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We study the dynamics of spontaneously formed vortices in incoherently pumped homogeneous
microcavity polariton condensates (MPC). We find vortices are stable and appear spontaneously without
stirring or rotating MPCs by the numerical modeling using complex Gross-Pitaevskii equation. The center
of the vortex core contains some background of reservoir polaritons and the visibility increases with the
pump strength. The vortex radius is inversely proportional to the square root of the condensate density
or the pump strength. Finally, vortices formed by low pumping power exhibit short lifetime because of
the existence of excitations without costing energy.
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1. Introduction

Bose-Einstein condensation (BEC) is a macroscopic phe-
nomenon from a quantum state due to the coherence of bosons
below the transition temperature [1,2]. The transition tem-
perature of the condensate is inversely proportional to the
mass of particles. Excitons coupled to localized photons in a
microcavity containing semiconductor quantum wells form
microcavity polaritons having 5 orders of magnitude lighter
mass than electrons [3]. Because of the ultra-light polariton
mass, the transition temperature of microcavity polaritons
could be raised up to room temperature [4]. In the past decade,
scientists took a lot of efforts to observe microcavity-polariton
condensates (MPCs). Growing interest in MPCs can be attributed to
the system being intrinsically out-of-equilibrium with the steady
state determined by the dynamical balance between interactions,
pumping and decay [5-7]. The momentum space distributions of
MPCs were measured and the accumulation of polaritons in the
lowest energy state (or condensation) was first observed in p
lanar CdTe and GaAs microcavities [2,8]. Deng et al. [1] measured
the second-order coherence functions of a MPC and distinguish it
from a non-condensate. Due to the continuous pumping and
disorders of MPCs, vortices observed in MPCs give the definite
evidence of MPC [9]. Spontaneous vortex formation is also one of
the major features for the superfluid phase transition. It is surpris-
ing that vortices appear spontaneously without stirring or rotating
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MPCs [6,7,9,10], however, non-equilibrium MPCs show the instabil-
ity of forming vortices and spontaneous array of vortices without
any rotational drive [6,7,9,10]. Therefore, it is important to
understand the vortex structure and its stability through studying
the dynamics of MPCs. At this moment, there is still lack of a
consistent theory to interpret all the observed properties of vortices
in MPCs.

It is also unique that the vortex radius in MPCs is on the
order of the healing length and is typically 2 orders of
magnitude larger than that in atomic condensates and thus is
large enough to be observed directly [11]. The vortex radius is
given by the healing length determined by polariton—polariton
interactions and is inversely proportional to the square root of
the condensate density or lower polariton blueshift [11,12].
The coreless (nonzero density at center) vortex can be
observed because it contains some background of polaritons
from the reservoir. Two components are added so that the
experimental observation is not purely the angular momentum
state with quantum number #=1. Due to the repulsive inter-
actions of polaritons, the chemical potential of the condensate
goes higher and creates a blue shift on the total energy as a
high density of polaritons has been injected into the system by
raising the pumping power [13]. Spontaneous vortices were
experimentally observed in atomic BECs and polariton systems
in the presence of external confining or disorder potentials
[6,9,14,15]. In the Kibble-Zurek mechanism [16], the excita-
tions of topological defects can be formed when going through
the phase transition, and finally get pinned to the disorders.
A correlation length & and hence the spontaneous topological
defect density (proportional to 1/£2) are determined by the
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quench rate of the system through the critical temperature. The
remarkable observation made is that the phase transition occurs
over a finite time, and the system falls out of equilibrium when the
thermalization (or relaxation) rate drops below a quench rate 1/zq
[15,16]. In this scenerio, vortices are formed during the merging of
isolated coherent regions with uncorrelated phases.

In polariton superfluids, the spontaneous vortex generation
can be a manifestation of the Kibble-Zurek mechanism. These
vortices would migrate and not be visible after averaging over
many experiments, but give a decrease of fringe contrast of the
interferometric images. A numerical modeling using the sto-
chastic Gross-Pitaevskii equation was performed by Lagoudakis
et al. [14] to reproduce the preferential vortex paths and explain
the experimental observations. Vortices can also be generated
using a weak external imprinting laser beam in a coherent
optical-parametric-oscillator system [10-12], however, a mini-
mum power is required for the polaritons to acquire enough
angular momentum to create a vortex. The vortex lifetime is
long for high excitation power and vice versa [12], whereas,
vortices in incoherently pumped MPCs are stabilized by dis-
orders and have negligible dependence on the excitation con-
ditions [9].

In this paper, we shall show that even in a system without
disorders or confinements, vortices sensitive to the excitation
conditions are stable and arise spontaneously due to the driven-
dissipative nature. The vortex state of MPCs is studied through
the complex Gross-Pitaevskii equation (cGPE) coupled to the
reservoir polaritons at high momenta [5]. This mean-field model
for non-equilibrium MPCs is a generic model of considering
effects from pumping, dissipation, potential trap, relaxation and
interactions. In Section 2, without considering a potential trap or
disorders, we study the dynamics of spontaneously formed
vortices in incoherently pumped MPCs. The steady state of the
system with a vortex is analyzed under a uniform pumping
power, P. Furthermore, the visibility and core radius of the singly
quantized vortex are calculated as a function of pumping power.
We find that the size of a vortex is inversely proportional to the
square root of the condensate density or the pumping power
above the threshold. Moreover, with increasing pumping powers,
the core radius and visibility, which are determined by decay
rates of the condensate and the reservoir polaritons, of a vortex
become smaller and higher, respectively. In Section 3, from the
steady state of the system with a specific vorticity, the stability
and collective-excitation spectra of a vortex is investigated by
utilizing the Bogoliubov theory. Because of the non-equilibrium
character of MPCs, the excitation frequency £ is a complex value
[5,17], whose real part, Re(£2), and imaginary part, Im(£), repre-
sent excitation energy and decay or growth rate of the system.
The stability of the singly quantized vortex is justified by Im(£)
provided that Im(£2) < 0. We show that singly quantized vortices
can still exist and remain stable under fluctuations even in the
absence of stirring, rotating, trapping, or disorders. We shall
present the conclusions in Section 4.

2. Dynamics of spontaneously formed vortices

In order to study non-equilibrium MPCs, we treat the polar-
itons at high momenta as a reservoir whose state is determined by
the reservoir density, ng(r,t), and employ the cGPE, governing the
condensate polaritons that couples to the reservoir polaritons, to
describe the time evolution and density distribution of the con-
densate. The wave function ¥(rt) of the condensate and the
reservoir density satisfy the coupled differential equations as

below
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where yz and y are the decay rates of reservoir and condensate
polaritons; g and g are the strength of polariton—-polariton inter-
actions and the coupling constant between the condensate and
reservoir; and R(ng) is the amplification rate that describes the
replenishment of the condensate state from the reservoir state by
stimulated scattering. To simplify our calculation, hereafter we
assume the condensate is of two dimensional with no radially
confined trapping potential. The system is located in the plane
perpendicular to the pumping axis, which is also the confinement
direction of the excitons in the quantum wells.

In the steady state, the reservoir density is ng(r,t)=n3 and
the wave function can be described by ¥(r.t)=%y(r)e " with
chemical potential 4 and Planck's constant 4. If the pumping power
P is below the threshold P,, or P< Py, there is no condensate
density (¥o(r)=0) and the reservoir density is proportional to the
pumping power, i.e., n3=PJyg. At the threshold, the reservoir
density n§ = Py, /vy is fixed by the balance between the amplifica-

tion rate R(ng(r,t)) and decay rate y of the condensate, i.e., R(nfeh):
y. When P > P,;, a condensate appears and the condensate density,
defined as n.=I%y(r)?, far away from the vortex core region grows
as ne=(Pu/y)a, where a=(P/Py;)-1 is called the pump coefficient
being the relative pumping intensity above the threshold. In the
mean time, the stationary reservoir density, which is determined
by the net gain being zero, is equal to the reservoir density at the
threshold pump power, n)=n4. Then, the chemical potential of
the system is y=gn+2gn3. Throughout this paper we shall take
£ =2g under the Hartree-Fock approximation. Given the length

unit 2 = /%y /2mgPy, and energy unit fiwg=74%/2 mA%, where m is
the polariton mass and o=1/[1-(4y/yr)], we can choose the length,
time and energy scales in units of 4, 1/we and 4w, respectively.
Also rescaling the wave function ¥(rt)— /ncw(p,t) and reservoir
density ng(r,t)—ngn(p,t), where p=(p,0) is the two dimensional
polar coordinate system with the dimensionless radial coordinate
p=r]/2, the cGPE of y(p,t) and the rate equation of n(p,t) are given as

Oy irs .

,70‘/1 =-Vov+5 [R(n)—dw+afflw\2w+(0—1)nw, ©)
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where R(n) = R(n)/wo, 7 =y/wo, 7g = rr/wo and

, la/ o 1 %
=35 0) )
is the Laplacian operator associated with the dimensionless polar
coordinate p=r/A.

The steady state of the system under a uniform pumping can be
obtained by substituting w =we #* and n(p,t)=n, into Egs.
(3) and (4), where ji=pu/hwo is the dimensionless chemical
potential of the system. Using R(n) = # for the stationary condition,
we then have the stationary reservoir density no=a+1-alygl® from
Eq. (4). Therefore, the densities of reservoir polaritons and the
condensate are locked together determined by the following time-
independent nonlinear Schrédinger equation:

V2o + alwol*wo + (6—1)(a + Do = fiyo. (6)

In the region far away from the vortex core, the density of the
system is uniform with yy—1 and ng—1. We then find the
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chemical potential of the system, ji =ac + (6—-1), from Eq. (6).
Substituting 7 back to Eq. (6), we obtain

V2o + a(1=|wo|*yo =0, (7)
which has been used to describe a vortex profile with healing

length é=21//a or & = y/h%yo/2mgP,a [10,11]. The healing length
of vortices is inversely proportional to the square root of the
pumping power that can be understood qualitatively by equating a
typical kinetic energy associated with a vortex in the condensate,
~(2me?)71, to the blue-shifted interaction energy of ~gn. Thus, the
healing length & can be represented as (2mgn)'? and the
condensate density n. increases with pumping power. The role
of pumping power P here can be interpreted in two ways. First, it is
in proportion to the vortex density so that the inverse power
proportionality to the correlation length & (defect density ~1/£2)
can be retrieved. Secondly, the pumping power is in analogy to the
quench rate of the entire system. When the pumping power is
greater than a threshold power determined by the decay rate of
reservoir, i.e., P, = ygn¥!, the sysytems falls out of equilibrium with
the additional power used to replenish the condensated polar-
itons. From this point of view, the pumping power acts like the
quench rate in Kibble-Zurek scenerio for the spontaneous vortex
generation. From n.=(P;;/y)a far from the vortex core region in our
system, we also conclude the healing length of vortices is inversely
proportional to the square root of the condensate density far away

from the core, i.e., &=n; /2. Therefore the vortex radius (ay) is also
inversely proportional to the square root of the condensate density
that is consistent with the experiments [11,12].

To find the steady state of a vortex, we just need to solve Eq. (7)
and find y, for a=1, i.e,, y§=1(p,0), then the solution wi(p,0) for
other pump coefficients a can be obtained by rescaling the length
scale, ie., yi(p,0)=y=1(Jap,0). We assume the steady-state
solution is wq(p,0) =f(p)e”® with ¢ representing the winding
number of the quantized vortex. Then Eq. (7) becomes

2 2
i Crvaa-fr=o ®)
flp)is numerically solved for a given pumping power «. Then the
total density of the system, N(p), is given by N(p)=y(p)+«(p), where

2(0) =1 g /V)of () ©)
and
k(p) = Tl,t{' [+ 1—af2(p)] (10)

are the density profiles of the condensate and reservoir polaritons,
respectively. We then conclude that the vortex core structure is a
combination of the condensate and reservoir polaritons. Due to
the density of reservoir polaritons at p=0 being not zero and equal
to x(p = 0) = nif(a + 1), the total density of the system is not zero at
the center of the vortex. Therefore, the dip in the vortex core
contains some background of reservoir polaritons, which is con-
sistent with the experimentally observed vortex [11]. The
“observed” state is not a simple orbital angular momentum state,
most of the structure come from the condensated eigenstate and
the structure is further smeared by the non-condensated part so
that the visibility is less than 1. We shall give the visibility of
vortex core structure which is defined as

V:(Nmax—Nmin)/(Nmax +Nrnin)7 (1])

where N;,,qox and Np,;;, are the maximal and minimal densities of the
system, respectively. From Ny;;x=N(p — o0) and Ny,;jn=N(p=0) for a
vortex state, the visibility can be expressed by relaxation rates of
the condensate and reservoir polaritons as V=a(yg —y)/[a(yr+7)+27].

By solving Eq. (8) numerically, we can find the profile f{p) using
the shooting method [18,19] on the 4th order Runge-Kutta
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Fig. 1. (Color online) Spatial density profiles. Densities of the condensate and
reservoir polaritons are shown by black dashed and red dotted lines, respectively.
The blue solid line is the total density of the system.
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Fig. 2. (Color online) Core radii and visibility of vortices. The core radii (red circles)
and visibility (green dash-dotted line) are plotted as a function of pumping power
above the threshold. Red circles are core radii determined by using the half width at
the half maximum of the total density, while the red solid line is the fitting curve of
the core radius. The black dashed line indicates the maximal visibility of the vortex.

integration with boundary condition fly)—»1 as p—«». To obtain
numerical results we choose physical parameters used in Ref. [8]:
mh2=17 meV™' ym™2, iy=1 meV, hyzg=>5 meV, #g=0.04 meVum 2,
and ~n{ =0.1 meV pm?. In Fig. 1, the density profiles of singly
quantized (¢ = 1) vortex, reservoir, and their summation are shown in
unit of nif(yg/y) for a=6. The vortex and reservoir densities are
inversely related to each other. The condensate density decreases
while the density of reservoir polaritons increases as p—0; and the
total density at the center of a vortex is given by the density of
reservoir polaritons. This is why the observed density inside the
vortex core is not absolutely zero in the experiments. Moreover, the
vortex radius ay, which is defined from the half width at half maxima
(HWHM) of the total density rather than the condensate density, is
the actual core radius observed by experiments. For a=6, the core
radius a,=0.6347) is about 5.44 um since the length unit A=8.5749 um,
and the visibility of vortex V=0.63. The visibility and vortex radius for
other pump strengths are shown in Fig. 2. The visibility and its vortex
radius become more clear and smaller, respectively, as the pumping
power increases. The numerical results (red circles) of the vortex radii
can be fitted to a curve (solid red line) as ay = 1.5549a71/2, Therefore,
ay=n:"1/2 is confirmed from the relation of n. and , i.e., ne=(Py/y)a
[11,12]. As we raise the pumping power further, the visibility is
saturated and approaches the maximal visibility Viua=(r=7)/(yr+y)
having Vmax = 2/3 for the case of y/yr=0.2. For the singly quantized
vortices, the visibility of core structure increases with the pumping
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power, however, the maximal visibility is limited by the decay rates of
the condensate and reservoir polaritons.

The coreless vortex (nonzero density at center) we focus here is
a consequence of the coupled equations between the polaritons
from the reservior and the condensate. If the condensated and
non-condensated parts can be analogous to the two-component
BECs with internal degrees of freedom like the spins, then the
pseudo-spin representation can be implemented to find the
skyrmion-like excitations. Then the coreless vortex we found here
is “(baby)skyrmion-like”, whereas, in atomic BECs, this kind of
coreless vortex is observed in multi-component BECs and is often
parametrized with different external field, rotation or trapping
potential.

3. The stability and excitations of a vortex

After showing the steady-state properties of vortices, we
investigate the excitations and stability of a singly quantized
vortex. We consider small fluctuations 8y and &n acting on the
steady state yo and ng of the system having a singly quantized
vortex with an angular momentum characterized by quantum
number #. Because of the rotational invariance of the system, we
assume

5'1” — uq(p)ei(q+f)9e—f!2r + vz(p)e—i(q—f)ﬁeiﬂr (-12)
and
SN = Wq(p)eiqf)e—iﬁr + sz)e—iqﬂe—iﬂr (13)

where q and £ are the quantum number (winding number) of the
angular momentum of the excited state and the excitation fre-
quency of the system, respectively. Then substituting y=e™*
[wo+dy] and n=ngp+6n into Egs. (3) and (4) and linearizing them
around the steady state, we obtain three coupled Bogoliubov
equations [20] that are used to study the excitations and stability
of the system

—A g + (A(p)—mug + B(p)vg + Clp)wq = Quyq, (14)
A_vg—(Alp)—u)Vvq —B(ﬂ)uq—c*(/’)wq =Qvy, (15)
—i7Rlaf (p)g + af (9)Vq + (1 + afff*(p)Wq] = QW (16)

where, the operators A, =d?/dp? + (1/p)d/dp—(q + £)? /2,
together with the functions A(p) = 2aaf*(p) + (6= 1)[x(p) /ni, B(p)=
acf*(p), and C(p) =[(i/2)B7 + (6—-1)If (p) are separately defined and
the dimensionless coefficient p=R'(ng)/R(no) is the change rate of
the amplification on the reservoir density. For each pumping
scheme, we get excitation frequency £ as a function of g. There
are many excitation states and we will be mostly interested in the
branch with the lowest excitation frequency. The decay (Im(£2)
<0) or growth (Im(£2)>0) behavior of the excitation mode
indicates the steady state of the system is stable or unstable,
respectively. Note that while there are solutions of three coupled
Bogoliubov equations of the form (ug,vqwy) , there should always
have solutions of the form (v*,u"q‘,wj) with Q;—-Q_*
Discretization transforms the Bogoliubov equations into
a matrix equation with eigenfrequencies and corresponding eigen-
functions solved under different pumping schemes, then we find
the collective-excitation states and their excitation energies of the
system. Here we only focus on the excitations of the singly
quantized vortex (#=1). The low-lying excitation modes with Re
(£2)20 are shown in Fig. 3. The mode patterns are quite different
for various pumping powers. Note that there exist dispersionless
(Re(2)=0) and strongly damped (Im(£2)=-5) reservoir mode
which is not shown here. This reservoir mode does not affect
excitations of vortices much so that it will be neglected in our
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Fig. 3. (Color online) Excitation energies and decay rates of the excitations. Real
parts (solid symbols) and imaginary parts (empty symbols) of excitation frequen-
cies of singly quantized vortices are plotted as a function of winding numbers for
a=0.5 (squares), 1 (triangles) and 2 (circles). The change rate, s, of the amplification
on the reservoir density is equal to 1. Those lines connecting the solid symbols are
shown to guide the eyes.

discussion of vortices. From Fig. 3, except for the cases of lower
pump strength close to the threshold, excitation energies for
a fixed pump strength increase with the winding number q.
The excitation energies and decay rates of excitation modes for
all g's also become larger as raising the pump strength. We find
that finite excitation energies are needed in order to excite
vortices in MPCs created by higher pumping powers. Once vortices
appear spontaneously, they are very stable and not easily
destroyed. From the experimental point view, MPCs created by
higher pumping powers are easier to acquire enough angular
momentum to form vortices [12]. There exists a wide range of
pumping power above the threshold where Im(Q) <0, implying
the singly quantized vortex mode is stable over a wide excitation
window. This stability of vortices in MPCs indicates that vortices
appear spontaneously without stirring or rotating MPCs that
agrees with the experiment [12].

The MPCs vortices created by lower pumping power exhibit
quite different behavior with the vortices created by high pumping
power. The low-pump vortices exhibit zero excitation energies and
a roton-maxon character for the small positive and negative
q values, respectively, as long as «a is less than 0.7. The asymmetric
excitation spectra at lower pumping powers originate from the
circulation quanta /=1 existing in the operators A . that the
critical pumping power for asymmetric excitation spectra is to be
determined by the relaxation rates of the condensate and reservoir
polaritons. The effect of exciting vortices with no excess energy
required shows that the low-pump vortices can transform spon-
taneously into excitation states with short lifetime [12]. Therefore,
under low pumping power, MPCs are difficult to accommodate
a vortex and can only be observed momentarily [12,21].

4. Conclusions

In conclusion, a numerical modeling using complex Gross—
Pitaevskii equation is performed to understand the spontaneously
formed vortices in homogeneous MPCs. We found that the
densities of reservoir polaritons and condensated polaritons are
locked together by the chemical potential. The reservoir density
decreases as the condensate density increases and vice versa.
Therefore, the center of the vortex core contains some background
of reservoir polaritons, and the visibility of a vortex increases with
the pumping power. Further increasing the pumping power, the
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visibility would become saturated and approach a maximal
visibility determined by the decay rates of the condensate and
reservoir polaritons. Furthermore, the vortex radius is inversely
proportional to the square root of the pumping power as well
as the condensate density above the pumping threshold. The
pumping power plays the role of quench rate in atomic BECs,
acting together with the reservoir as the source of spontaneous
vortex generation, which is a manifestation of the Kibble-Zurek
mechanism. Excitations and the stability of a singly quantized
vortex are also studied. We found a wide range of pumping power
above the threshold having negative imaginary excitation frequen-
cies for all winding numbers q's. Therefore, singly quantized
vortices are stable and appear spontaneously without stirring or
rotating MPCs. Excitation energies and decay rates of the excita-
tion modes of vortices for all g's become larger with increased
pumping power. The energies of vortices at high pumping power
are finite and those at low pumping power are zero. Due to the
existence of excitations without costing extra energy, vortices at
low pumping power exhibit a short lifetime. Our observations in
this paper are crucial and reachable for studying the vortex
dynamics of polariton condensates in the future experiment.
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