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Abstract In this paper, single- and multi- user Resource

Allocation (RA) optimization problems considering trans-

mit power and minimum rate constraint of Mobile Station

(MS) for maximizing MS’ energy efficiency, measured as

bits-per-joule (bpj), are addressed. Assume channel state

information of all MSs is known by base station. We

propose uplink RA algorithms, performing subcarrier

assignment and power allocation, for optimizing bpj of MS

in a single-cell OFDMA-based cellular network for both

single- and multi- user scenarios. In the single-user case,

we propose RA algorithms, which utilize the closed-form

solution derived by applying Lambert-W function and an

iterative approach based on Karush–Kuhn–Tucker condi-

tions respectively to achieve optimal bpj of MS. In the

multi-user case, centralized iterative multi-user RA algo-

rithms for maximizing sum of MS’ bpj, performing joint

subcarrier assignment and power allocation iteratively, are

proposed by utilizing the proposed single-user RA

schemes. In particular, tradeoffs between energy efficiency

and spectral efficiency are fully investigated, and the

influence of MS’ power and minimum rate constraints on

bpj performance is also studied. The effectiveness of pro-

posed algorithms is presented by numerical experiments.

Numerical results demonstrate the proposed algorithms can

enhance bpj significantly with limited loss of total

throughput compared to the sum-rate maximization algo-

rithm (in Moretti et al., IEEE Trans Veh Technol

60(4):1788–1798, 2011).

Keywords Resource allocation � OFDMA � Energy-

efficient � Uplink � Power allocation � Bits-per-joule

1 Introduction

In order to fulfill the fast-growing demand of high data-rate

wireless applications as well as the increasing needs and

desire for being able to access those applications ubiqui-

tously for a substantial period of time, the wireless cellular

technologies are required to continuously evolve as fast

and good as possible. For many reasons, orthogonal fre-

quency division multiple access (OFDMA) has been

selected as the multiple access technologies for state-of-

the-art wireless systems such as LTE and WiMAX. OF-

DMA is considered as a promising technology for wireless

broadband systems due to many of its advantages, e.g.

robustness against inter-symbol interference and multipath

fading and relatively simple equalizations. With the use of

OFDMA technology, there are still technical challenges

needed to be solved to meet requirements of subscribers

and wireless applications in different kind of scenarios, e.g.

high-rate requirements, low power consumption, and etc.

With the fact that many wireless applications are highly

energy-consuming and require large bandwidth, one of the

major challenges is to fulfill the needs of every user, e.g.

QoS requirements, in the system while keeping them with

good energy utilization which directly leads to longer

battery lifetime. In order to resolve it, the resource allo-

cation (RA) technique can be applied to achieve substantial

improvement on the related performance of the OFDMA

cellular system. In this paper, we focus on the uplink RA

with the objective of optimizing the overall uplink energy

efficiency of the network. The multi-user RA problem in

the uplink could be more complex than that in the downlink
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due to the distributed power sources. Briefly speaking, in

contrast to downlink RA with a single power source from

the base station (BS), each Mobile Station (MS) has its own

power budget in uplink RA. Figure 1 illustrates the

underlying framework of the uplink RA in an OFDMA

network, where the central BS, aiming to optimize the

uplink energy efficiency, is in charge of assigning radio

resources and allocating transmit power of users who

provides BS the knowledge of necessary information, such

as channel status and other particular required parameters,

and their own QoS requirements, e.g. rate and power

constraint. Under the control of BS, each user transmits on

the assigned resources with the specified transmit power for

each assigned resource.

The OFDMA RA problems can be classified into

downlink RA and uplink RA in a single- or multi- cell

network. Most studies of RA problems in OFDMA systems

aim at optimizing the following aspects: (weighted) sum-

rate maximization with users’ power constraint, transmit

power minimization, sum-rate maximization with fairness

constraints, and min–max problems. In [1–8], downlink

RA algorithms are proposed in OFDMA networks to

maximize various objectives, e.g. sum-capacity, weighted

sum of minimal rates, and etc., under different constraints.

Uplink RA problems with similar objectives as in the

downlink are investigated in [9–15]. Besides the various

objectives studied in the downlink and uplink RA problems

[1–15], another crucial factor dramatically affecting per-

formances of wireless devices, energy efficiency, becomes

an attractive topic for researchers. Bits-per-energy effi-

ciency has been studied in a notable literature, [16], where

an information-theoretic characterization for single-user,

multiple-access, and interference, is presented. In [17–25],

various RA problems are formulated and solved for

enhancing energy utilization of wireless transmission with

different definition of energy efficiency, assumptions, and

system architecture. A more detailed review is given in

Section II. Compared with the above existing works, the

focus and advantages of this paper have its uniqueness, and

the distinct contributions of this paper lie in the following

aspects:

• In the uplink of an OFDMA-based network, we address

uplink RA optimization problems imposed with multi-

ple MS’ maximum transmit power constraint and

minimum rate requirement for maximizing MS’ energy

efficiency, measured as total bits transmitted per joule

of energy consumed (namely instantaneous bpj), and

sum of MS’ bpj in the single- and multi- user scenario

respectively. Several centralized single- and multi- user

RA algorithms are proposed to resolve the formulated

problem. In the proposed algorithms, BS with the

knowledge of MSs’ channel information is in charge of

deciding which MS can transmit on each subcarrier as

well as allocating the radio transmit power of the MS

on each subcarrier for the purpose of optimizing the

formulated objective, i.e. instant energy efficiency of

single- or multi- user in bpj.

• In the case of single-user network, the closed-form

solution of MS’ optimal total transmit power for

maximizing MS’ bpj is firstly derived by applying

Lambert-W function [27]. Based on that, a power

allocation (PA) scheme is developed with the water-

filling algorithm. Another PA scheme with a low-

complexity iterative approach is proposed by applying

Karush–Kuhn–Tucker (KKT) conditions. These two

schemes resolves the bpj maximization problem with

MS’ maximum power constraint. Finally, with the

derived minimum required power for achieving a

certain rate, an extended PA scheme is proposed to

Fig. 1 The uplink resource

allocation framework in an

OFDMA-based network. The

assigned resources for each user

are pointed by the arrow lines,

and p1–p18 means the specified

transmit power of users on each

resource
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solve the same problem imposed with both MS’ power

and rate constraints.

• In the case of multi-user network, the bpj optimization

problem becomes complex to solve due to the involve-

ment of subcarrier assignment along with transmit

power allocation (PA) for all MSs which results in the

non-convex objective function. Therefore, two effec-

tive iterative RA algorithms are proposed to achieve the

sub-optimal solution, where the proposed SA and PA

optimization are executed iteratively. In each iteration,

a better RA is guaranteed to be found to improve the

system energy efficiency computed in last iteration, and

the RA result will finally converge and approach the

sub-optimal solution.

• In particular, tradeoffs between energy efficiency and

spectral efficiency are illustrated for both the single-

and multi-user scenario. The influence of MS’ maximal

transmit power, minimal rate constraint, and circuit

power consumption on performance of bpj is fully

investigated. Additionally, the advantage of the pro-

posed schemes is shown via performance comparison

with other related multi-user RA scheme and RA

scheme for maximizing sum capacity in terms of bpj

and throughput. It shows the enhancement of bpj is

significant with respect to many parameters while the

decrease of rate is relatively marginal.

The rest of this paper is organized as follows. In Sect. 2,

a review of related works is given. In Sects. 3 and 4, single-

user bpj optimization problems with MS’ transmit power

constraint and minimal rate requirement are addressed, and

three PA schemes are developed to obtain optimal bpj. In

Sects. 5 and 6 multi-user bpj optimization problems with

MS’ power and minimal rate constraint are addressed with

proposed iterative joint SA and PA algorithms. Finally,

numerical experiments illustrate tradeoffs between energy

efficiency and spectral efficiency in both single- and multi-

user scenarios, and show the enhancement of the bpj per-

formance by comparing with the other multi-user RA

algorithm maximizing sum of users’ rate in Sect. 7. The

paper is concluded in Sect. 8.

2 Related works

In [1], authors propose a subcarrier, bit, power allocation

algorithm to minimize the total transmit power subject to

users’ rate requirement in the downlink. Similar problems in

the downlink of a multi-cell OFDMA system are also

addressed in [2, 3]. In [4], a downlink sub-optimal RA algo-

rithm is proposed to maximize sum capacity while main-

taining proportional fairness. In [5], an iterative RA algorithm

is proposed to maximize the weighted sum of the minimal user

rates of coordinated cells by applying duality-based approa-

ches. In [6], a max–min RA problem is addressed to achieve

the maximum fairness among users. In [7], capacity maxi-

mization RA scheme applying water-filling PA is proposed in

the downlink of an OFDMA system. In [8], authors proposed a

resource allocation structure which performs iterative RA in a

distributed manner to minimize interference and packet

scheduling to guarantee fairness of resource sharing between

users in the multi-cell downlink OFDMA system. The studies

of [1–8] address RA problems in the downlink OFDMA

system where the methodologies and ideas cannot be applied

to the uplink transmission directly due to the multiple access

nature of uplink OFDMA where each MS has its individual

requirements rather than the BS-centralized control in the

downlink system. In [9, 10], authors propose a sub-optimal

uplink RA scheme for maximizing sum capacity which

greedily allocates subcarriers to users achieving maximal

Signal-to-Noise Ratio (SNR) by performing water-filling for

power allocation. In [11], utility maximization uplink RA

schemes are proposed for optimizing sum rate, proportional

fairness, and max–min fairness. In [12], the additional fairness

constraint is added into the approach of [9] to maximize sum

of users’ rate. A dual decomposition approach is proposed to

solve the uplink instantaneous rate maximization problem in

[13]. In [14], the uplink PA problem is modeled as a non-

cooperative game while subcarrier assignment (SA) is done

similarly as that in [9]. An uplink ergodic weighted sum-rate

maximization RA problem is solved in [15]. The literatures

[9–15] studying uplink RA problems focus on typical objec-

tives without considering any type of energy efficiency opti-

mization. However, performance of these kinds of schemes in

terms of spectral and energy efficiency will be compared to

show the advantages of the proposed scheme. In [17–19],

game-theoretic approaches are applied for maximizing

energy efficiency. In [17] and [18], authors proposed a game-

theoretic model of joint power and rate control with packet-

delay constraints for maximizing bits-per-joule (bpj) in the

uplink of CDMA systems. In [19], an energy-efficient power

control scheme modeled as a non-cooperative game in mul-

ticarrier CDMA systems is presented. The proposed methods

in [17–19] cannot be applied to the OFDMA network since

there has no issue of subcarrier-based allocation involved in

CDMA systems where users transmit in the same band with

different codes. Additionally, the transmit power and rate in

[17–19] has no inter-relationship and can be separately cho-

sen. That is quite different from the model used in the paper,

where the achievable rate from Shannon-Capacity formula is

applied. Tradeoffs between energy efficiency and delay in the

single-user case are studied in [20], where only a single

transmitter sending fixed amount of data is considered in the

one-dimensional time-varying channel. The assumptions and

system model are totally different from the multi-user OF-

DMA network assumed in this paper, and no QoS requirement
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is considered. In [21], authors proposed a two-user game-

theoretic PA approach for maximizing bits-per-energy in

user-cooperation networks, where it assumes two-user uplink

transmission, and each user can decide whether to relay the

packet for the other or not. The transmission architecture

assumed is simple, and no subcarrier allocation and QoS

requirement are involved. In [22], a link adaptation scheme

for single-user uplink transmission is proposed to optimize

bpj in an OFDM system where the only one user uses the

whole bandwidth. The subcarrier allocation is not available

for a single-user OFDM system, and no QoS requirement is

imposed. In [23], energy-efficient schemes for improving

average energy utilization of MS in the uplink of OFDMA

networks are investigated, where the energy efficiency in bpj

is defined as the ratio of time-averaged rate to time-averaged

power including transmit power and circuit power con-

sumption. In [24], the RA algorithm satisfying additional

MSs’ fairness constraints with specially-designed subcarrier

ordering and assignment methods is proposed for optimizing

time-averaged bpj in OFDMA networks. In [25], another

downlink RA approach using standard optimization methods

is proposed to maximize instantaneous bpj with the assump-

tion of flat fading across subcarriers in an OFDMA network.

In addition to the fact that the scheme in [25] is addressed in

the centralized downlink OFDMA system which is very dif-

ferent from the uplink case and no constraint is given, the

assumption that each user experiences flat-fading across all

subcarriers is also too simple. In [26], a joint RA and relay

selection scheme is proposed to maximized time-averaged bpj

in cooperative-relay OFDMA-based networks where the

cooperative relaying with maximum ratio combining is uti-

lized to further improve energy efficiency. Although in [23–

26], the time-averaged bpj optimization RA problems are

investigated ([26] is for cooperative-relay network) in multi-

user uplink OFDMA networks, they do not consider MS’

power constraint and QoS requirement in the problem while

both MSs’ maximal transmit power and minimum rate con-

straint are considered in this paper. Furthermore, there are

some disadvantages of the consideration of time-averaged bpj

instead of instantaneous bpj, which is shown and discussed in

Section of numerical results and discussion.

3 Single-user energy-efficient resource allocation

with MS’ transmit power constraint

3.1 System model

Consider the uplink transmission of a single-cell OFDMA

network with K subcarriers, indexed by k 2 K ¼
1; 2; 3; . . .;Kf g. Assume Channel State Information (CSI) is

perfectly known by both MS and BS. Let skðtÞ denote the

received signal transmitted by MS on subcarrier k at time t,

PkðtÞ and xkðtÞ denote the transmit power and the transmitted

signal with unit energy on subcarrier k at time t respectively,

and hkðtÞ and n0ðtÞ denote the channel fading coefficient

(gain) of the link between MS and BS on subcarrier k and the

Addictive White Gaussian Noise (AWGN) at time t respec-

tively. Then, the received signal can be written as:

skðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi

PkðtÞ
p

hkðtÞxkðtÞ þ n0ðtÞ ð1Þ

With Shannon Capacity formula, we can express the

achievable rate on subcarrier k at time t as:

rkðtÞ ¼ log2 1þ PkðtÞ hkðtÞj j2

N0B

 !

ð2Þ

where N0 and B denotes the noise power spectral density

and subcarrier bandwidth respectively.

3.2 Problem formulation

In this paper, the instantaneous energy efficiency is defined

as number of bits transmitted by MS when consuming one

joule of its energy, namely bits-per-joule, expressed as:

EE ¼ number of bits transmitted

consumed energy
¼ DB

DE
¼ RDt

PDt
¼ R

P

¼ R

Pt þ Pc
ð3Þ

where Dt, R, and P denote transmit time duration, transmit

rate, and consumed power of MS respectively. The con-

sumed power includes transmit power, denoted by Pt, and

circuit power, Pc, which is assumed as a constant. From

Eq. (3), it is clear to see that bits-per-joule is equivalent to

the ratio of MS’ transmit rate to MS’ consumed power.

Thus, the energy efficiency of MS at time t can be

expressed as the ratio of sum of MS’ achievable rate on

each subcarrier to MS’ consumed power:

EEðtÞ ¼ RðtÞ
PtðtÞ þ Pc

¼
PK

k¼1 rk tð Þ
PK

k¼1 PkðtÞ þ Pc

� �

¼
PK

k¼1 log2 1þ PkðtÞ hkðtÞj j2
N0B

� �

PK
k¼1 PkðtÞ þ Pc

� � ð4Þ

The single-user RA optimization problem is formulated

as follows:

max
PkðtÞ;8kf g

EEðtÞ s:t:
X

K

k¼1

PkðtÞ�Pn; PkðtÞ� 0; 8k ð5Þ

Our goal is to optimize MS’ bits-per-joule in the current

OFDMA frame through allocating the transmit power on

each subcarrier. The total transmit power can’t exceed the

upper bound, Pn, and power on each subcarrier must be

positive. Note that since the proposed schemes are performed

on a per-frame basis, the time domain expression is neglected
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in the following sections, which means, for instance,

EE(t) and Pk(t) are expressed as EE and PK respectively.

3.3 Optimal RA with Lambert-W function

Firstly, we simplify Problem (5) into Problem (6) by con-

sidering fixed transmit power constraint:

max
Pk ;8kf g

EE s:t
X

K

k¼1

Pk ¼ P ð6Þ

According to Eq. (4), the solution of Problem (6) is

equivalent to that of Problem (7), aiming to maximizing

throughput with a total power constraint:

max R ¼
X

K

k¼1

log2 1þ Pk hkj j2

N0B

 !

s:t:
X

K

k¼1

Pk ¼ P ð7Þ

Problem (7) can be resolved by applying the

conventional water-filling scheme:

Pk ¼
1

k ln 2
� N0B

hkj j2

 !þ

;where xð Þþ¼ x for x [ 0

0 otherwise

�

ð8Þ

where k is the Lagrange Multiplier, and the term, 1
k ln 2

, in

Eq. (8) denotes the water-level in the water-filling scheme,

which must be chosen to satisfy
PK

k¼1 Pk ¼ P. Let Kþ � K
denotes the resultant subcarrier index set after performing

the standard water-filling scheme, in which all the

subcarriers are allocated positive power in (8), namely

Pk
0 [ 0, for 8k0 2 Kþ. With Kþ, we can obtain k by

solving
PK

k¼1 Pk ¼ P as:

k ¼ K
0

Pþ
P

k
0 2Kþ

N0B

h
k
0j j2

� 	

ln 2

ð9Þ

where K
0

denotes number of subcarriers in Kþ. By

substituting Eq. (8) into Eq. (7), we can have the

maximum achievable rate as follows:

R ¼
X

K

k¼1

rk ¼
X

K

k¼1

log2 1þ Pk hkj j2

N0B

 !

¼
X

k
0 2Kþ

log2

hk
0













2

N0BK
0 Pþ

X

k
0 2Kþ

N0B

hk
0













2

 !" #

ð10Þ

By substituting Eq. (10) into Eq. (4), the solution of

Problem (6) can be expressed as:

EE ¼

P

k
0 2Kþ log2

h
k
0j j2

N0BK
0 Pþ

P

k
0 2Kþ

N0B

h
k
0j j2

� 	� �

ðPþ PcÞ
ð11Þ

In order to solve Problem (5) where the total power

constraint is not fixed and an upper bound of that is given,

we can utilize Eq. (11) and treat the total transmit power,

P, in Eq. (11) as a variable. It can be shown that MS’

energy efficiency, Eq. (11), is a strictly quasi-concave

function with respect to P, plotted in Fig. 2. Thus, a

globally optimal P exists for maximizing EE. The proof

of the strict quasi-concavity of Eq. (11) is given in

‘‘Appendix 2’’.

Therefore, we first derive the optimal total transmit

power by solving:

oEE

oP
¼ 0 ð12Þ

Assume H
0 ¼

P

k
0 2Kþ

N0B

h
k
0j j2, and we can have:

oEE
oP ¼

K
0

PþH
0ð Þ ln 2

PþPcð Þ�
P

k
0 2Kþ log2

h
k
0j j2

r2K
0

� 	

þK
0

log2 PþH
0ð Þ

� �

ðPþPcÞ2
¼ 0,

and then have 1
ðPþH

0 Þ ðPþ PcÞ � lnðPþ H
0 Þ ¼ ðln 2Þ

K
0
P

k
0 2Kþ

log2

h
k
0j j2

r2K 0

� 	

, where r2 ¼ N0B. Let X ¼ Pþ H
0
, and with

some mathematical minipulations, we can have:

Pc � H
0

X
� ln X ¼ ln 2ð Þ

K
0

X

k0 2Kþ
log2

hk
0













2

r2K
0

 !

� 1 ð13Þ

Let a ¼ Pc � H
0

and b ¼ ðln 2Þ
K
0
P

k
0 2Kþ log2

h
k
0j j2

r2K
0

� 	

� 1,

and substitute a and b into Eq. (13).

Then, we have ln X ¼ a
X � b, which can also be written

as:

eb ¼ 1

X
e

a
X ð14Þ
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Fig. 2 EE, bits-per-joule, of MS by performing water-filling with

different total transmit power, P

Wireless Netw (2013) 19:673–688 677

123



Multiply the left and right side of Eq. (14) by parameter

a, and then we have:

aeb ¼ a

X
e

a
X ð15Þ

With Eq. (15), the closed-form solution can be obtained

by applying Lambert-W function [27]:

X ¼ a
W aebð Þ ; if aeb 2 � 1

e


 �

S

0;½ 1Þ

X ¼
a

W aebð Þ
a

W�1 aebð Þ

�

; if aeb 2 � 1
e ; 0

� �

N=A; if aeb 2 �1;� 1
e

� �

8

>

>

>

<

>

>

>

:

;

ð16Þ

where WðxÞ ¼
P1

n¼1
�nð Þn�1

n! xn represents Lambert-W

function.

From Eq. (16) the optimal total transmit power, denoted

as P�, for maximizing energy efficiency, bpj, can be written

as:

where ð�Þþ means to choose the positive value. Therefore,

if P� �Pn, the maximum bits-per-joule of Problem (5) can

be found by substituting P� into Eq. (11), expressed as:

EE ¼

P

k
0 2Kþ log2

h
k
0j j2

N0BK
0 P� þ

P

k
0 2Kþ

N0B

h
k
0j j2

� 	� �

ðP� þ PcÞ
ð18Þ

The corresponding transmit power on each subcarrier

can be obtained from (8), where

k ¼ K
0

P� þ
P

k0 2Kþ
N0B

h
k
0j j2

� 	

ln 2

ð19Þ

It can be shown that Eq. (11) is monotonically

increasing with respect to the total transmit power

(shown in Fig. 2) while the power is smaller than the

optimal transmit power. Hence, in the case of P�[ Pn, the

optimal total transmit power achieving maximum bits-

per-joule is Pn, so by applying water-filling, PA for

subcarriers can be expressed as:

Pk ¼
1

k ln 2
� N0B

hkj j2

 !þ

ð20Þ

where 1
k ln 2

is chosen such that
PK

k¼1 Pk ¼ Pn. We can

obtain: k ¼ K
0

Pnþ
P

k
0 2Kþ

N0B

h
k
0j j2

� 	

ln 2

.

The proposed PA algorithm applying the closed-form

solution to solve Problem (5) is described as follows:

MaxEE Algorithm 1

Step 1: With given channel information, hkjk 2 1;K½ �f g, examine

the availability of Eq. (17). (The initial Kþ ¼ K)

Step 2: If the solution is available, compute the optimal total

power, P�, by Eq. (17).

Step 3: Compare the resultant P� with the power constraint, Pn. If

P� �Pn, compute the final power allocation by Eqs. (8 and 19).

Otherwise, PA can be obtained from Eq. (20). (If the resultant

PA with Kþ contains zero power on any subcarrier, according to

standard water-filling procedure, those should be removed from

Kþ and restart from Step 1.)

3.4 Optimal RA with an iterative approach

The defect of the Lambert-W method is the optimal power,

P�, isn’t always available if the required condition,

Pc\
P

k
0 2Kþ

N0B

h
k
0j j2, is not met. Hence, we use KKT condi-

tions to further develop an iterative algorithm iteratively

computing the transmit power on each subcarrier until it

converges. The formulated RA problem is the same as

Problem (5). The Lagrangian function can be written as:

L Pkð Þ ¼
PK

k¼1 log2 1þ Pk hkj j2
N0B

� �

PK
k¼1 Pk þ Pc

� � þ k
X

K

k¼1

Pk � Pn

 !

� lkPk ð21Þ

Thus, the KKT conditions can be written as:

oL

oPk
¼ 1

ln 2ð Þ
PK

k¼1 Pk þ Pc

� �

1

r2= hkj j2þPk

� R
PK

k¼1 Pk þ Pc

� �2
þ k� lkð Þ

¼ 0 ð22Þ

P� ¼ a
W aebð Þ �

P

k
0 2Kþ

N0B

h
k
0j j2 ; if aeb 2 � 1

e


 �

S

0;½ 1Þ

P� ¼ max P�ð Þþ
� �

;P� ¼

a
W aebð Þ �

P

k0 2Kþ
N0B

h
k
0j j2

a
W�1 aebð Þ �

P

k
0 2Kþ

N0B

h
k
0j j2

8

>

<

>

:

; if aeb 2 � 1
e ; 0

� �

N=A; if Pc\
P

k
0 2Kþ

N0B

h
k
0j j2

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð17Þ

678 Wireless Netw (2013) 19:673–688

123



k
X

K

k¼1

Pk � Pn

 !

¼ 0; k� 0 ð23Þ

X

K

k¼1

lkPk ¼ 0; lk� 0; 8k ð24Þ

where k and lk are non-negative Lagrangrian multipliers.

From Eq. (22), we can derive:

R
PK

k¼1 Pk þ Pc

� �� k� lkð Þ
X

K

k¼1

Pk þ Pc

 !

¼ 1

ln 2

1

r2= hkj j2þPk

EE ¼ R
PK

k¼1 Pk þ Pc

� �

¼ 1

ln 2

1

r2= hkj j2þPk

þ k� lkð Þ
X

K

k¼1

Pk þ Pc

 !

ð25Þ

From Eq. (24) and Pk� 0; 8k, we can have: lk ¼ 0; 8k.

Furthermore, because the optimal transmit power may

not be the maximal power according to Eq. (11), k must be

zero. Thus, from Eq. (25) the maximum EE and the cor-

responding optimal transmit power on subcarrier k can be

derived as:

EE ¼ 1

ln 2

1

r2= hkj j2þPk

Pk ¼
1

EE 	 ln 2
� r2

hkj j2
ð26Þ

Equations (25) and (26) show that the optimal energy

efficiency and transmit power on subcarrier k intervene with

each other, so the maximal EE, bpj, and corresponding

optimal PA, Pk; 8kf g, cannot be computed directly.

Therefore, an iterative approach, MaxEE Algorithm 2, to

jointly solve Eqs. (25 and 26) is proposed and depicted in the

following, and the effectiveness of the proposed algorithm is

shown in Lemma 1.

MaxEE Algorithm 2

Initialization: Allocate equal power on subcarriers while

satisfying the power constraint. Compute the initial energy

efficiency, EE0, by Eq. (4). Set the iteration index, i, to be 1.j

While

Step 1: Compute the power of subcarrier k of the ith iteration,

denoted as Pi
k, with EEi�1 for 8k by Eq. (26)

Step 2: Compute EEi with the resultant power allocation of Step

1, Pi
k;8k


 �

, by Eq. (4)

Step 3: Compute the difference between the bpj in the current

and previous iteration, denoted as DEEi, which can be expressed

as:

if DEEi\eðe[ 0Þ

MaxEE Algorithm 2 continued

Then, the optimal bpj is EEi, and Popt ¼
PK

k¼1 Pi
k , and

P� ¼ P�k jP�k ¼ Pi
k;8k


 �

.

(Popt and P� denote the optimal total transmit power and

optimal power allocation respectively.)

break while

end of if (i = i?1 for the next iteration count)

End of while

Step 4: If Popt �Pn, the optimal solution is the final result.

Otherwise, the final PA can be obtained by Eq. (20).

Lemma 1 (MaxEE Algorithm 2) With sufficient itera-

tions, the energy efficiency, EEi, will converge to the

optimum solution of Problem (5), which is the solution of

Eq. (25).

Proof See ‘‘Appendix 1’’.

4 Single-user energy-efficient resource allocation

with MS’ power and minimum rate constraint

4.1 Problem formulation and proposed algorithm

In fact, achieving higher bpj might result in reduction of

the data rate possibly causing violation of user’s QoS.

Therefore, in addition to the power constraint, MS’ mini-

mum transmit rate is also a key factor to be considered. The

problem of bpj optimization is formulated as follow:

max
Pk ;8kf g

EE:s:t:
X

K

k¼1

Pk�Pn; Pk � 0; 8k;
X

K

k¼1

rkðtÞ�Rn

ð28Þ

The rate constraint implies that sum of the achievable

rate on each subcarrier, rkðtÞ for 8k, must be equal or larger

than the minimum rate requirement, denoted as Rn. Firstly,

the min-rate constraint can be converted into the minimum

transmit power requirement by exploiting the water-filling

solution. Equation (10) can be illustrated as the maximum

rate which can be achieved with the total transmit power

P. Thus, we can obtain the minimum required transmit

power, denoted as Pr, achieving Rn by solving Eq. (10)

with the input of Rn, which is written as:

Pr ¼ 2Rn

,

Y

k
0 2Kþ

hk
0













2

 ! 1

K
0

K
0
N0B�

X

k
0 2Kþ

N0B

hk
0













2
ð29Þ

Pr denotes the minimum required transmit power for

achieving Rn. In other words, Rn is just achieved by water-

filling PA with
PK

k¼1 Pk ¼ Pr. Note that during the compu-

tation of Pr if the resultant PA, computed from (8) with Kþ
used in (29) and P ¼ Pr, contains zero power on any
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subcarrier in Kþ, they are removed from Kþ, and then Pr is

re-computed with updatedKþ. The final resultant setKþ can

only include the subcarriers with positive transmit power in

Eq. (8). Figure 3 illustrates the relationship between the

optimal achievable rate computed with the water-filling

scheme and its corresponding bpj with respect to MS’ total

transmit power, described in Eqs. (10) and (11), respectively.

It shows that the bpj curve has a peak (maximal) value with a

specific transmit power, namely P�, while the maximum

achievable rate is monotonically increasing with respect to

MS’ total transmit power. The derived Pr and the maximal

transmit power, Pn, can be either smaller or larger than P�.
Thus, to solve Problem (28), MaxEE Algorithm 3 is devel-

oped with the joint consideration of Pr, P�, and Pn.

MaxEE Algorithm 3

Step 1: Use MaxEE Algorithm 1 or 2 to calculate the optimal

transmit power, P� ¼
PK

k¼1 P�k .

Step 2: Calculate Pr by Eq. (29)

Step 3: if P�\Pr\Pn, then P ¼ Pr , else if Pr\P�\Pn, then
P ¼ P�, else if Pr\Pn\P�, then P ¼ Pn, else, Problem (28) has

no solution. [P denotes the resultant optimal total transmit power

for Problem (28)]

Step 4: Compute the final PA with P by applying the standard

water-filling scheme.

5 Multi-user energy-efficient resource allocation

with MS’ power constraint

5.1 Problem formulation

In this section, the problem of single-user RA for maxi-

mizing energy efficiency is extended to the multi-user case

in a single-cell OFDMA network. Firstly, we measure the

energy efficiency of the uplink multi-user network as sum

of MS’ bits-per-joule, which can be written as:

EE ¼
X

N

n¼1

EEn ¼
X

N

n¼1

Rn

Pt;n þ Pc

¼
X

N

n¼1

PK
k¼1 Ck;n log2 1þ Pk;n hk;nj j2

N0B

� 	

PK
k¼1 Pk;n þ Pc

� � ð30Þ

where EEn denotes the energy efficiency of MS n, and Ck;n

denotes the assignment indicator which represent 1 if

subcarrier k is assigned to MS n, otherwise it is set to 0.

The optimization problem can be formulated as follows:

max
Pk;n;Ck;nf g

EE s:t:
X

K

k¼1

Pk;n�Pn; 8n; Pk;n� 0;

8k; 8n;
X

N

n¼1

Ck;n� 1; 8k; Ck;n 2 0; 1f g; 8k and 8n

ð31Þ

Our goal is to maximize the so-called System Energy

Efficiency (SEE), sum of MS’ bpj, subject to MS’ transmit

power budget. The last constraint implies that each

subcarrier must be assigned to one MS at most to prevent

from intra-cell interference. We can see that Problem (31)

is a problem of constrained non-linear programming which

includes both integer and continuous variables. In addition,

the objective function is a non-concave function, which

means that the global optimum is quite difficult to find

because it might have more than one local optimum.

5.2 Iterative multi-user energy-efficient RA

Therefore, by applying the single-user bpj optimization

addressed previously, we proposed an iterative multi-user

RA algorithm performing subcarrier assignment and power

allocation optimization alternately to approach the opti-

mum. The overall algorithm is described as follows:

MU-MaxEE Algorithm 1

Initialize 1: (Initial subcarrier allocation) Randomly assign

subcarriers to MSs. One subcarrier can only be assigned to one

MS. Set the initial iteration time, j, to 1.

Initialize 2: (Initial PA optimization) With the given initial SA,

use either MaxEE Algorithm 1 or 2 to obtain the initial optimal

PA and bpj, EE0
n;8n


 �

, for each MS, and then compute the

initial SEE, denoted as SEE0. j

While

for i = 1:K

Step 1: Choose a subcarrier k randomly from the subcarrier set,

K. K ¼ K� kf g.
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Fig. 3 R, Eq. (10), and EE, Eq. (11), with respect to P. Assume

Pc = 10 dBm, K = 50, and N0B = -120 dB
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MU-MaxEE Algorithm 1 continued

Step 2: With subcarrier k, execute Joint SA and PA Algorithm 1,

depicted in the following Sub-Section C, to obtain SEE j
i ,

denoting SEE of the ith iteration in the inner loop and the jth
iteration in the outer loop, and the new subcarrier and power

allocation for the (i ? 1)th iteration.

end of for

Step 3: Compute SEE j by Eq. (38), and

if SEE j � SEEj�1
�

�

�

�\d or j ¼ J

(NOTE: d [ 0. SEE j denotes the SEE of the jth iteration in the
outer loop, and J is the pre-defined maximum times of iteration
to prevent the infinite loop situation.)

break while

end of if (j = j?1 for the next iteration count)

end of while

5.3 Joint SA and PA optimization

The main idea of this approach is to re-assign subcarriers

based on the current subcarrier and power allocation in

order to improve the SEE gradually. Each subcarrier is re-

assigned to the MS which provide the maximum margin for

SEE. Firstly, let In ¼ i jCi;n ¼ 1; 8i 2 K

 �

denote the

index set of assigned subcarriers for MS n. We define the

incremental set, I
0
n, which adds subcarrier k chosen in Step

1 into In for 8n, expressed as:

I
0

n ¼ In [ kf g; 8n 6¼ m ð32Þ

For MS m, which subcarrier k is originally assigned to,

namely k 2 Im, I
0

m is obtained by removing subcarrier

k from Im. That can be written as:

I
0

m ¼ Im � kf g ð33Þ

The difference between the optimal bpj with In, denoted

as EEn, and that with I
0
n, denoted as EE

0
n, can be written as:

DEEn ¼ EE
0

n � EEn ð34Þ

where DEEn represents the changed amount of bpj of MS

n after adding the subcarrier to In. EE
0
n and EEn can be

obtained by using MaxEE Algorithm 1 or 2 with the input

of In and I
0
n respectively. Therefore, after re-assigning

subcarrier k, originally assigned to MS m, to MS n, the

overall difference of SEE, denoted as gk
n, can be written as:

gk
n ¼ DEEn þ DEEm; 8n 6¼ m ð35Þ

gk
m denotes subcarrier k is re-assigned to the original

MS, so gk
m ¼ 0. Consequently, subcarrier k should be re-

assigned to MS n achieving maximum gn among all in

order to obtain the maximum improvement on SEE. The

decision rule can be expressed as:

In ¼ In [ kf g; Im ¼ Im � kf g
Ck;n ¼ 1; Ck;m ¼ 1

�

if n ¼ arg max
s

gk
s ð36Þ

After re-assigning subcarrier k in the ith iteration of the

inner loop, SEE j
i , denoting SEE of the ith iteration in the inner

loop and the jth iteration in the outer loop, can be expressed as:

SEE j
i ¼ SEE j

i�1 þ gk
n; i 2 1;K½ � ð37Þ

Note that when i ¼ 0, SEE j
0 ¼ SEEj�1. Thus, after all

subcarriers are re-assigned, the SEE of the jth iteration,

SEE j, can be written as:

SEE j ¼ SEEj�1 þ
X

K

k¼1

gk
n ð38Þ

Joint SA and PA Algorithm 1

Step 1: Obtain I
0

n for 8n 6¼ m and I
0

m by Eqs. (32 and 33)

Step 2: Obtain EE
0

n and EEn by MaxEE Algorithm 1 or 2, and

compute DEEn and gk
n for 8n by Eqs. (34 and 35)

Step 3: Re-assign the subcarrier by Eq. (36)

Step 4: Update bpj of MS n and MS m as EE
0

n and EE
0

m

respectively, and compute SEE j
i by Eq. (37).

From Eq. (38), we know that SEE j� SEEj�1 due to

gk
n� 0; 8k. Thus, it is clear to see the proposed MU-MaxEE

Algorithm 1 can at least converge to the sub-optimal

solution, which will be shown in the numerical results.

6 Multi-user energy-efficient resource allocation

scheme with MS’ power and minimum rate

constraint

6.1 Problem formulation

In this section, the user’s minimum rate constraint is

included in the multi-user bpj optimization problem. The

achievable rate of MS n can be written as:

rn ¼
X

K

k¼1

Ck;nrn;k ¼
X

K

k¼1

Ck;n log2 1þ
Pk;n hk;n













2

N0B

 !

ð39Þ

The problem is formulated as follows:

max
Pk;n;Ck;nf g

EE:s:t:
X

K

k¼1

Pk;n�Pn; 8n;Pk;n�0;8k;n;
X

N

n¼1

Ck;n�1;

8k; Ck;n 2 0;1f g; 8k;n; rn�Rn; 8n
ð40Þ

With the rate constraints included, Problem (40) becomes

more complicated than Problem (31). The global optimum

solution is difficult to find with common optimization

approaches. Thus, an iterative RA algorithm with a similar
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idea as MU-MaxEE Algorithm 1 is proposed to resolve it. The

proposed algorithm can be divided into the initialization phase

and the RA optimization phase. In the initialization phase,

a RA approach is proposed to perform subcarrier assign-

ment and allocate transmit power on each subcarrier in

order to satisfy all MS’ rate constraint. In the phase of

RA optimization, an iterative approach performing joint

subcarrier assignment and power allocation iteratively is

proposed to obtain the optimum RA solution of Problem (40).

6.2 Initial resource allocation

The initial RA algorithm, which gives initial subcarrier and

power allocation satisfying all MSs’ rate constraint, per-

forms subcarrier exchanging iteratively between MSs to

compensate the rate of MSs who have not yet met the rate

constraint until the rate constraint of each MS is met. It is

described as follows:

Initial Resource Allocation Algorithm

Step 1: Randomly assign subcarriers to MS.

Step 2: For each MS, with channel gain information of the

assigned subcarriers, compute the minimum required power,

Pr;n, by Eq. (29) and compare with the maximum transmit

power, Pn. Find the set of MSs which cannot meet the rate

constraint, written as: U ¼ njPn\Pr;n;8n

 �

, where U denotes

the index set of MSs violating their rate constraint.

Step 3: For each MS n 2 U, additional subcarriers from other MSs

are given to it to compensate its achievable rate for just meeting

the rate constraint. Note that we have to make sure that the

chosen candidates of MSs, which are going to give away their

assigned subcarriers to MS n 2 U, still meet their rate constraint

after giving their subcarriers away. Besides, the given subcarrier

is selected randomly from candidates of MSs. This process

continues until all MSs meet their minimum rate constraint. The

pseudo code of this process is listed as follows:

While U 6¼ ;
Step 1: Select a MS n 2 U
Step 2: Randomly select a subcarrier k ðk 2 K, k 62 In8n 2 U).

Remove it from K, namely K ¼ K� kf g.
Step 3: Examine whether the original owner of subcarrier k,

denoted as MS q, can still meet the rate constraint with the rest

of subcarriers, denoted as Îq ¼ Iq � kf g.
If P̂r;q�Pq, (Re-assign subcarrier k)

In ¼ In [ kf g, Ck;n=1; Iq ¼ Iq � kf g, Ck;q ¼ 0

Else if K ¼ ;
Break while and go back to Step 1 of the initial RA algorithm

to re-assign subcarriers again.

Else, (It means the chosen subcarrier isn’t able to be re-assigned)

go back to Step 2.

End of if

Step 4: Compute the new minimum required power, Pr;n and

compare with Pn.

If Pn�Pr;n, (The rate constraint of MS n is now met.)

Remove MS n from U, U ¼ U � nf g, and go back to Step 1.

Initial Resource Allocation Algorithm continued

Else, (It means the rate of MS n is still insufficient) go back to

Step 2

End of if

End of While

End of Algorithm

6.3 Iterative joint subcarrier and power allocation

with MS’ minimal rate constraints

We propose an iterative RA algorithm by applying similar

philosophy of MU-MaxEE Algorithm 1 which optimizes

SEE without MS’ rate constraint. The proposed algorithm

taking advantage of MaxEE Algorithm 3 can gradually

enhance SEE by performing joint SA and PA iteratively

while maintaining the satisfaction of all MS’ rate constraint

which is initially met by Initial RA Algorithm. The whole

algorithm is described as follows:

MU-MaxEE Algorithm 2

Initialization: Perform Initial Resource Allocation Algorithm to

obtain initial subcarrier and power allocation. Set the initial

iteration time, j, to 1. j

While

for i = 1:K

Step 1: Choose a subcarrier k randomly from K. Remove

subcarrier k from K, namely K ¼ K� kf g.
Step 2: With the chosen subcarrier k, execute Joint SA and PA

Algorithm 2 described below to obtain SEE j
i and the new

subcarrier and power allocation for the (i ? 1)th iteration.

end of for

Step 3: Compute SEE j by Eq. (38).

If SEE j � SEEj�1\d or j ¼ J, break while.

end of if (j = j?1 for the next iteration count)

end of while

Joint SA and PA Algorithm 2

Step 1: Obtain I
0
n 8n 6¼ m and I

0
m by Eqs. (32 and 33). Compute the

minimum required power for I
0
n and I

0
m, 8n 6¼ m, denoted as P

0
r;n

and P
0
r;m respectively.

If P
0
r;m [ Pm, (That means subcarrier k can’t be re-assigned

because the rate constraint cannot be met if subcarrier k,

originally assigned to MS m, is re-assigned to other MS.)

Don’t re-assign the subcarrier and go back to Step 1 of MU-

MaxEE Algorithm 2 for the next iteration.

End of if

Step 2: Obtain EE
0
n, EE

0
m, EEn, and EEm by MaxEE Algorithm 3.

Compute DEEn and gk
n for 8n by Eqs. (34 and 35)

Step 3: Re-assign the subcarrier by Eq. (36)

Step 4: Update bpj of MS n and MS m as EE
0

n and EE
0

m

respectively, and compute SEE j
i by Eq. (37).
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7 Numerical result and discussion

We consider a single cell OFDMA network with 1,000-m

radius. MSs are randomly distributed within the cell.

Assume the noise power spectral density, N0, and subcar-

rier bandwidth, B, are -174 dBm/Hz and 10 kHz respec-

tively. Each subcarrier suffers from i.i.d. Rayleigh fading.

Lognormal shadowing with zero mean and the standard

deviation of 8 dB is considered. The transmitted signal

experiences path loss modeled as: PLðdBÞ ¼ 30:18þ
26 log10 d, where PL and d denote the path-loss coefficient

and the distance (meter) between MS and BS respectively.

Monte-Carlo simulations are performed in all figures.

Figures 4 and 5 compare the proposed single-user RA

algorithm with/without MS’ rate constraint (MaxEE 1, 2,

and 3) and the water-filling scheme, which optimizes the

total achievable rate with given transmit power, in terms of

performance of bits-per-joule and bps/Hz. Additionally, it

also illustrates the tradeoff between energy efficiency and

spectral efficiency. In Figs. 4 and 7, when the maximum

transmit power, Pn, is less than the optimal power, P�,
performance of bpj and achievable rate of the water-filling

and proposed scheme w/o MS’ rate constraint are the same.

That is because of the feature of quasi-concavity of bits-

per-joule and the monotonic increase of optimum rate with

respect to the transmit power, P, as shown in Fig. 3. Since

the proposed schemes keep using P� as its total transmit

power even if the given power budget is larger than the

optimal one, the performance of bpj and bps/Hz remain

unchanged. For MaxEE 3 considering Rn, while Pn\Pr,

the rate constraint cannot be met even when MS transmits

at Pn. In Figs. 4 and 7, because Pr for the two cases, Rn ¼
150; 170 bps/Hz, is larger than P�, their best transmit power

for optimizing bpj is Pr. Thus, they have worse bpj but

better achievable rate than MaxEE 1 and 2. Figure 6

compares the optimal bpj of four different schemes, the

two proposed schemes and water-filling with different Pn,

with respect to MS’ circuit power, Pc. The two proposed

schemes overwhelmingly outperform the water-filling

scheme while Pc is small. However, when the circuit power

increases, it dominates the total power consumption, which

results in the decrease of the performance gap between the

proposed schemes and water-filling. Figure 7 provides an

overall view on how the bpj performance varies with MS’

maximum transmit power, Pn, and minimum rate con-

straint, Rn. While the optimal transmit power, P�, falls

between Pn and Pr, the optimal bpj can be achieved. Per-

formance of bpj decreases while Pn\P�, or Rn becomes too

large, resulting in Pr exceeds P�. Note that the area where
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there’s no value of bpj (Z-axi) indicates MS cannot meet

the minimum rate constraint with the given Pn, Pn\Pr.

For the multi-user case, we compare performances of

bpj and total throughput of MU-MaxEE 1 and 2 with/

without minimum rate constraints and the algorithm pro-

posed in [9] which can achieve the sub-optimal solution for

maximizing sum of users’ rate without considering users’

minimum rate constraint in the uplink of an OFDMA

network. In Fig. 8, it shows that Algorithm in [9] performs

better in total throughput but worse in bits-per-joule than

the proposed algorithms. Figure 9 reveals that the channel

coefficient (gain) of the assigned MS on each subcarrier for

the proposed algorithm is lower than that for Algorithm in

[9]. That’s because the proposed algorithm allocates

resources based on the capacity of MS’ energy efficiency

determined by its channel characteristics and the ratio of

rate to power while the sum-rate optimization method

(Algorithm in [9]) assigns resources by taking users’ SNR

as the main consideration. This phenomenon clearly

explains the tradeoff between energy efficiency and spec-

tral efficiency. By comparing performance of the proposed

algorithms and Algorithm in [9], it is observed that the

improvement on bpj is much larger than the degradation of

total throughput in percentage (%). In addition, MU-

MaxEE 1 achieves almost same results as the optimum

(Exhaustive Search) while MU-MaxEE 2 can still achieve

about 96–99 % of the optimum. In Fig. 8, both the per-

formance of total throughput and bits-per-joule of the

proposed algorithm decreases with the increase of the

minimum rate constraint, Rn. Briefly speaking, that is

because the proposed algorithm has to sacrifice the

opportunity of assigning a subcarrier to a better MS to

enhance bpj for meeting every MS’ rate constraint. MU-

MaxEE 2 must satisfy all MS’ rate constraint even if some

of them have poor channel quality, which results in the

decrease of both sum of bpj and total throughput. More-

over, bpj performance of MU-MaxEE 2 rises at first, and

starts to decrease while the number of MSs is greater than

7. Similarly, that is because to satisfy every MS’ min-rate

requirement results in reduction of the total throughput

especially when N increases. In Fig. 10, the bpj curves of

MU-MaxEE 2 intersects with that of Algorithm in [9] since

many more subcarriers are needed in order to meet Rn of

each MS, which might lead to huge reduction of bpj when

Pn becomes too low. Figure 11 demonstrates similar con-

cepts as the single user case, which indicates that the gap of

bpj performance between the proposed algorithms and

Algorithm in [9] reduces when the circuit power becomes
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more and more dominant in total power consumption of

MS. Note that bpj of the proposed algorithms is still about

12 % better than that of Algorithm in [9] even when

Pc = 20 dBm. Figure 12 shows how much different initial

SA influences the final bpj result and demonstrates the

effectiveness of the proposed iterative algorithms with and

without Rn (MU-MaxEE 1 and 2 respectively). Each point

in Fig. 12 represents the variance of bpj computed from the

numerous results generated by Monte-Carlo simulation

with different initial SA. It illustrates that MU-MaxEE 1 is

almost irrelevant to initial SA with respect to both K/N and

Pc while MU-MaxEE 2 have reasonably small variance,

which rapidly decreases when Pc increases. In Figs. 13, 14,

15, performance comparison with the scheme proposed in

[23], where the similar methodology and definition of

energy efficiency have also been applied in [24–26], is
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presented. While our proposed scheme can optimize

instantaneous energy efficiency by tracking users’ channel

condition on a per-frame basis, the major defect of the

scheme in [23] which optimizes time-averaged energy

efficiency, defined as the ratio of time-averaged rate to

time-averaged power, instead of instantaneous one needs a

long period, ranging from roughly 100 to 500 frames

depending on the averaging window size, to converge from

the initial bpj to a stable (sub-optimal) value. Therefore, we

can see that in Figs. 13 and 14, where we compare bpj of

proposed MU-MaxEE 1 with bpj of Scheme in [23],

averaging over the first 200, 500 and 700 OFDMA frames

respectively, the proposed scheme outperforms Scheme in

[23] about 6–24 %. In Fig. 15, MU-MaxEE 1 is compared

directly with the converged stable value achieved by

Scheme in [23] w.r.t. Pc and N. Even we compare with the

converged result of [23], the proposed scheme can still

outperform [23] by 5–14 %. In addition, the proposed

scheme performs even better when number of users is very

high due to the advantage of instant bpj optimization. Note

that since [23] doesn’t have any power or QoS constraint,

we don’t enforce MSs’ min-rate constraint for fair

comparison.

8 Conclusion

In OFDMA-based cellular networks, the uplink RA prob-

lems for maximizing MS’ bits-per-joule subject to MS’

transmit power constraint and minimum rate requirement

are addressed in both single- and multi-user scenario. Two

single-user RA algorithms based on the derived closed-

form solution and an iterative approach applying KKT

conditions are proposed to achieve optimal transmission in

terms of bpj. The RA algorithm considering additional

minimum rate requirement is proposed. For the multi-user

case, we propose two iterative RA algorithms, which per-

form joint RA and SA optimization iteratively and achieve

sub-optimal solution. Numerical results present the tradeoff

between energy efficiency and spectral efficiency, and

show great improvement on SEE with limited loss of total

throughput compared to the sum-rate maximization scheme

[9]. It also highlights how the power and minimal rate

constraint affect performance of bpj and demonstrates the

effectiveness of proposed algorithms.

Appendix 1

Proof By Eq. (26), the transmit power on subcarrier k of

the ith iteration can be written as:

Pi
k ¼

1

EEi�1 ln 2
� r2

hkj j2
ð41Þ
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By Eq. (4), the energy efficiency of the ith iteration can

be written as:

EEi ¼
PK

k¼1 log2 1þ Pi
k hkj j2
N0B

� �

PK
k¼1 Pi

k þ Pc

� �

By substituting Eq. (28) into EEi, we can express EEi as

a function of EEi�1:

EEi ¼
K log2

1
EEi�1 ln 2

� �

þ
PK

k¼1 log2
hkj j2
N0B

� �

K
EEi�1 ln 2

�
PK

k¼1
N0B

hkj j2
þ Pc

ð42Þ

Then, by substituting Eq. (42) into Eq. (27), we can have

DEEi as:

DEEi ¼
K log2

1
EEi�1 ln 2

� �

þ
PK

k¼1 log2
hkj j2
N0B

� �

K
EEi�1 ln 2

�
PK

k¼1
N0B

hkj j2
þ Pc

� EEi�1

ð43Þ

Figure 3 shows the curve of Eq. (43) as a function of

EEi�1. It indicates that the intersection point of Eq. (43) and

the x-axi, meaning EEi ¼ EEi�1, represents the optimal

solution. Therefore, from Fig. 16, it is clear to see that no

matter where the initial value located, the value of energy

efficiency, EEi, will be getting closer to the intersection

point at each iteration. As a result, we can conclude that EEi

will finally converge to the optimal solution, which

achieves DEEi ¼ 0, with sufficient iterations. j

Appendix 2

Proof The function of MS’ energy efficiency function

(11) is written as:

EEðPÞ ¼

P

k
0 2Kþ log2

h
k
0j j2

N0BK
0 Pþ

P

k
0 2Kþ

N0B

h
k
0j j2

� 	� �

Pþ Pcð Þ ;

where P denotes MS’ total transmit power. We know from

Proposition C.9 in [28] that EEðPÞ is a strictly quasi-

concave function with respect to P if and only if the upper

contour set, defined as Ud ¼ P� 0jEEðPÞ� df g, is strictly

convex for any real number d. For d\0, it is obvious that

no solution of EE Pð Þ\0 exists. For d ¼ 0, the only

solution is P ¼ 0 which makes Kþ ¼ ; and EE Pð Þ ¼ 0.

Thus, we can see that Ud is strictly convex for d� 0. For

d[ 0, we can first express Ud as:

Ud ¼ P� 0jdðPþ PcÞf

�
X

k
0 2Kþ

log2

hk
0













2

N0BK 0 Pþ
X

k
0 2Kþ

N0B

hk
0













2

 !" #

� 0

)

ð43Þ

Let f Pð Þ ¼ d Pþ Pcð Þ �
P

k
0 2Kþ

log2

h
k
0j j2

N0BK
0 Pþ

P

k
0 2Kþ

N0B

h
k
0j j2

!# "

,

and then we can obtain the second order derivative of

f Pð Þ w.r.t. P as:

o2f Pð Þ
oP2

¼ f Pð Þ
00
¼ K

0

ln 2
Pþ

X

k
0 2Kþ

N0B

hk
0













2

 !�2

ð44Þ

From (44), we can see that f Pð Þ
00
[ 0. Therefore, Ud is

also strictly convex for d [ 0, and then the strict quasi-

concavity of (11) is proved.
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