IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 7, JULY 2013

1209

Vanishing Point-based Line Sampling for
Real-time People Localization

Kuo-Hua Lo and Jen-Hui Chuang

Abstract—In this paper, we propose a real-time multicamera
people localization method based on line sampling of image
foregrounds. For each view, these line samples are originated
from the vanishing point of lines perpendicular to the ground
plane. With these line samples, vertical line samples in the 3-D
scene can be reconstructed for potential human locations. After
some efficient geometric refinement and filtering procedures, the
remaining qualified 3-D line samples are clustered and integrated
for the identification of locations and heights of people in the
scene. Both indoor and outdoor scenarios are examined to
demonstrate the effectiveness of our approach in handling serious
occlusion in crowed scenes. The average localization error of less
than 15cm for average viewing distance of 15m suggests that
our method can be applied to a broad range of surveillance
applications that require the real-time computation of localization
without using special hardware for acceleration.

Index Terms—2-D/3-D line sampling, multicamera, people
localization, real time, vanishing point.

I. INTRODUCTION

N RECENT years, visual surveillance using multiple cam-

eras has attracted much attention in the computer vision
community. Moreover, vision-based localization and track-
ing have shifted from monocular approaches to multicamera
approaches since the latter can often achieve better results.
Especially when there are many people in the scene, serious
occlusions may occur in multiple views, and real-time peo-
ple tracking and localization become a challenging problem.
Thus, the previous works on visual surveillance are reviewed
in the following two categories: monocular approaches and
multicamera approaches.

A. Monocular Approaches

In [1] and [2], location and intensity of image foreground
are extracted to allow construction of a human model, which
allows us to match a subject image for tracking in successive
grayscale images. In [3], color information is used to construct
human models, wherein a person is modeled by several parts of
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similar color, and a Bayesian framework is employed to handle
occlusion in the tracking process. In [4], an extension of the
particle filter using object contour is proposed to track the
head of a person. In [5], a color-based tracking that integrates
color distributions into particle filter is presented to describe
people using ellipses and associated color histograms. The
method is robust when dealing with partial occlusion, and is
rotation and scale invariant. In [6], color, shape, and edge are
integrated into the particle filter to create a robust tracking
method. Additionally, it proposes adaptive scheme to choose
the most effective cues in different situations. However, the
performance of these methods might be seriously impaired
when the human model of occluded persons is not updated in
time that the appearance of a person may change significantly.
To resolve such a problem, spatial/temporal features are used
in [7] to train convolutional neural networks to achieve robust
people tracking, wherein the appearances of a target object of
different views are adopted in the training stage.

Since single-view tracking depends on inherently limited in-
formation from a single viewing angle, dealing with situations
involving serious or full occlusions is quite difficult. Thus,
many multiview tracking approaches have been proposed.
Unlike single view, multiple views can provide more visual
information to cope with occlusions in human localization. For
example, a stereo camera with a small baseline can estimate
depth information easily, whereas a set of wide-baseline cam-
eras can decrease invisible regions. Finding feature correspon-
dence is usually the most important step for many multicamera
approaches since only the correct correspondences between
multiple cameras can ensure the correctness of subsequent
processes, e.g., localization and tracking.

B. Multicamera Approaches

There are several types of multiple camera approaches for
tracking people. The first type of approach uses a stereo
camera to obtain depth maps for tracking. The second type
of approach can be divided further into two subcategories,
region-based and point-based methods, both of which have to
establish correspondence between different views for tacking.
The third type of approach seeks to find locations of persons
directly without the correspondences of people in different
views.

For the first type of approach, such as in [8]-[10], a stereo
camera is exploited to establish correspondence between two
views to construct a depth map. By using such a map to
avoid influences of moving shadows on foreground detection,
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better segmentation results can be obtained and object tracking
becomes more robust. However, using a pair of cameras with
a small baseline may suffer from total occlusions frequently.
Without information of occluded regions (e.g., behind of a
person closer to a stereo camera), the tracking performance is
impaired.

Region-based methods of the second type generally regard
people as regions and use region features to match people in
multiple views. Most of these methods use color as the main
feature to find correspondences of regions in different views.
For instance, color and 3-D position are utilized to match
and track multiple objects by a tracking algorithm in [11].
Mittal and Davis [12] use Gaussian color models to segment
foreground regions of people from each image. The results are
then used to match regions from one view to another along
epipolar lines to find correspondence across multiple views.
After that, Kalman filters are used to track people on the
ground plane. Chang and Gong [13] use Bayesian networks
for object tracking in individual views independently. After
that, both geometry-based (epipolar geometry, homographies,
and landmarks) and recognition-based (height and color of
target appearance) methods, are utilized to find correspondence
across multiple views. However, one of the main disadvantages
of these methods is that color information may degrade the
performance of tracking since the appearance and color can
change with scene illumination.

Point-based methods can be further divided into two ad-
ditional subcategories: 3-D-based and 2-D-based methods.
3-D-based methods locate and find correspondence of target
object in images based on 3-D geometric constraints. These
3-D-based methods often need a complete camera calibration.
In [14], the location of a person is described by a Gaussian
distribution of its center of gravity (COG) in the scene. The
distribution, which denotes the probability of the existence of
a COG point, is projected onto multiple views, respectively,
and the correspondence of feature point can be found by
maximizing the probability of the COG distribution in each
view. In [15], people are modeled as vertical cylinders and
tracked by optical flow. During the tracking process, the COG
of human body in multiple views is used to estimate the
people locations in the world coordinate. In [16], cameras are
calibrated for the calculation of 3-D positions of feet points
of target people, and the correspondences can be established
from these feet points. In [17], feature points are extracted
from a (vertical) major line of the upper part of a human body.
The correspondence of the human body is found by matching
intensity and location through epipolar constraints. However,
the extracted feature points from each view may not always
correspond to the same point in the 3-D space. In that case, the
matching performance, the established correspondence, and
tracking results may be impaired.

Unlike the above 3-D-based methods, some 2-D-based
methods have been presented to establish correspondences
between multiple cameras by matching locations of feature
points on a reference plane. In [18]-[20], homography con-
straint is used to match the locations of feet points in different
views. However, these feature points may be occluded between
objects. In [20], a method, which can detect whether the feet
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points of a person are occluded, is proposed to select a best
view for each person appearing in the scene. In contrast, Hu
et al. [21] propose a method using the axes of people to
estimate the feet points in images. They segment a group
of people into individual persons and estimate an axis for
each of them. Then, the location of the feet point of a
person is estimated as intersection point of his/her axis and
the bottom of his/her bounding box. In [22], foregrounds
of a person are perspectively projected from each view to
the ground plane, with the corresponding camera being the
projection center. For each camera, a line passing through
1) the projected foreground and 2) the vertically projected
camera center, both on the ground plane, is estimated. The
person’s location can then be estimated by calculating the
intersection of these estimated lines on the ground plane
based on the least-square criterion. For most of the aforemen-
tioned point-based approaches, accurate detection/estimation
of point/line features, and their correspondences in different
views, are required; otherwise the correctness of a person’s
location will be seriously impaired.

In recent years, approaches of the third type are pro-
posed. These methods, which do not need a complete camera
calibration, can locate people directly without finding the
correspondences of the people between views. Eshel and
Moses [23], [24] propose a method using cameras placed
at high elevation to detect the heads of people. The method
assumes the cameras are partially calibrated for homographic
matrices for multiple planes with different heights. For each
plane, intensity information of segmented foreground pixels
is collected from all views, and head detection is achieved
through intensity correlation. In [25], the authors propose an
interesting method to track people by locating them on similar
reference planes. The foreground likelihood information of
all image pixels captured from different views is projected
and integrated on each reference plane to form an occupancy
probability. Such probabilities from several frames are then
processed by a graph-cut algorithm to find trajectories of
people. Although the correspondences of people between
different views are not available,' such an approach performs
quite well under serious occlusions in a crowed scene. Due to
the high complexity of pixel-based processing, the approach
is implemented with CUDA (Nvidia GeForce 7300 GPU) to
achieve real-time performance.

In order to enhance the efficiency of the above approach,
we propose a vanishing point-based line sampling technique
in [26]. While the main idea of the approach presented in [25]
is to project dense 2-D samples (image pixels) onto multiple
(horizontal) planar surfaces in the 3-D space (before these data
are fused into 3-D object distributions), it is simplified in [26]
by projecting 1-D image samples,” i.e., lines passing through
the vanishing point of vertical lines in the 3-D space, instead
(before their intersections are grouped into 3-D line samples
of the crowd through clustering). To further improve the
efficiency of people localization, a novel approach is proposed

!For example, no additional image processing procedures are performed to
identify each individual from a crowd, e.g., through connected component
analysis and principal axis analysis as adopted in [21].

2In the rest of this paper, we will refer to these samples as 2-D line samples.
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in this paper which projects the above line samples directly
into the 3-D space, i.e., along a fan of vertical planes originated
from the vertical axis containing the camera center, to generate
possible 1-D (vertical line) samples of the 3-D object.® Since
realistic constraints of a human body can be adopted to
refine and to verify these object samples, localization results
compatible with those in [25] can be achieved, but with more
than an order of magnitude in processing speed.

The main improvements of this paper over [26] include:
1) new reconstruction and refinement procedures for possible
3-D (vertical) line samples of the human body, 2) addition of
two new geometric rules (associated with the head level of a
person) for the screening of these samples, and 3) a simple way
of splitting a cluster of samples belonging to two persons very
close to each other. While 1) reconstructs a sample directly
(and efficiently) from a pair of foreground line samples from
two views, as the intersection of two vertical triangles, the
reconstruction is done in [26] in a much more complicated
way as mentioned above. As for 2) and 3), both of them
offer valuable improvements in the localization performance,
in terms of precision and recall, with 2) also saving some
computation time spent for invalid samples.

The rest of this paper is organized as follows. In Section II, a
preliminary major axis-based method for locating nonoccluded
persons is presented to convey the basic idea of the proposed
approach. In Section III, a novel way of generating 3-D
line samples for people under occlusion, via the vanishing
point-based line sampling of image foreground, is proposed.
Realistic constraints are also established to refine and ver-
ify these 3-D line samples, before they are clustered into
3-D major axes to represent individual persons in the scene.
In Section IV, both indoor and outdoor video sequences are
tested to show the efficiency and effectiveness of the proposed
approach. Experimental results show that such an approach
performs satisfactorily in terms of correctness and accuracy
in people localization under serious occlusion. In Section V,
some concluding remarks are given.

II. CONSTRUCTION OF MAJOR AXES FOR NONOCCLUDED
PERSONS FROM A PAIR OF VIEWS

For a better understanding of the basic ideas of the proposed
localization, we begin by illustrating how to localize people
using the major axes (MA) of the foreground regions in
2-D images. Assume the foreground of different persons do
not overlap in a pair of views in which the major axis of
each of them can be estimated correctly. By projecting these
axes, instead of projecting all foreground pixels, as in [25],
onto multiple reference planes parallel to the ground plane,
a 3-D axis can be formed for each person by connecting
corresponding intersection points of the projected 2-D axes on
these reference planes. Furthermore, a more efficient scheme
is introduced to find the above 3-D axis by calculating the
intersection line segment of two triangles in the 3-D space if
the cameras centers can be estimated in advance.

3In the rest of this paper, we will refer to these samples as 3-D line samples.
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Fig. 1. Detected foreground regions and the estimated axis.
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Fig. 2. Finding intersection points of two axes on a reference plane.

A. Major Axis Estimation for a Person in an Image

In order to segment foreground regions of a person from
an image, the Gaussian mixture model (GMM) [27], [28]
can be applied. Assume region R obtained from foreground
segmentation contains a great percentage of a person, we can
estimate the major axis for the person by PCA. An example
of an axis thus estimated is shown in Fig. 1. One can see that
the estimated major axis can represent the elongated shape of
a person very well.

B. Finding a 3-D Major Axis of a Person—Two Approaches

As shown in Fig. 2, let L; and L, be the axes of a person
obtained by PCA for View 1 and View 2, respectively. In
addition, let P, be the intersection point of the two lines
containing the projections of L; and L,, respectively, onto
reference (ground) plane 7 from camera centers C; and
C,. Ideally, for reference planes of different heights, such
intersection points will either 1) belong to both the projected
axes, or 2) stay away from any of them if the corresponding
heights are out of the range of the 3-D axis. Fig. 3 shows
samples of the 3-D axis thus obtained for the person shown
in Fig. 1. While intersection points satisfying 1) is colored in
black, points not satisfying 1), including those contained in
one but not both projected axes due to computation errors, are
marked in red.*

The above results provide us an important cue to the
estimation of a person’s height. Additionally, one can see
that the 2-D (horizontal) positions of these 3-D points are
quite consistent that a roughly vertical major axis (MA) of the

4To find the above intersection points on reference planes of different
heights, a method to produce multiple homographic matrices is introduced
which can establish these matrices using only two marker points on each of
the four calibrating pillars standing vertically on the ground plane. The detail
can be found in Appendix A.
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Fig. 3. Axis samples of the person shown in Fig. 1, which are reconstructed
for reference (horizontal) planes with 4 cm spacing and up to 176 cm in height.

person can be constructed by connecting the black points, i.e.

ey

Axis,setmh”h’ = {P]qzhb, . Pl’gh'}

with h;, and b, being the heights of bottom and top end points
of the axis, respectively.

On the other hand, if the foreground object is a vertical axis
standing on the ground plane, as shown in Fig. 2, a perfect
reconstruction of the 3-D axis can be obtained by intersecting
the two triangles formed by C; and L7, for i = 1 and 2,
respectively.’ By adopting this method, calculating a large
number of intersection points, as shown in Fig. 3, for multiple
reference planes is no longer needed and the computational
time can be saved greatly. Axis points similar to that listed
in (1) can then be estimated by simple interpolation along the
3-D axis if necessary.

C. Extension of Finding 3-D Major Axes for Nonoccluded
Multiple Persons from a Pair of Views

The above method can be extended to estimate 3-D MAs
for multiple people if an axis can be found for each of them
in two different views. Without knowing the correspondence
of the axes in the two views, candidate 3-D MAs can be
constructed for all possible 2-D MA pairs. For example, for
M persons in View 1 and N persons in View 2, a total of MN
candidate MAs can be constructed (minus those associated
with triangle pairs that do not intersect, like the two blue
triangles shown in Fig. 4).

For a candidate 3-D MA obtained for person i in View 1
and person j in View 2, (1) can be rewritten as

Axisyio " = {Pro", Piio™). ()
Although we do not have correspondences of different people
in these two views, it is possible to remove incorrect 3-D
MAs by checking the consistency in the foreground coverage,
as will be explained in Section III-B, with additional views.
For example, while the two green axes in Fig. 4 are correct

SThe camera centers can be found in advance by at least two of the
aforementioned four pillars.
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Fig. 4. Illustration of filtering out incorrect 3-D MAs by using an extra view.

Fig. 5. Example of overlap foreground and the estimated axis.

3-D MAs, the gray axis can be identified as an invalid axis
from View 3.

III. CONSTRUCTION OF MAJOR AXES FOR MULTIPLE
PERSONS WITH OCCLUSION

The above 2-D PCA-based axis estimation can only cope
with situations under which the foreground of a person is
separable from others in all views, and can be identified as
one region by connected component analysis. However, in
real applications, many people may appear in a monitored
scene at the same time that each segmented foreground area
may contain more than one person, as shown in Fig. 5, and
the aforementioned axes detection approach will not work
correctly. One possible solution proposed in [21] is to separate
persons by projecting the foreground in the vertical direction to
form a histogram, and then, determine the boundaries between
persons based on the location of peaks and valleys in the
histogram, before each person can be represented by one axis
for localization and tracking. However, the above approach
may not work well when there is a very dense group of people
appearing in the scene, e.g., Fig. 6. For more complicated
situations, instead of estimating a 2-D axis for each person, a
3-D sampling scheme is proposed in this section, wherein 2-D
line samples of the foreground regions from multiple views are
used to generate 3-D line samples of the foreground volume,
based on the same idea described in Section II. Then, with
noises filtered out, these 3-D line samples are refined and

In general, incorrect MAs constructed from a pair of triangles can be
removed by checking the consistency with an additional view point (in the
3-D space) except for those view points that are coplanar (in a 2-D subspace)
with one of the two triangles mentioned above. Therefore, with the help of
an additional camera, incorrect MAs will be removed completely, with zero
probability for the above exceptions.
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Fig. 6. (a)—(d) 2-D line samples in Views 1-4. (e) Unverified 3-D line
samples that survive Rules 1-3. (f) Refined line samples that survive Rules
1-4. (g) Final line samples.

verified with respect to different views by a back projection
procedure. Finally, a clustering algorithm is applied to the
remaining samples in the scene, before members of each
cluster are integrated into a 3-D MA.

A. Generating 3-D Line Samples Using Vanishing Points

Since the upper body of a person is almost always per-
pendicular to the ground plane when he/she is standing and
walking in a monitored scene, we first generate 2-D line
samples in each view, which are originated from the vanishing
point of vertical lines in the 3-D scene [see Figs. 6(a)—-(d)].
Thus, these 2-D line samples correspond to a fan of vertical
sampling slices in the 3-D space originated from the vertical
line containing the corresponding camera center. Note that
generating 2-D line samples is much faster than the axis
estimation discussed in Section II since no additional image
processing is required. Very short 2-D sampling lines (less than
a threshold 7T,) will be discarded since they are expected to
be far away from a major axis and will have little contribution
to the estimation of a 3-D MA.

Next, for each pair of views, the remaining 2-D line samples
are used to reconstruct 3-D line samples by the scheme
described in Section II. Since there may still be incorrect
3-D line samples, such as the gray one shown in Fig. 4, three
geometric rules can be used to filter out the 3-D line samples
that will not correctly represent a person in the 3-D scene.

"The vanishing point in each view can be estimated by calculating the
intersection points of the four lines extended from the four upright pillars
mentioned in Section II-B.
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1) The length of a 3-D line sample is shorter than Tic,.
2) The height of its top P is lower than Tj;.
3) The height of its bottom P" is higher than T,.

Fig. 6(e) shows 3-D line samples that pass these rules, each
adjusted slightly so that it is perpendicular to ground plane.

The main objective of the above three rules is to preserve
two kinds of 3-D line samples that correspond to 1) the full
length of a standing/walking person or 2) the head and torso
of a person without his/her feet. By selecting appropriate
thresholds, these three rules may also accommodate human
activities such as jumping and squatting. In practice, these
three rules can efficiently remove most inappropriate 3-D line
samples, e.g., 84% of the originally reconstructed 3-D line
samples for the above example. However, since each 3-D line
sample is reconstructed by observations from two views only,
the top and bottom ends of each 3-D line sample may not
be very accurate in position. To deal with such a problem, a
refinement procedure using information from additional views,
as described next, is adopted to find more accurate positions
of the two end points before further verification of the 3-D
line samples are performed.

B. Refinement and Verification of Reconstructed 3-D Line
Samples from Additional Views

In this section, a refinement and verification scheme is
developed for further checking the validity of each 3-D line
sample obtained in the previous section. The refinement is
based on the fact that if a 3-D line sample corresponds to
a real person in the scene, its image in all views should be
covered by foreground regions. In other words, its top and
bottom end points will be covered by some foreground regions
in all views. If that is not the case, the 3-D line sample
should be shortened until it falls within foreground regions
in all views. Specifically, for each 3-D line sample, we can
interpolate equally spaced sample points between P and P
to form axis samples { P ..., P"}.3 The refinement of a top
end point corresponds to find the first sample point below P
such that it is covered by some foreground regions in all views.
Similarly, the refinement of the bottom end point can be done
by searching in the upward direction from P".

After such a refinement (shrinking) procedure, Rules 1—
3 can be applied again, as can the fourth rule, to filter out
inappropriate 3-D line samples.

4) The height of top end point P is higher than Tj,.

One can see from Fig. 6(f) that rough people locations can be
distinguished visually from the remaining 3-D line samples.
Finally, a threshold T/, is used to filter out 3-D line samples
that do not have sufficient average foreground coverage rate
(AFCR), as shown in Fig. 6(g).’

8The interpolation spacing between two adjacent sample points corresponds
to a total number of Npjane €qually spaced reference planes between the ground
plane and the plane with 250 cm in height.

9In our implementation, each sample point of a 3-D line sample is projected
to all views to check if it is covered by foreground for the computation of
AFCR. For example, AFCR for each of the green axes shown in Fig. 4 is
equal to 100% with respect to all (three) views.
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Fig. 7. Clustering and localization results. (a) Input frame 532. (b) Cluster-
ing sets. (c) Accumulated synergy map of all reference planes.

C. Integration of 3-D Line Samples to form 3-D Major Axes

After the above verification procedure, the major axis of a
person can be estimated from the remaining 3-D line samples
using the breadth-first search (BFS). Specifically, if the 2-D
horizontal distance between two 3-D line samples is closer
than a threshold 7., an edge is established in an undirected
graph. For example, Fig. 7(a) shows the input frame for
Figs. 6(d) and 7(b) shows the top view of resultant graph
obtained by the above BFS scheme, with green points rep-
resenting the 3-D line samples. To avoid some false positives
in the clustering, a cluster containing a total number of 3-D
line samples less than threshold Ny, will be removed.

To locate individual persons, the horizontal position of each
of them can be estimated as the average, shown as red stars in
Fig. 7(b), of the horizontal positions of the 3-D line samples in
the corresponding cluster.' In Fig. 7(c), we show the synergy
map obtained with a method modified from [25]. Instead of
considering the foreground probability of all image pixels,
only those inside of foreground regions are taken into account.
One can see the above distribution of each cluster matches the
corresponding occupied region (red color) in the map quite
well, i.e., all red stars do fall inside of the occupied regions.

In the proposed localization scheme, each camera is treated
separately only when 2-D line samples of foreground regions
are generated in each image plane. The correspondences of
people among different views, which are generally hard to
determine for different views (especially with occlusion),
are actually utilized implicitly in subsequent processes.
First, vertical line samples of people are generated in the
3-D space for a pair of foreground line samples, with their
correspondence yet to be determined, from two different
views (cameras), as described in Section III-A. Second, the
geometric constraints adopted in Sections III-A and III-B
are necessary conditions for the correspondence of a person
(in an upright posture) perceived from two views. Third, the
refinement (shortening) and the AFCR check are developed
in Section III-B to implicitly verify the correspondence for
all views (image planes). Finally, the integration (clustering)
is performed in Section III-C to spatially verify and establish
the people correspondence in the 3-D space.

IV. EXPERIMENTAL RESULTS

In this section, the proposed method is evaluated with
several different videos taken from both indoor and outdoor

10The heights of the top and bottom ends of a 3-D major axis are assigned as
the heights of the highest and lowest end points in the corresponding cluster,
respectively.
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scenes, with different degrees of occlusion. Comparisons with
[25] and [26] are also included to show the proposed method
can achieve comparable correctness/accuracy in localization
but with much higher computation speed. Additionally, we
investigate the performance of the proposed method with
different numbers of cameras and densities of line samples
in an image.

A. Experiments for Different Degrees of Occlusion with In-
door/Outdoor Sequences

To evaluate our methods under different degrees of oc-
clusion, we captured several video sequences of indoor and
outdoor scenes. For each scene, calibration pillars are placed
vertically and then removed from the scene for the estimation
of camera centers, vanishing points, and multiple homographic
matrices (see Appendix A). These sequences are captured with
different numbers and trajectories of people. The performance
evaluation is implemented under Windows 7 with 4 GB RAM
and a 2.4G Intel Core2 Duo CPU, without additional hardware.

Fig. 8 shows an instance of scenario S1 captured from four
different viewing directions with a 360 x 240 image resolution.
The average distance between the cameras and the monitored
area is about 15m. One can see that the lighting conditions
are quite complicated. The sunlight may come through the
windows directly and the reflections from the floor can be seen
clearly. A total of 691 frames are captured for S1, wherein
eight people are walking around; the ninth is standing near
the center of the monitored area.

Fig. 9(a) and (b) shows 2-D line samples generated for
Fig. 8(b) and the reconstructed 3-D MAs, viewing from a
slightly higher elevation angle, respectively. In addition, for a
closer examination of the correctness of the proposed people
localization and height estimation scheme, bounding boxes
with a fixed cross-section,!' and with their height obtained
from derived 3-D MAs, are back-projected to the captured
images, as shown in Fig. 9(c) for the image shown in Fig. 8(b).
One can see that these bounding boxes do overlay nicely with
the corresponding individuals. The recall and precision rates
for the whole sequence are evaluated as 96.5% and 95.6%,
respectively.'?

Fig. 10 shows similar localization results for scenario S2,
which has the same people count as that for S1, but the nine
people are walking randomly in the scene. While occlusion
may become more serious in some instances, repeated oc-
clusions caused by periodic walking pattern in S1 do not
occur. As a result, both the average recall and precision rates
are increased slightly. To further examine the robustness of
our method under serious occlusion, scenario S3 is evaluated,
which is similar to S2, except that it has 12 persons randomly

Since locations of ordinary persons are represented by these bounding
boxes, a fixed 50 x 50cm cross-section is adopted for each box. Thus, the
width and length of these boxes will not be affected by the density of sampling,
reducing possibly undesirable effects due to certain camera configurations,
density of image line samples, and occlusion. For example, it is easy to see that
the cross-section of the cluster of magenta color shown in Fig. 13(b) has an
elongated shape, which does not represent the orientation of the corresponding
human body.

2These values are generated by comparing with ground truth produced
manually.
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Fig. 8. Scenario S1, captured from four different viewing directions.

(b)

(c)

Fig. 9. Localization results for scenario S1. (a) Segmented foreground regions and 2-D line samples for Fig. 8(b). (b) 3-D major axes to represent different

persons in the scene. (c) Localization results illustrated with bounding boxes.

TABLE I
LOCALIZATION RESULTS OF SEQUENCES S1—S3

Sequence  Number of frames/people Method Recall ~ Precision  Mean error (cm)  Frames per second
This paper  96.5% 95.6% 11.42(5.89) 33.41(2.448)
S1 691/9 [26] 92.0% 95.7% 11.60(5.91) 11.62(1.008)
[25] 93.8% 95.7% 11.78(6.12) 0.46(0.003)
This paper  96.8% 97.0% 10.09(5.77) 31.53(3.089)
S2 776/9 [26] 94.9% 97.3% 10.00(5.66) 12.05(1.201)
[25] 96.2% 98.1% 10.22(5.58) 0.46(0.003)
This paper  95.2% 93.6% 10.55(6.01) 21.61(1.646)
S3 271/12 [26] 93.3% 94.3% 10.28(5.99) 8.34(1.025)
[25] 93.3% 94.2% 10.93(5.87) 0.46(0.003)

walking in the scene. Since the scene is becoming more
crowded and serious occlusion may occur more frequently,
foregrounds of different persons may easily merge into larger
regions, as shown in Fig. 11(a). While satisfactory localization
results are obtained in Fig. 11(b) and (c), the recall and
precision rates for S3 are decreased to 95.2% and 93.6%,
respectively.

Table I summarizes detailed localization results of the
proposed method as well as two other methods. In addition
to our previous work [26], a modified version'? of the ap-
proach proposed in [25], is also implemented and tested. One
can see the differences in recall and precision rates among
the three methods are quite small (£2%) except for recall

3In our implementation, which also does not perform people tracking,
binary images of foregrounds are adopted as system input as the other two
algorithms. A grid size of 100 x 100 is chosen for each of the 20 reference
planes, with 10cm grid spacing. A grid point on the ground is regarded
as occupied if more than Ty, = 11 grid points with the same horizontal
coordinates (but on reference planes of different heights) correspond to image
foreground in all four views. Then, connected component analysis is applied
to identify connecting occupancy regions. The connected occupancy regions
with very small areas, i.e., smaller than 22% of average area of such regions,
are regarded as noise and are removed.

rates for S1. Specifically, the proposed approach achieves the
highest recall rates for S1-S3 while the other two methods
achieve the highest precision rates for two of the three video
sequences. Similarly, very small difference (within 0.65cm)
among results obtained from these three methods can be found
for the accuracy of derived people location. Overall, the mean
value and standard deviation of (x—y) location errors of the
proposed method for S1-S3, together, are equal to 10.70 cm
and 5.90 cm, respectively, which can hopefully be regarded as
sufficient for many surveillance applications.'*

As for the computational speed, in frames per second (f/s),
the values for different cases listed in Table I are evaluated
without including the cost of foreground segmentation. One
can see that speed-up of more than an order of magnitude
from the method in [25] can be achieved by the proposed
approach, with as much as 70 times acceleration (near 2.7
times in speed improvement from our previous approach in
[26]) in the process speed of S1. While real-time performance
can be achieved for S1 and S2, the computation speed is

14The errors are only calculated for correctly detected people locations,
which contribute to the precision rates listed in Table I, i.e., with location
errors less than 30 cm.
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(a)
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Fig. 11.

down to a near real time 21.61 f/s when the number of people
increases to 12.!5 Note that for [25], the computation times (in
f/s) are about the same for different cases. This is because the
time complexity in the generation of synergy maps is mainly
dependent on the size of image frame and the number of views.

Although the above evaluations show that the proposed
method can often provide reasonably good localization results,
there are extreme cases of poor foreground segmentation that
cannot be well handled with the proposed method. Fig. 12(a)—
(h) show localization results and foreground regions for the
51st frame of S1. In Figs. 12(a) and (e), one can see the
foreground segmentation of a person (in red circle) is very
poor because of reflections as well as a clustered background
(see green arrows). Consequently, lesser 3-D line samples are
retained after the screening process, as shown in Fig. 12(i),
resulting in a failure. Since some more 3-D line samples can
still be reconstructed correctly for that person as different time
instances, erroneous results are generated for only three out
of 20 frames (from frame 41 to frame 60), compared with 13
erroneous frames obtained from the method in [25].

On the other hand, problematic results may also be gener-
ated due to very serious occlusions. First, as shown in Fig. 13,
there may be a ground region that is covered by foregrounds
in all views. Whether a person exists or not, a 3-D MA will
be generated. If such a 3-D MA cannot be filtered out by the
aforementioned geometric rules, a false alarm will occur [see
the yellow arrow in Fig. 13(c)].!® Second, when the distances
between people are too small [see the red arrow in Fig. 13(c)],
their 3-D line samples will be clustered into the same group
[see Fig. 13(b)], resulting in two missed detections and one

I5This is because the computational time is dominated by the number of
2-D line samples, which will grow with the area of foregrounds.

16Such a problem may be eliminated by adopting additional temporal
information, which is not discussed in this paper for brevity.
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Localization results, similar to those shown in Fig. 9, for scenario S3.

false alarm. This is because, for localization efficiency, the
BFS scheme only determines whether the distance between
two line samples is smaller than a threshold when grouping
3-D line samples.!” A more detailed discussion of the effect
of the distance threshold can be found in Appendix C.

To further evaluate our method for an outdoor environment,
S4 and S5 are captured from a real scenario with image resolu-
tion of 360 x 240. In general, working in such an environment
may be challenging for visual surveillance systems since there
are more time varying factors such as illumination for object,
speed of wind, and shadows of various strength. For the
real scene under consideration, groups of people of different
sizes are walking quickly through the monitored area'® (green
polygons in Figs. 14 and 15). Thus, less image frames are
captured for S4 and S5 than those in S1-S3. Figs. 14 and
15 show snapshots of localization results for S4 and S5,
respectively, with more statistics summarized in Table II. One
can see that the correctness/accuracy level similar to that
shown in Table I can be achieved with the proposed approach,
except for larger differences between: 1) recall and precision
rates for S4, and 2) mean localization errors for S4 and SS5.
Such differences may result from a higher probability of the
aforementioned occlusions for people walking together along a
passage and/or complexities associated with an outdoor scene.

In practice, due to significant differences between the indoor
and outdoor scenes where video sequences S1-S3 and S4-S5
are captured, respectively, different parameter values may need
to be selected to achieve desirable localization results. In the

"To partially resolve this problem, a heuristic scheme is applied in our
method. If a cluster contains a larger number of 3-D line samples, it will be
divided into two clusters. Specifically, we calculate the average number of
3-D line samples, N, in all clusters, and divide a cluster into two groups if
it contains more than more than 2N, line samples.

181t is assumed that the evaluation of people localization is only preformed
for the monitored area.
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/) i /s
(1)

Fig. 12. Failure example of the proposed method. (a)—(d) Localization results (illustrated with bounding boxes) of four views. (e)—(h) Corresponding
foreground regions and 2-D line samples. (i) 3-D line samples to represent different persons in the scene.

Fig. 13.

(b)

Example of missed detections and false alarms of S3. (a) Segmented foreground regions and 2-D line samples. (b) 3-D line samples to represent

different persons in the scene. (c) Localization results illustrated with bounding boxes. Note that corresponding colors are used in (b) and (c) for different

clusters/bounding boxes after clustering.

TABLE I
LOCALIZATION RESULTS OF SEQUENCES S4 AND S5

Sequence  Number of frames/people Method Recall ~ Precision  Mean error (cm)  Frames per second
This paper  97.5% 89.8% 8.57(5.05) 28.61(2.903)
S4 70/6-7 [26] 90.0% 75.4% 8.84(5.62) 9.20(1.153)
[25] 97.7% 91.1% 9.08(5.30) 0.46(0.002)
This paper  95.0% 96.0% 11.70(6.02) 26.66(1.684)
S5 40/7 [26] 97.5% 91.0% 11.37(6.52) 5.97(0.408)
[25] 97.1% 97.8% 11.48(6.25) 0.46(0.001)

TABLE III

next subsection, effects of choosing different densities of 2-D
line samples in each image, as well as incorporating different
numbers of cameras in the proposed localization system,
will be investigated (only for the indoor scene for brevity).
While the two associated parameters will determine the initial
amount of data to be processed by the proposed algorithm,
other parameters will be used to tune the algorithm for better
performance under different environmental conditions, as will
be discussed in more detail in Appendix C.

B. Experiments for Different Numbers of Cameras and
Densities of Sampling

To investigate the relationship between performance of
localization and the numbers of cameras, the indoor scenarios
S1-S3 are examined with an additional view captured from
a different camera, and the results are presented in Table III.
One can see that while similar recall rates can be obtained
by using different numbers of cameras, the precision rate of
using three cameras is much lower than if four or five cameras

RESULTS OF USING DIFFERENT NUMBERS OF CAMERAS

Number of cameras 3 4 5

Recall 95.4% 96.2%  98.3%
Precision 85.7%  95.0%  96.6%
Localization error (cm) 11.30 10.70 10.13
Frames per second 75.57 29.48 24.16

are used. This implies that using only three cameras may not
be sufficient when there are serious occlusions. In addition
to the above performance indices, adding more cameras also
improves the system performance in terms of the localization
accuracy. However, if slight degradations in these performance
indices are acceptable, a set of four cameras may be used if
hardware (cameras) cost is of major concern.

In order to investigate the influence of densities of sample
lines in an image on the localization performance, a very
simple sampling scheme is adopted in our method. In par-
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(a)

Fig. 15. Localization results, similar to those shown in Fig. 9, for scenario S5.
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Fig. 16. Results of using different line densities (pixel spacings) with four cameras. (a) Recall and precision. (b) Localization error. (¢) Computation speed.
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Fig. 17. More challenging localization example for a busy street scene. (a)-(d) Localization results (illustrated with bounding boxes) of four views.
(e)—(h) Corresponding foreground regions and 2-D line samples. (i) 3-D line samples to represent different persons in the scene.
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TABLE IV
RECOMMENDED VALUE RANGES OF PARAMETERS FOR S1—S3

Section used Parameter  Function/description

Value range

Section III-A and B Tjep
Section III-A and B Ty
Section III-A and B T},

Minimum length of a 3-D line sample (Geometric Rule 1)
Minimum height of a 3-D line sample (Geometric Rule 2)
Minimum height of bottom of a 3-D line sample (Geometric Rule 3)

[100 cm, 150 cm]
[70cm, 130 cm]
[70cm, 105 cm]

Section III-B T Maximum height of a 3-D line sample (Geometric Rule 4) [190 cm, 230 cm]
Section III-B Ty, Minimum AFCR of a 3-D line sample [0.68, 0.97]
Section III-B Nplane Number of reference planes [10, 45]
Section III-C T. Maximum distance between 3-D line samples of a cluster [15cm, 40 cm]
Section III-C Niine Minimum number of 3-D line samples of a cluster [1, 11]
Section III-A T, Minimum number of foreground pixels of a 2-D line sample see text
Camera center C in the monitored area. While 1) can be seen in all four views
but does not result in a problem in this case, 2) does cause a
false alarm [shown as a big (dark purple) cluster in Fig. 17(1)].
g Overall, the recall and precision rates for this challenging
scene are evaluated as 80.9% and 80.2%, respectively, for a
P, total of 108 image frames.
Image plane )
T,
e V. CONCLUSION

Fig. 18. Tllustration of the calculation of a reference point on 7.

ticular, the line samples are originated from the vanishing
point to equally spaced image pixels at the bottom row of
the captured image. Fig. 16(a) shows the decreases of both
the recall and precision rates with such pixel spacing.!” One
can see that for spacing less than 10, similar recall and
precision rates can be obtained, and a larger spacing seems
to capture inadequate information for localization. Fig. 16(b)
shows that the localization errors are growing slightly with
pixel spacing. Whether the localization errors due to different
pixel spacings are acceptable will depend on applications
under consideration. Finally, Fig. 16(c) shows the growth
of computation speed with pixel spacing. Again, the choice
among different pixel spacing will depend on the requirement
of system performance.

C. Exploring More Challenging Scenes

As a preliminary investigation of possible extensions needed
for the proposed approach to work within more challenging
scenes, a busy street scene is considered in this subsection.
Fig. 17 shows people localization results obtained by directly
applying our algorithm, for the monitored area marked in
green,”’ for a time instance while six persons are crossing a
street. Besides failure cases mentioned earlier (the red arrow
indicates the merge of two persons, as in Fig. 13), additional
interferences from nonhuman foreground objects (vehicles) in-
clude: 1) vehicle—people occlusion and 2) presence of vehicles

19While a spacing of five pixels is selected for S1-S3, a spacing of 4.4
pixels is selected for S4-S5.

20Similar to the experiments conducted on S4 and S5, the evaluation of
people localization is only preformed for the monitored area, and the image
resolution is 360 x 240.

We proposed an efficient people localization method that is
based on vanishing point-based line sampling. Thus, instead
of using all foreground pixels, line samples from multiple
views were used to find possible 3-D line samples of human
bodies efficiently. While our earlier approach in [26] is a
direct extension of the approach in [25] in that projection
of pixels (lines in [26]) are computed for horizontal planes
first, the algorithm presented in this paper reconstructs the
above samples in the 3-D space directly. Additional efficiency
of the proposed approach arises from effective screening of
these 1D samples using geometric constraints of the body.
Such efficiency is crucial for certain surveillance applications,
which demand prompt attention (and high processing speed)
with people localization being part of the complete process.”!
Experimental results demonstrate that the proposed method
can handle serious occlusions in quite crowed scenes to
provide localization results with correctness and accuracy, and
localization accuracy, comparable to that attained with a modi-
fied version of [25], but with a much higher processing speed.
Additionally, because the proposed localization approach is
based on 3-D reconstruction/sampling, it is possible to extend
the approach to locate people in the 3-D space.?

APPENDIX A
DERIVATION OF MULTIPLE HOMOGRAPHIC MATRICES FOR
PLANES OF DIFFERENT HEIGHTS

Homographic matrices are required for projecting 2-D line
samples onto the reference plane, as in Section II-B. Also, the

21For example, while localization-based people tracking is often needed in
intruder detection and abnormal behavior detection, if such functions are to
be implemented with no special hardware for acceleration, our approach will
have a better chance of fulfilling the requirement of real-time performance than
that presented in [25]. As another example, effective people tracking based
on the localization results may need to be developed for similar applications,
which may be more sophisticated than that presented in [25] and implemented
without any special hardware.

22To that end, constraints for human standing on the ground plane should
be removed, which include Rules 2—4.
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Fig. 21.

homographic matrices of multiple reference planes at different
heights can be used to back-project points on a reference
plane to different views for the computation of AFCR, as in
Section III-B.

Eshel and Moses [23], [24] use four vertical calibration
pillars placed in the scene, with marker points at three known
heights on each of them, to establish the homographies be-
tween image planes and reference planes at desired heights.
Since a new reference point at any height along a pillar
can be identified in the images of interest using the cross-
ratio along that pillar, the above homographic relationship can
actually be established for planes at arbitrary height. Thus, 12
(4 x 3) marker points are required for calculating all homo-
graphic matrices.

Instead of using 12 marker points, an approach for the
derivation of multiple homographic matrices for planes of
different heights, which only use eight (4 x 2) marker points
on four pillars, is presented in the following. Assume each
pillar has two marker points at planes 7r; and m, with heights
hy and h,, respectively. First, four marker points with height
h, are used to calculate a homographic matrix H,, between
the image plane and the reference plane m, as shown in
Fig. 18. Then, we will produce four reference points on 7, by
projecting the four marker points with height %, respectively.
More specifically, the image point p corresponding to the
marker point P can be projected to m, by H,, to obtain the
world coordinate of P’ as shown in Fig. 18. After that, we can

Results of using different values of Npjane. (a) Recall and precision. (b) Mean localization error. (c) Computation speed.

calculate a new reference point P, on an arbitrary imaginary
plane 7, with a specified height by calculating the intersection
of PP' and m,. Similarly, the other three marker points with
height &, can be used to produce another three new reference
points on . Finally, a homographic matrix H,,, can be found
by using the four new reference points. Thus, we can produce
a set of homographic matrices for reference planes of various
heights using only eight marker points.

APPENDIX B
SETTING THE PARAMETERS

In Section IV, satisfactory results of people localization are
obtained with the proposed approach for selected values of
some parameters. In this section, we will show that it is not too
hard to set these parameters properly in practice for different
scenes. Table IV shows a list of such parameters together with
the section(s) in which each of them is used and a range of
values tested for each of them. While the first three parameters
are applied before and after the refinement process, in both
Sections III-A and III-B, the rest are applied only in one
subsection of Section III. As for their physical meanings, five
of them are for measurements in the 3-D scene (in cm), one
of them is based on percentage values, two of them are for
number counts, and the last one is for measurements in 2-D
image planes (in pixels).

In general, for satisfactory performance of the proposed
localization approach, proper values should be assigned to the
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Fig. 24. Results of using different values of Tie, for S1. (a) Recall and precision. (b) Mean localization error. (c) Computation speed.

above parameters for each scene, or camera configuration. In
Table IV, appropriate value ranges, which yield reasonable
localization results for S1-S3 taken from the indoor scene
considered in Section 1V, are listed for these parameters.23 In
particular, Figs. 19-23 show such results, only for the most
complicated S3 (with four views) for brevity, for the most
important five parameters.”* For each of the five figures, only
one parameter is adjusted for easy observation of the trend
of localization performance, which has fairly low sensitivity
to the adjustment, with the parameter value used in Table I
indicated by an arrow.

For recall and precision rates shown in these figures, sig-
nificant changes (still within £2.4% of that in Table I) mainly
exist at one end of each plot except for Figs. 19(a) and 22(a).
Besides, the plots of recall and precision rates are intersected
at one point in each figure. For example, threshold 7, in
Fig. 22(a) specifies the maximum distance between two 3-D
line samples that can be grouped into the same cluster. If 7,
is too small, a cluster corresponding to a person may be split
into several groups, resulting in poor precision rate due to a

2n all experiments in Section IV, T}, is arbitrarily chosen as 24 (pixels),
i.e., 10% of the height of the input image.

24The other three parameters are associated with Geometric Rules 2 to 4,
respectively. For their ranges of values listed in Table IV, recall and precision
rates are basically the same as those listed in Table I. The screening with all
three rules, on the other hand, does increase the computation speed by 17%.

lot of false positives. In contrast, if 7, is too large, the recall
rate tends to decrease due to missed detections, resulting from
incorrectly merged clusters.

As for localization errors, variations caused by adjusting
these parameters are fairly small, i.e., within £0.50 cm, except
for Fig. 19(b). Small variations in computation speed can also
be found in these figures, except for Figs. 19(c) and 21(c).
For Fig. 21(c), it is easy to see that the computation time is
directly related to the number of sample points of a 3-D line
sample, which need to be verified against image foregrounds.

Overall, threshold Tie,, which specifies the minimum length
of a 3-D line sample that should be covered by foreground
regions in all views, seems to be most influential. While
increasing its value to remove more (possibly incorrect)
3-D line samples will always reduce the computation time, the
precision/recall rates and localization accuracy will increase
monotonically, up to 9% and 1.1 cm in Fig. 19, respectively,
as its value is increased from 100 to 140 cm.

In practice, different values of all these parameters may need
to be selected for different scenes and camera configurations.
Table V shows the two sets of (mostly different) parameter
values selected for the indoor scene (for S1-S3) and the
outdoor scene (for S4-S5) considered in Section IV. One
can see that the values used for the latter are not far from
the corresponding value ranges recommended in Table IV
for the former. In general, once their values are determined,
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TABLE V
PARAMETER VALUES SELECTED FOR EXPERIMENTS
PRESENTED IN SECTION IV
Tien Ty Ty Tin ng N, plane Tc Nline
S1-S3 140 90 90 230 0.85 36 25 4
S4-S5 110 130 70 190 0.92 36 25 7

the algorithm will work consistently for the scene under
consideration.”> For example, Figs. 24 and 25 show testing
results similar to Fig. 19, but for sequences S1 and S2,
respectively. One can see that good localization results can
also be obtained with Ti,, = 140 cm.

APPENDIX C
TWO TYPES OF SYNERGY MAPS

For better understanding of the effects of our implementa-
tion of [25], synergy maps created by 1) foreground likelihood
maps used in [25] and 2) the binary version (foreground
regions used in this paper) of 1) are both generated in this
section. Fig. 26(a)—(d) shows foreground likelihood maps
obtained for Fig. 8(a)-(d), respectively. Even with pixels of
lower likelihood filtered out, these foreground maps are still
influenced greatly by the cluttered background with strong
shadows and reflections. Fig. 26(e) and (f) shows synergy
maps generated by 1) and 2), respectively. One can see the
positions with high occupancy likelihoods, which are also very
close to the ground truth (marked as white crosses), are quite
similar for these two types of synergy maps.
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25 A5 for automatic determination of appropriated parameter values, different
approaches are currently under investigation. For example, by examining these
three figures, it seems that it will not be necessary to consider larger values
of Tien either: 1) when the recall rate drops or 2) when the mean localization
error increases.
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