find the baseline D and the orientation angles β1 and β2

(as defined in Fig. 8) in advance to calculate the 3-D data of
space points. A novel method for calculating the orientation
angles is proposed first in Section VI-A. After the orientations
are derived, the 3-D data can be determined up to a scale, as
discussed in Section VI-B. Then, a method using the known
height of the user to determine the baseline D is proposed in
Section VI-C. After the baseline D is derived, the absolute
3-D data of space feature points can be derived by a similar
method as proposed in Section VI-B. It is emphasized that all
computations involved in these steps are done analytically, i.e.,
by the use of formulas without resorting to iterative algorithms.

A. Finding Two Cameras’ Orientations

Let the camera coordinates of CCS 1 be denoted as (X1, Y1,
Z1), and those of CCS 2 as (X2, Y2, Z2), as shown in Fig. 8.
As mentioned previously, the two CCSs X1–Y1–Z1 and X2–
Y2–Z2 are allowed to be oriented arbitrarily (with Y1 and Y2

parallel to each other), and the only knowledge acquired by
the proposed system is the angle φ between the two optical
axes Z1 and Z2, which is derived using the detected space
lines, as described previously in Section V.

To derive the angles β1 and β2, the user is asked to stand in
the middle region in front of the two omni-cameras so that a
feature point Puser on the user’s body may be utilized to draw a
mid-perpendicular plane of the line segment O1O2, as shown
in Fig. 8. Let (X1, Y1, Z1) be the coordinates of Puser in CCS
1, and (u1, v1) be the corresponding pixel’s image coordinates
in the left omni-image. From (1) and (3), we have the equality
[

X1 Y1 Z1
]T

=
√

X2
1 + Y 2

1

[
cos θ1 sin θ1 tan α1

]T

where cos θ1, sin θ1, and tan α1 are computed from (u1, v1) ac-
cording to (1) and (3). This equality shows that the directional
vector between O1 and Puser is (cos θ1, sin θ1, tan α1) in CCS
1. An angle 
1 is defined on the XZ-plane as illustrated in
Fig. 8, which can be expressed as 
1 = tan−1(tan α1/cos θ1).

Fig. 8. Top view of the coordinate systems. The baseline D, orientation
angles β1 and β2, and a point Puser on the user’s body are also drawn.

Similarly, the angle y2 defined on the XZ-plane can be derived
to be tan−1(tan α2/cos θ2). Accordingly, we can derive β1 to be

β1 = ψ1 −
(

π

2
− ψ2 − ψ1 + φ

2

)
=

ψ1 + ψ2 + φ

2
− π

2

and β2 is just β2 = β1 − φ. This completes the derivations of
the orientation angles β1 and β2 of the two cameras.

B. Calculating 3-D Data of Space Feature Points

Let P be a space feature point with coordinates (X, Y, Z) in
CCS 1, and let the projection of P onto the omni-image taken
by Camera 1 be the pixel p1 located at image coordinates (u1,
v1). From (1) and (3) with R1 =

√
X2

1 + Y 2
1 , we have

[
X1 Y1 Z1

]T
= R1

[
cos θ1 sin θ1 tan α1

]T
(16)

where cos θ1, sin θ1, and tan α1 are computed from (u1, v1)
by (1) and (3). Equation (16) describes a light ray L1 going
through the origin O1 with directional vector d1

′ = [cos θ1

sin θ1 tan α1]T in CCS 1. To transform the vector into the
coordinate system X − Y − Z, we have to rotate d1

′ along
the y-axis through the angle β1, as illustrated in Fig. 8. As a
result, the transformed light ray L1 goes through (0, 0, 0) with
its directional vector d1 being

d1 =

⎡
⎣cos β1 0 − sin β1

0 1 0
sin β1 0 cos β1

⎤
⎦

⎡
⎣cos θ1

sin θ1

tan α1

⎤
⎦ . (17)

Similarly, let the space feature point P be located at (X′,
Y ′, Z′) in CCS 2 and its projection onto the omni-image taken
by Camera 2 be the pixel p2 located at image coordinates (u2,
v2). Then, similarly to the derivation of (16), we can obtain
the following equation to describe L2 in CCS 2:

[
X2 Y2 Z2

]T
= R2

[
cos θ2 sin θ2 tan α2

]T
(18)

where R2 =
√

X2
2 + Y 2

2 . As illustrated in Fig. 8, we can
transform the light ray L2 from CCS 2 to the coordinate system
X–Y–Z by rotating the ray through the angle β2 and translating
it by the vector [D 0 0]T. As a result, the transformed light ray
L2 goes through (D, 0, 0) with its directional vector d2 being

d2 =

⎡
⎣cos β2 0 − sin β2

0 1 0
sin β2 0 cos β2

⎤
⎦

⎡
⎣cos θ2

sin θ2

tan α2

⎤
⎦ . (19)
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We now have two light rays L1 and L2 both going through
the space point P. If everything, including the works of
system setup, camera calibration, and feature detection, is
conducted accurately without incurring errors, these two lines
should intersect perfectly at one point that is just P. But,
unavoidably, various errors of imprecision always exist so
that the intersection point does not exist. One solution to this
problem is to estimate the coordinates of point P as those of
the midpoint Pm on the shortest line segment between the two
light rays L1 and L2, as illustrated in Fig. 9.

To obtain this solution, let d be the vector perpendicular
to d1 and d2 as shown in Fig. 9, which can be expressed as
d1×d2, where × denotes the cross-product operator. Since Q1

is on light ray L1, its coordinates (X1, Y1, Z1) can be expressed
as [

X1 Y1 Z1
]T

=
[

0 0 0
]T

+ λ1d1 (20)

where λ1 is an unknown scaling factor. Let S1 be the plane
containing P2, Q1, and Q2. As illustrated in Fig. 9, the normal
vector n1 of plane S1 is d2 × d, or equivalently, d2 × (d1 × d2).
Since P2 and Q1 are both on this plane, we get to know that the
vector P2Q1 is perpendicular to n1. This fact can be expressed
by

−−−→
P2Q1 · n1 =

([
X1 Y1 Z1

]T − [
D 0 0

]T
)

·
(d2 × (d1 × d2)) = 0.

Combining the above equality with (20), we get(
λ1d1 − [

D 0 0
]T

)
· (d2 × (d1 × d2)) = 0

from which the unknown scalar λ1 can be solved to be

λ1 = D
(d2 × (d1 × d2)) · e1

(d2 × (d1 × d2)) · d1
(21)

where e1 = [1 0 0]T. Similarly, since Q2 is on light ray L2,
the coordinates (X2, Y2, Z2) of Q2 can be expressed as[

X2 Y2 Z2
]T

=
[

D 0 0
]T

+ λ2d2 (22)

where λ2 is another unknown scaling factor. Let S2 be the
plane containing P1, Q1, and Q2. The normal vector n2 of
this plane is d1×d = d1×(d1×d2). Since P1 and Q2 are both
on this plane, the vector P1Q2 is known to be perpendicular
to n2, leading to the following equality:

−−−→
P1Q2 · n1 =

([
X2 Y2 Z2

]T − [
0 0 0

]T
)

·
(d1 × (d1 × d2)) = 0.

Combining the above equality with (22), we get([
D 0 0

]T
+ λ2d2

)
· (d1 × (d1 × d2)) = 0

which can be solved to get the unknown scalar λ2 as

λ2 = −D
(d1 × (d1 × d2)) · e1

(d1 × (d1 × d2)) · d2
. (23)

Since Pm is the midpoint between Q1 and Q2, the coordinates
(Xm, Ym, Zm) of Pm can be expressed as⎡

⎣ Xm

Ym

Zm

⎤
⎦ =

1

2

⎛
⎝

⎡
⎣ X1

Y1

Z1

⎤
⎦ +

⎡
⎣ X2

Y2

Z2

⎤
⎦

⎞
⎠

Fig. 9. Illustration of deriving the middle point Pm of light rays L1 and L2.

which, when combined with (20), (21), (22), and (23), leads
to the following estimation result for use as the desired 3-D
data of space point P :

⎡
⎣ Xm

Ym

Zm

⎤
⎦ =

1

2
D·

(
e1 − (d2 × (d1 × d2)) · e1

(d1 × (d1 × d2)) · d2
d1 − (d1 × (d1 × d2)) · e1

(d1 × (d1 × d2)) · d2
d2

)

(24)
where e1 = [1 0 0]T and D is the baseline to be determined.

C. Finding Baseline D

To compute the baseline D, we make use of a fact about
triangulation in binocular computer vision: the 3-D data can
be determined up to a scale without knowing the value of the
baseline D [26]. This fact can also be seen from (24), where
the baseline D is a scaling factor of the computed 3-D data.

Specifically, within the omni-images taken of the user
standing in front of the two cameras as mentioned previously,
we extract two points on the head and the feet of the user,
respectively. Let Phead and Pfoot denote their real 3-D data,
respectively. On the other hand, as stated previously, we can
compute the 3-D data up to a scale of the two points, which
we denote as P′

head and P′
foot, respectively, using (24) with

the term D in it being ignored. Then, the relations between
the data Phead, Pfoot, P′

head, and P′
foot can be expressed as

Phead = D · P ′
head and Pfoot = D · P ′

foot

where D is the actual baseline value. Let H ′ be the Euclidean
distance between P′

head and P′
foot, and let H be the real

distance between Phead and Pfoot, which is just the known
height of the user. Then, the baseline D can finally be
computed as D = H/H ′.

After finding the baseline D, the system parameters are
now all adapted. To sum up, the three steps of the proposed
adaptation method are described as follows. First, the included
angle φ between the two optical axes is determined using
space line features, as discussed in Section V. Then, by asking
the user to stand at the middle point in front of the two
omni-cameras, the orientation angles β1 and β2 of the two
cameras are calculated, as described in Section VI-A. Finally,
the baseline D is calculated using the height H of the user,
as described in this section. An overview of the proposed
adaptation method is also described in Algorithm 1.

VII. Experimental Results and Discussions

In this section, we describe first how we calibrate
the omni-cameras to obtain their intrinsic parameters in
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Section VII-A. Then, we present several experimental results
to show the feasibility, reliability, and accuracy of the proposed
line detection method, the system setup adaptation method,
and the 3-D computation process in Sections VII-B to VII-D.

A. Omni-Camera Calibration

In the first step, the lens center and the focal length of
the perspective camera should be calibrated. As illustrated
in Fig. 10(a) and (b), the mirror boundary, appearing as a
circle in each captured omni-image, was extracted to robustly
estimate the camera center and the focal length according to
[23]. Specifically, we found a circle to fit the circular mirror
boundary like that appearing in Fig. 10(b), and defined the
camera center as the center of the fitting circle. Also, as
shown in Fig. 10(a), we derived the camera’s focal length
f, according to the properties of similar triangles and the
rotational invariance of the omni-camera [27], [28], as

f = M
r

R
(25)

where M is the distance from the lens center to the camera
center Om, R is the radius of the mirror base in the real-world
space, and r is the radius of the mirror base in the taken
image. The measured values in our experiments are R = 4.0
cm, M = 8.6 cm, and r = 243 pixels for both cameras, from
which the focal lengths f were derived to be 522.45 according
to (25).

Next, we solve ε from (1) to get

ε =
sec β + sec α

tan β − tan α
.

Combining the above equality with (1) and (2), we can get

ε =

√
1 + f 2

u2+v2 +
√

1 + Z2

X2+Y2

f√
u2+v2

− Z√
X2+Y2

. (26)

The above equation shows that, if we have a landmark point
with known image coordinates (u, v) and known camera
coordinates (X, Y, Z), then the eccentricity ε can be calculated.

Although the eccentricity ε is theoretically a constant value,
we found in this paper that we can achieve a better accuracy
in 3-D data computation if a linear polynomial can be used to
describe ε. The reason is that such a polynomial can be used to
cope with some types of errors, including the radial distortion
of the perspective camera’s lens, the imprecise measurements
coming from the calibration process, and the manufacturing
imprecision of the hyperboloidal mirror shape. Accordingly,
we propose the following first-order equation to describe the
eccentricity ε, which comes from a functional expansion of ε

with respect to the mirror’s radius r according to the rotational
invariance property as used in several studies [27], [28]:

ε = g · r + h (27)

where g and h are two coefficients, and r is as defined in (2).
In our experiments, a calibration board as shown in

Fig. 10(b) was designed and put in front of the omni-camera.
Each cross point Pi on the board was taken as a landmark
point as stated in Algorithm 1, and used to calculate the
eccentricity εi by (26). After the values εi corresponding to

Fig. 10. Illustration of omni-camera calibration. (a) Relationship between
mirror and image plane. (b) Omni-image of a calibration board.

all the landmark points were derived according to (26), the
coefficients g and h in (27) were computed finally using
a Levenberg–Marquardt algorithm [29] to be −0.0022 and
1.9211, respectively.

To demonstrate the effectiveness of the first-order approx-
imation method, we conduct two experiments as follows.
In these experiments, we measure the 3-D data of the 60
landmarks on a calibration board, and compute the 3-D
measurement errors. The average 3-D measurement error is
6.3% with a standard deviation of 1.4% when using a constant
eccentricity, which is reduced to an average error of 1.9%
with a standard deviation of 0.71% when using the first-order
approximation. This shows the effectiveness of the first-order
approximation method for computing the eccentricity ε. It is
noted here that the first-order coefficient g is supposed to be
small since it should be a constant in theory. Otherwise, it
means any of the three possibilities: 1) the measurements in
the calibration are not accurate enough; 2) the lens of the
perspective camera is heavily distorted; and 3) the mirror is
not of a good hyperboloidal shape.

B. Space Line Detection Ability

In Sections IV-A, IV-D, and IV-B, three techniques of
improvements on increasing the detection ability and reliability
of the proposed Hough-based space line detection method have
been proposed, which are henceforth called parameterization,
peak cell extraction, and accumulation, respectively. Some
comparisons are provided here to show the effectiveness of the
proposed improvement techniques. About parameterization,
we compare the effect of our technique with that proposed
in [16]. About peak cell extraction, we compare our technique
using the proposed filter with a traditional method. And about
accumulation, we compare the adaptive thresholding technique
that we propose with a traditional accumulation method [31],
[32]. Accordingly, four different space line detection experi-
ments have been designed, which are listed in Table I.

The input omni-image of the four experiments is shown
in Fig. 11(a). In each experiment, we first found the edges
in the omni-image to get those shown in Fig. 11(b). Then,
we applied the Hough-based space line detection method to
find 50 space lines. Finally, we drew the detected lines on the
omni-image. The results of the four experiments are shown in
Fig. 11(c)–(f), respectively.

As shown in Fig. 11(c), since the parameterization proposed
in [16] has a singularity when n = 0, only space lines near the
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Fig. 11. Space line detection results of the four different experiments.
(a) Input omni-image. (b) Edge detection results. (c)–(f) Fifty space lines
detected in Experiments 1–4, respectively. Experiment 4 based on use of all
proposed improvement methods shows the best result.

periphery region can reliably be detected. In contrast, when
using the proposed parameterization technique, space lines in
the center region can be detected as shown in Fig. 11(d),
but are quite crowded. After using the proposed peak cell
extraction technique, the detected lines are more separated,
as shown in Fig. 11(e). Finally, after the proposed adaptive
thresholding technique was applied in the last experiment, the
detection result was improved further, yielding lines with more
diversified directions, as shown in Fig. 11(f).

To summarize, the proposed techniques have at least three
advantages over the traditional ones. First, the proposed pa-
rameterization technique has no singularity problem, and the
range of the Hough space is fixed within [−1, 1]. In contrast,
the method proposed in [16] has a singularity when n = 0,
and the range of the parameters goes from negative infinity
to a positive one. Second, space lines can be extracted more
effectively by the proposed peak cell extraction technique.
Third, the projection curve corresponding to the Hough cells
in a cell support is of equal widths everywhere, which further
improves the detection result.

C. Adaptation Ability

Some experimental results are given here to show the
adaptation ability under different cameras and environments.
Two types of cameras were used, which are perspective
cameras and catadioptric omni-cameras, and three different

TABLE I

Four Different Space Line Detection Experiments

Parameterization Peak Cell Extraction Accumulation
Exp. 1 Proposed in [16] Traditional Traditional
Exp. 2 Proposed Traditional Traditional
Exp. 3 Proposed Proposed Traditional
Exp. 4 Proposed Proposed Proposed

Fig. 12. Experimental results under different cameras and environments.
(a) Corridor. (b) Hall. (c) Room. (d) Adaptation results of angle φ.

environments were considered, which are a corridor, a hall,
and a room, as shown in Fig. 12(a)–(c).

Four different experiments were conducted. Experiment 1
is conducted in the corridor with omni-cameras, Experiment
2 in the hall with omni-cameras, Experiment 3 in the room
with omni-cameras, and Experiment 4 also in the room but
with perspective cameras. In each experiment, the two cameras
were oriented in different angles (i.e., −30°, −15°, 0°, 15°, and
30°). Fifty space line features were first extracted as proposed
in Section IV. Then, the angle φ was automatically calculated
using these lines as proposed in Section V. The results are
shown in Fig. 12(d). The x-axis specifies the ground truth of
the angle φ, and the y-axis specifies the absolute error of the
calculated angle φ.

In Experiments 1 and 2, since the lines in the corridor and
hall are relatively simple and obvious, the adaptation result
is accurate with errors of about 2°, as shown by the green
and purple curves in Fig. 12(c). Also, since we use omni-
cameras in these experiments, the lines can still be captured
even when the two cameras were oriented with a large angle.
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Thus, the adaptation result remains accurate when the angle
φ is large. In Experiment 3, since the space lines in the room
are more complicated, the adaptation becomes more difficult.
However, since the omni-cameras can capture a large field of
view of the environment, a plenty number of space lines can be
captured. Therefore, the adaptation result is also accurate with
errors of about 4° as shown by the red curve in Fig. 12(c). In
contrast, the adaptation errors are about 10° when perspective
cameras were used, as shown by the blue curve in Fig. 12(c),
and they become unacceptable (larger than 20°) when the
included angle φ is large. These experimental results show the
feasibility of the proposed adaptation methods, and the power
of the omni-cameras in the automatic adaptation process.

D. Adaptation and 3-D Acquisition Ability

A series of experiments are conducted to test the adaptation
ability and the 3-D acquisition precision in the room envi-
ronment, as shown in Fig. 12(b). In each of the experiments,
the two cameras were placed at a distance about 180 cm to
each other, and both were oriented randomly within the range
of ±40°. After the cameras were set up, two omni-images
of the environment were captured as shown, for example,
in Fig. 13(a) and (d), respectively, and used to calculate the
included angle φ according to Step 5 of Algorithm 1. Next, a
user was asked to stand in the middle region in front of the
two cameras, as shown in Fig. 13(b) and (e), to calculate the
orientation angles β1 and β2 and the baseline D according to
Step 6 of Algorithm 1. After these adaptation tasks were done,
a board with 60 landmarks was held by the user, as shown in
Fig. 13(c) and (f), to test the precision of the resulting 3-D
computation.

In these experiments, three different degrees of adapta-
tion were implemented and the corresponding results were
compared: 1) no adaptation was conducted with the camera
orientations and baseline set to be β1 = β2 = 0° and D = 180
cm (D is the ground-truth value); 2) the left omni-camera was
set up to face forward with the values β1 = 0°, D = 180 cm,
and β2 adapted to be −φ; and 3) all the parameters β1, β2, and
D were adapted according to the proposed method. Denoting
(Xi, Yi, Zi) as the ground-truth location of a landmark point,
and (Xi

′, Yi
′, Zi

′) as the calculated location, we define the 3-D
error E of each landmark point as

E=
√

(Xi − Xi
′)2 + (Yi − Yi

′)2 + (Zi − Zi
′)2

/√
X2

i + Y 2
i + Z2

i .

(28)
The comparison results are shown in Fig. 14 in which the
vertical axis specifies the average of the 3-D errors, and the
horizontal axis specifies the system orientation angle that is de-
fined as the maximum of the two orientation angles β1 and β2.

As can be seen from Fig. 14(a) and (b), when no parameter
is adapted with the results shown by the blue curve, the 3-D
errors are seen to become larger as the orientation angle
becomes larger, showing the necessity of an automatic system
adaptation process. When only the orientation β2 of the right
omni-camera is adapted with the result shown by the red curve,
it is observed that the 3-D errors are sometimes lower but
vary largely. This results from the fact that the left omni-

Fig. 13. Sample omni-images of an experiment. (a), (d) Taking a shot of
the environment to calculate φ. (b), (e) User standing in the middle region in
front of the cameras to calculate baseline D and orientation angles b1 and b2.
(c), (f) Board held by the user to test the 3-D computation precision.

camera is assumed to face forward in this case. Thus, if
the left omni-camera is actually placed to face forward in
the experiment, the error measure is lowered; otherwise, the
error is large as expected. Finally, when all the parameters
β1, β2 and D are adapted with the results shown by the purple
curve, the 3-D errors are lower than 8% even when the system
orientation angle is large. This shows the feasibility, reliability,
and validity of the proposed system adaptation method.

It is noted that these 3-D measurements are calculated under
a certain unintended inaccurate system setup. For example, it is
required that the two omni-camera stands be adjusted to be at
an identical height, but there might still exist a small distance,
say, 1 cm, between the heights of the two stands. Similarly,
although the optical axes are assumed to be parallel to the
xz-plane, a small angle, say 1°, might be included between
the optical axes and the xz-plane. To see the effect of such an
unintended system setup inaccuracy, a plot of the average 3-D
errors resulting from a series of planned inaccurate setups is
drawn in Fig. 14(c). As can be seen, at the reasonable setup
errors of 1 cm in height and 2° in included angle, the average
3-D error is 2.805%, which is tolerable in a real-time game
playing according to our experimental experience.

Using the proposed vision system, we have also created a
game application in our experiments, which allows a user to
play a 3-D maze game, as illustrated in Fig. 15. The game
is played mainly by the use of a finger with a yellow cot
as a cursor, controlling the avatar going around and up and
down in the maze to reach the destination. The 3-D position
of the simulated cursor is computed by analyzing the omni-
image pair to detect the feature point of the finger cot and by
calculating its 3-D position by the proposed method. Fig. 15
shows the game playing environment and three views of the
3-D maze from different directions at a certain moment. When
playing the game, the avatar moves toward the correct direction
and responds as quickly as the player’s finger moves. This
realtime effect comes mainly from the 3-D computations all
by the uses of the analytic formulas derived previously. It is
noted in game playing that, if the player stands too far from
the cameras, it will be too hard to detect the feature point
on his or her finger, which influences 3-D calculations. Also,
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Fig. 14. Experimental results of three different degrees of adaptations.
(a) 3-D errors. (b) Standard deviations of the 3-D errors. The proposed
adaptation methods yield the best results as shown by the purple curves.
(c) 3-D errors resulting from the unintended inaccurate setups.

Fig. 15. Use of proposed vision system for a 3-D maze game. (a) Player
of the game wearing a yellow finger cot with the two omni-cameras.
(b)–(d) Three different views of the 3-D maze game at a certain moment.

since there is a blind circle in omni-images, the 3-D tracking
process will fail momentarily. Otherwise, in normal cases, the
avatar can easily be controlled by the player, which shows the
feasibility of the proposed system for game playing and other
similar applications.

VIII. Conclusion

A new two-omni-camera stereo vision system for general
3-D vision applications with a capability of automatic adapta-
tion to any camera setup was proposed. The adaptation process
yield the values of the two omni-cameras’ orientations and
distance (baseline), from which the 3-D data of space feature
points can precisely be computed. The experimental results
showed the feasibility of the proposed system. In contrast, the
cameras’ orientations and distance of the conventional binoc-
ular vision system were all fixed because of its nonadjustable
configuration.

The proposed vision system had several advantages over
conventional systems. First, the user can interact with the
system within a wide area because the proposed system used
two omni-cameras, instead of traditional projective cameras,
to capture omni-images that cover large fields of view. This
is a desired property for many applications. For example,
it can be used in exhibitions to interact with humans in a
large area, in 3-D indoor surveillance of large public spaces,
or in future virtual sporting environments where people are
walking or running in a wide area. Today, commercial products
also try to solve the small field-of-view problems of con-
ventional cameras. For example, the Microsoft Kinect uses
a motorized tilt mechanism to track the user’s activities to
overcome this problem [5]. In contrast, the proposed sys-
tem did not suffer from this problem. Second, the proposed
system can be set up flexibly, and so was appropriate for
more real applications and more convenient for nontechni-
cal users. Third, the proposed system yield better precision
in computed 3-D data than traditional short-baseline stereo
systems. This comes from the merit of the structure of the
proposed system—the two omni-cameras are affixed to two
independent camera stands that may be placed farther away
from each other. It was noted that the proposed system was less
applicable in environments with natural scenes as backgrounds
where horizontal parallel lines were fewer for use by the
system.

Future studies may be directed to applying the proposed
system to more human–machine interaction activities.
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