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A comprehensive numerical study of threshold voltage fluctuation (�VT) in scaled NAND flash memory caused by random telegraph noise (RTN)

and discrete dopant fluctuation (RDF) in both the channel and the cell-to-cell space [source/drain (S/D)] region was carried out. Following a three-

dimensional (3D) Monte Carlo (MC) procedure, the statistical distribution of �VT is estimated, considering the effects of both the random

placement of discrete doping atoms and a discrete single trap at the tunnel oxide/substrate interface. The result demonstrates the significant

influence of the doping in the S/D regions. For the cells with and without an S/D junction, the electron concentration in the S/D region is

determined by the pass voltage of the unselected cell (Vpass) and the neighboring cell VT (VTðnÞ), owing to the fringing fields of neighboring floating

gates (FGs). As a result, �VT increases in the S/D region as Vpass � VTðnÞ decreases. The fluctuation amplitude strongly depends on the [single-

trap RTN] position along the cell length (L) and width (W ) directions. For the cell shape with rounding of the active area (AA) at the shallow trench

isolation (STI) edge, the results indicate that the high �VT area moves from the AA edge towards the center area along the W -direction.

# 2013 The Japan Society of Applied Physics

1. Introduction

Recent NAND Flash scaling trends have already been
extended below 25 nm. The threshold voltage fluctuation
(�VT) caused by random telegraph noise (RTN) produces
severe reliability problems in the read operation of NAND
Flash memory as the cell size is scaled down. Consequently,
it is widely considered that RTN affects cell reliability.1–11)

Owing to the capture and emission of an electron at the
trap state in the tunnel-oxide layer, RTN causes changes
in both conducting carrier number and mobility. Previous
research has attributed VT distribution widening by RTN to
the percolation effect due to atomistic doping spread and
trap location above the channel current paths.12–16) Statistics
of the VT instability can be examined by analyzing the
cumulative distribution of �VT.

17)

Both channel and source/drain (S/D) regions must
be considered when examining how RTN affects NAND
Flash memory. It is well known that omit to avoid program
disturbance, the scaled cell gate length cannot increase the
boron channel doping concentration. Correspondingly, the
S/D doping must be reduced to suppress short channel
effect (SCE) and program disturbance,18–22) thus warranting
a more thorough investigation of RTN for the cell with low
or eliminated S/D doping levels. Even without S/D doping,
fringing fields induced by neighboring floating gates (FGs)
can produce an adequate number of surface electrons and
achieve a sufficient string ON-current level.23–26)

Several RTN-related studies involving SCE, S/D im-
plantation,18,21) channel doping, cell shape,27–29) and adjacent
cell interference have been performed recently.30,31) Analyz-
ing how RTN affects S/D regions is a priority concern
owing to the reduction of S/D doping when the cell size
is scaled down to sub-25 nm. However, to the best of our
knowledge, exactly how the cell-to-cell S/D region affects
RTN with various cell geometries and Vpass in the NAND
Flash string has not yet been explored.

By three-dimensional (3D) technology computer aided
design (TCAD) simulations, in this work we simulated a
complete discrete-acceptor and discrete-donor dopant profile

with the RTN trap for the NAND Flash string. The RTN
distribution amplitudes are also investigated with and
without the S/D junction, where various Vpass values and
different cell shapes are considered. The results of this
study remain valid, despite the fact that the feature size of
cell dimensions approaches 15 nm. Therefore, the results
of this study will contribute to the improvement of the VT

distribution widening by RTN for the further scaled down
NAND Flash memory.

2. Simulation Method

The statistical distribution of VT fluctuation amplitude is
studied by performing a large number of 3D numerical
simulations with a random placement of discrete acceptor
(RDA) and donor (RDD) atoms, and a single electron trap at
the tunnel oxide/substrate interface (Fig. 1). Cell width and
length are set to 22 nm, and the substrate average boron
doping concentration of 1� 1018 cm�3 is implemented. Two
S/D profiles are prepared: one without S/D doping (S/D
junctionless) and the other with a Gaussian profile of an
arsenic implant with a low peak concentration of 1� 1018

cm�3. The coupling ratio (FG to control gate capacitance
divided by the total capacitance) is set to 0.6 with 8-nm-
thick SiO2 as the FG oxide. The statistical distribution of
the VT fluctuation amplitude of a read cell is then obtained
using the Monte Carlo (MC) procedure.27,28) Conventionally,
with a highly doped S/D, the RTN effect arising only in
the channel region has been studied.27–30) However, consid-
ering the recent S/D doping level reduction trend, both the
channel region and S/D region should be taken into account.
Figure 1 shows the RTN trap placement site (RTN region),
deliberately extended over the channel and cell-to-cell S/D
area. The VT value of a selected cell is extracted as the world
line (WL) bias (voltage) that elicits a bit line (BL) current
IBL of 100 nA. The BL and source line (SL) bias as are set
to 0.1 and 0V, respectively. All cells in the NAND string
are assumed to be in the neutral state (i.e., no charge placed
in FG). Additionally, RTN instabilities are examined, in
which the statistical distribution of the single-trap fluctuation
amplitude was considered, which was shown in Ref. 13
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to be sufficient for an adequate description of NAND
Flash memory. A single negative charge, which represents
a trapped electron, is randomly placed in the channel or
cell-to-cell S/D region (refer to Fig. 1 RTN region) at
the tunnel-oxide/substrate interface, where its electrostatic
property impacts the magnitude of the corresponding bit-line
current reduction. 3D drift-diffusion simulation is carried
out to estimate the IBL–VSCG (VSCG: selected cell CG bias)
trans-characteristic with the trap empty (neutral) or filled
(negatively charged) by one electron. Consequently, �VT

is extracted as the VT difference between the case of a
negatively charged state and a neutral trap state, which is
randomly placed in the channel or cell-to-cell S/D region.
More than 1000 MC runs are performed for each computa-
tion. The string current that is forced through a few narrow
channels connecting SL to BL is greatly influenced by the
positioning of discrete dopant atoms. The Coulomb potential
associated with each impurity atom acts as a barrier for the
current flow. Such current channels can be completely
blocked by an electron trapped near one of them, causing a
large IBL or VT variation.

3. Results and Discussion

Figure 2 shows the simulated Gaussian behavior of neutral
VT distribution due to the random dopant fluctuation (RDF),
where simulation is performed with and without an S/D
junction. Discrete acceptors are randomly distributed in both
cases, and discrete donors are added to the case of the S/D

junction. Figure 3 shows a comparison between cells with
and without an S/D junction in terms of the cumulative
distribution of �VT. Under the condition of Vpass ¼ 3V,
�VT of the S/D junctionless cell is larger than that of a cell
with S/D doping. In the S/D junctionless cell, the fringing
fields of the neighboring FG heavily influence the electron
density in the S/D region. Consequently, a single electron
trap more significantly impacts the S/D junctionless cell
under a low Vpass. Figures 4(a) and 4(b) demonstrate the
statistical contour plots of the�VT distribution, as a function
of the electron trap position along the L- and W-directions.
Figure 4 provides insight into the origin of the tail bits
shown in Fig. 3. For the S/D junctionless cell shown in
Fig. 4(b), �VT is significantly larger in the S/D region than
in the channel region, owing to the reduced electron density
in the cell-to-cell S/D area. The data pattern of the neigh-
boring cell must be considered as well. Figure 5 shows a
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comparison of the RTN results when adjacent cells are in
neutral (VTðnÞ ¼ 0:3V) and program (PGM) (VTðnÞ ¼ 3V)
states. Comparison between Figs. 3 and 5 reveals that the
�VT distribution under high VTðnÞ and Vpass (VTðnÞ ¼ 3V,
Vpass ¼ 6V) is nearly the same as that under low VTðnÞ
and Vpass (VTðnÞ ¼ 0:3V, Vpass ¼ 3V). This observation is
attributed to the electron density in the S/D region being
almost determined by Vpass � VTðnÞ. Therefore, exactly how
VTðnÞ and Vpass affect can be written simply as Vpass � VTðnÞ,
allowing us to resolve the adjacent cell interference effect by
varying Vpass with all neighboring cells in neutral states.
Figures 6(a) and 6(b) show the cumulative distribution of
�VT as a function of Vpass for cells with and without an S/D
junction. These figures reveal that the cumulative distribu-
tion of �VT under low Vpass (Vpass ¼ 3V) is the broadest.
In particular, in the case of an S/D junctionless cell, the
RTN effect significantly worsens at the tail. Thus, the VT

fluctuation amplitude is larger in the S/D region as Vpass �
VTðnÞ becomes smaller. To estimate the contribution of the
channel region and S/D region to �VT, the origin of the
detected severe RTN effect under various Vpass conditions is
determined by separately simulating a single-trap in the

channel region and S/D region (Fig. 7). Figures 7(a) and
7(b) show a cell with an S/D junction, while Figs. 7(c) and
7(d) show the S/D junctionless cell in the channel region
and S/D region, respectively, under various Vpass conditions.
�VT slightly increases with increasing Vpass in the channel
region [Figs. 7(a) and 7(c)]. Nevertheless, Figs. 7(b) and
7(d) demonstrate that �VT significantly decreases with in-
creasing Vpass in the S/D region. This reduction is attributed
to the fact that a higher electron can be induced by the
fringing field of the neighboring FG, resulting in less impact
on �VT in the S/D region. Figures 8(a) and 8(b) demon-
strate the statistical contour plots of the �VT distribution
along the L- and W-directions with and without the S/D
junction, at various Vpass values. These figures reveal that
Vpass heavily influences the extent to which the S/D region
affects RTN. Figure 9 shows the average values of �VT

from the cumulative distribution of �VT in Figs. 6 and 7.
The average �VT is extracted from the contribution of 1) the
channel region, 2) the S/D region, and 3) both the channel
and S/D regions. The simulation is executed by distributing
a single trap randomly in each region. The RTN effect along
the W-direction must also be considered. A high �VT is
crowded at the active-area edges (AA) along theW-direction
(Fig. 8). In other words, the RTN effect without an S/D
junction strongly depends on VTðnÞ under constant Vpass.

Next, the dependence of cell geometry on the �VT

distribution is considered. The RTN effect with different cell
shapes (i.e., rounding of the FG and AA) is estimated by
simulating three cell shapes. Figures 10(a)–10(c) show the
cross-sectional views along the L- and W-directions with
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three cell shapes. The fluctuation amplitude �VT of a single-
trap RTN source is obtained by estimating cell VT with and
without a single electron randomly placed over the channel
or cell-to-cell S/D region at its interface with the tunnel

oxide (refer to Fig. 1, RTN region) for each cell shape. �VT

caused by RTN is observed following the MC procedure,
considering ensembles of more than 1000 atomistically
different devices for each cell shape. Case A represents a
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sharp-edge device with the fully planar AA. In the case of B,
corner rounding occurs at FG edges along the L-direction.
In the case of C, corner rounding occurs at both FG and AA
edges along the W-direction. Case A has a uniform tunnel-
oxide thickness over the entire AA, resulting in a strong
electric field and current crowding at the AA edges. Case C
exhibits a strong electric field and current crowding in the
middle of the channel due to the AA edges rounding along
the W-direction. Figures 11(a) and 11(b) show the cumula-
tive distribution of �VT with and without an S/D junction
at the channel region and S/D region under a low Vpass

(Vpass ¼ 3V). Simulation results indicate that the cell
geometry does not significantly impact RTN. Notably,
�VT in the S/D region plays a dominant role in the S/D

junctionless cell, even though the cell geometry changes. To
give insight into the origin of the tail bits shown in Fig. 11,
Figs. 12(a) and 12(b) demonstrate the statistical contour
plots of the �VT as a function of single-trap position
along the L- and W-directions, where a single-trap RTN is
randomly placed in the channel and cell-to-cell S/D region.
For the S/D junctionless cell, these figures clearly indicate
that �VT in the S/D region is significantly larger than that in
the channel region. Moreover, for both cases A and B with
and without an S/D junction, �VT in the AA edge region is
larger than that in the center of AA. This phenomenon can
be explained by the electric field intensification and current
crowding at the AA edges. For case C with and without an
S/D junction, a high �VT area moves from the AA edge
towards the center area along the W-direction. Therefore,
the magnitude of the RTN fluctuation amplitude heavily
depends on the trap position along the L- and W-directions.
Conventionally, the number of oxide traps in the S/D region
is assumed to be larger than that immediately below the FG,
which is attributed to the worse oxidation and post oxidation
process conditions. However, the oxide trap density in the
S/D region must be lowered to suppress RTN.

4. Conclusions

In this paper, we show that �VT strongly depends on the
lateral position of a trap over the active area. The obtained
result allows us to highlight the importance of S/D region
characteristics against RTN instabilities. We have presented,
for the first time, the great influence of the S/D region on the
RTN amplitude in NAND Flash. Considering the results of
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RTN, the reduction in the number of surface states in the
S/D region is crucial. The knowledge collected in this study
will be useful to fix the VT distribution widening by RTN for
the further down scaled NAND Flash.
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