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a b s t r a c t

Using the non-equilibrium Green’s function and anti-bonding orbital model, a multiband
treatment of quantum transport in an anisotropic semiconductor (Si-based) system is
developed. In this study, we adopt Chiang’s boundary treatment of the open boundary
system into the non-equilibrium Green’s function framework, and then an easy and
powerful multiband treatment method is developed to solve the transmission coefficient
of Si-based semiconductor quantum structures.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tunneling in semiconductor quantum structures has been attracting considerable interest and has been investigated
intensively over the last twodecades [1–3]. However, it has beenwidely recognized that the single-bandmodel is insufficient
to simulate quantum transport in material systems that are currently under investigation [4,5]. For example, several
investigations have demonstrated that the X (or L)-valley energy plays a significant role in the transport, specifically for
the indirect-gap (anisotropic) semiconductor structures [6–9]. That is one of the reasons that have prompted a number
of researchers to include realistic band structures in quantum transport simulations. For this purpose, a multiband
calculation technique, namely an anti-bonding orbital (ABO) model, had been proposed to calculate realistic conduction
band structures [9,10]. In this study, we will propose a sophisticated quantum transport model based on a non-equilibrium
Green’s function (NEGF) [11–14] method taking a realistic ABO multiband structure into account.

In the past a large number of studies had appeared where different kinds of Green’s functions were calculated by the
iterative methods available [15–17]. Iterative procedures are suitable to accomplish this task, but most of them have in
common a relatively slow convergence [18,19]. Furthermore, the other calculating method for Green’s functions is based
on the Dyson equation treatment of the open system boundaries developed by Caroli et al. and subsequently used by a
number of authors [20–22]. This approach calculates the boundary self-energies in the device by including the coupling of
the contacts (or reservoirs) to the device exactly using Dyson’s equation. However, in Dyson’s approach the matrix algebra
is very tricky in the multiband treatment for Green’s functions. The major drawback of this method is that the boundary
conditions become extremely complicated to solve when many bands are involved.

In the previous paragraph, the drawback of the iterative method and Dyson’s approach could be shown by the boundary
treatment of another method (Chiang et al. 1993) [9]. The method proposed by Chiang et al. is based on the ABO framework
and directly solved in the ABO Hamiltonian of the entire structure to obtain the transmission coefficient. In this study,
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we will adopt Chiang’s boundary treatment of the open boundary system into the NEGF framework, and then an easy
and powerful multiband NEGF method will be developed to solve the transmission coefficient of Si-based semiconductor
quantum structures.

2. Theoretical method

We confine ourselves to the analysis of electron transport in the [001], [111], and [110] directions in two-dimensional
Si-based microstructures. Then we can use an ABO model with a basis of four ABOs per lattice site (s, px, py, pz) assuming a
second nearest-neighbor approximation [9,10].

2.1. Anti-bonding orbital model

Basically, the ABOmodel is a tight-binding-like schemewith α-like (α = s, px, py, pz) unit-cell-scale ABO basis functions.
In an analytical formalism, the ABO matrix elements can be written as [10]

HABO(k)α′,α = ⟨k, α′
|Ĥ|k, α⟩ =

18
j=0

eik·Rj ∈α′,α(j), (1)

where k is a wave vector, Rj with j = 0–18 is the position vector of the on-site lattice (j = 0), one of the 12 first nearest-
neighbor lattices (j = 1–12), or one of the 6 nearest-neighbor lattices (j = 13–18),∈α′,α(j) is an interaction parameter
between ABOs of symmetry types α′ (located at the relative origin, R′) and α (located at one of the lattice sites R = Rj + R′

with j = 1–18), and |k, α⟩ denotes the Bloch wavefunction. The Bloch wavefunction can be written as

|k, α⟩ =
1

√
N


R

eik·R
|R, α⟩, (2)

where |R, α⟩ denotes the α-like ABO at lattice site R and N is the number of unit cells. As shown in the Appendix, a total of
eleven interaction parameters (∈α′,α) exist, namely, Es, Ep, Ess, Esx, Exx, Exy, Ezz, Vss, Vsx, Vxx, and Vzz . The first two parameters
relate to the on-site anti-orbital energies, while the remaining parameters represent the nearest-neighbor interactions.

The ABOmethod is a tight-binding form with ABO basis. In the ABO framework, we describe the NEGF method briefly as
follows.

2.2. Non-equilibrium Green’s function method

We divide the heterostructure into three sections: a semi-infinite flat-band region on the left (L) with the wavefunction
|ψ; L⟩, a semi-infinite flat-band region on the right (R) with the wavefunction |ψ; R⟩, and a central N-monolayer segment
containing the heterointerfaces with the wavefunction |ψ; 1–N⟩. The left and right sections are chosen to be regions with
constant doping levels that are sufficiently far away from the heterostructures so that the potentials and compositions are
constant; the wavefunction in these regions can therefore be described in terms of bulk-like plane-wave states.

We consider the heterostructure as a sequence of monolayer parallel to the heterostructures. The basis orbitals at lattice
site R = (R∥, σ ) may be written in the form |R∥, σ , α⟩, where σ is an integer monolayer label (σ = 1, 2, . . . ,N in the
central region), R∥ specifies the in-plane component of unit cell coordinates, and α (=s, px, py, pz) labels the ABOs within
a unit cell. Since the in-plane crystal momentum (k∥) is a good quantum number, the wavefunction of the whole structure
may be written as [4]

|ψ⟩ =


σ ,α

Fσα|k∥, σ , α⟩, (3)

where |k∥, σ , α⟩ is a planar orbital formed by taking Bloch sums of ABOs over the N∥ unit cells in the σ th monolayer:

|k∥, σ , α⟩ =
1
N∥


R∥

eik∥·R∥ |R∥, σ , α⟩.

Writing the Schrödinger equation (H − E)|ψ⟩ = 0 in the planar orbital basis, we obtain

Hσ ,σ−2Fσ−2 + Hσ ,σ−1Fσ−1 + H̄σ ,σ Fσ + Hσ ,σ+1Fσ+1 + Hσ ,σ+2Fσ+2 = 0, (4)
where Fσ denotes a four-dimensional column vector whose components are Fσα , i.e.,

Fσ =

Fσ1
Fσ2
Fσ3
Fσ4

 ,
and Hσ ,σ ′ and H̄σ ,σ are 4 × 4 matrices whose elements are given by, respectively,

(H̄σ ,σ )α,α′ = ⟨k∥, σ , α|(H − E)|k∥, σ , α
′
⟩
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and

(Hσ ,σ ′)α,α′ = ⟨k∥, σ , α|H|k∥, σ
′, α′

⟩.

Note that the interaction between two planar orbitals does not extend beyond the second nearest layer, i.e.,

Hσ ,σ ′ = 0 for |σ − σ ′
| > 2.

The Schrödinger equation can also be written in the transfer-matrix form [4,9]: 0 1 0 0
0 0 1 0
0 0 0 1

−H−1
σ ,σ+2Hσ ,σ−2 −H−1

σ ,σ+2Hσ ,σ−1H −H−1
σ ,σ+2H̄σ ,σ −H−1

σ ,σ+2Hσ ,σ+1


Fσ−2
Fσ−1
Fσ

Fσ+1

 =

Fσ−1
Fσ

Fσ+1
Fσ+2

 . (5)

The boundary conditions are such that we have a known incoming plane-wave state from the left region, no incoming
states from the right, and unknown outgoing transmitted and reflected plane-wave states in the right and left regions,
respectively. First, the available plane-wave states in the left and right regions can be found by noting that for a Bloch state

|k⊥⟩ =


σ ,α

Bσα(k⊥)|k∥, σ , α⟩, (6)

where Bσα is the tight-binding coefficient Fσα at the semi-infinite flat-band region on the right and left bulk sides.
The tight-binding coefficients at the semi-infinite bulk sides must obey the relation

Bσ = eik⊥dBσ−1, (7)

where d is the distance betweenmonolayers and k⊥ is the component of the crystal momentum along the growth direction.
Note that Bσ denotes a four-dimensional column vector whose components are Bσα . Thus, 0 1 0 0

0 0 1 0
0 0 0 1

−H−1
σ ,σ+2Hσ ,σ−2 −H−1

σ ,σ+2Hσ ,σ−1 −H−1
σ ,σ+2H̄σ ,σ −H−1

σ ,σ+2Hσ ,σ+1


Bσ−2
Bσ−1
Bσ

Bσ+1

 = e−ik⊥d

Bσ−2
Bσ−1
Bσ

Bσ+1

 . (8)

By solving the eigenvalue problem for the transfer matrix in Eq. (8), we can obtain a set of 16 complex eigenvalues
k⊥,j; j = 1, 2, . . . , 16


and their associated eigenvectors [Bσ−2,j, Bσ−1,j, Bσ ,j, Bσ+1,j]

T , where the superscript T denotes the
matrix transpose.

We define that: |kβ
⊥
⟩ =


σ ,α B

β
σα|k∥, σ , α⟩ at bulk sites (β = r, t for reflected and transmitted waves in the left and

right regions, respectively),

[Dβσ,1 Dβσ,2] = [Bβσ,1B
β

σ,2B
β

σ,3B
β

σ,4B
β

σ,5B
β

σ,6B
β

σ,7B
β

σ,8] for β = r, and

[Dβσ,1 Dβσ,2] = [Bβσ,9B
β

σ,10B
β

σ,11B
β

σ,12B
β

σ,13B
β

σ,14B
β

σ,15B
β

σ,16] for β = t.

The Green’s function of the device is simply defined as [11–14]

Gd =


E − Hd −


L

−


R

−1

, (9)

where Hd is the Hamiltonian for the device (d) region andΣL,R are the self-energies for the left (L) and right (R) contacts (or
reservoirs), which can be expressed as [9]

Hd =



H−1,−1 H−1,0 H−1,1 0 · · · · · · · · · 0
H0,−1 H0,0 H0,1 H0,2 0 · · · · · · 0
H1,−1 H1,0 H1,1 H1,2 H1,3 0 · · · 0

0 H2,0 H2,1 H2,2 H2,3 H2,4
. . . 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 HN,N−2 HN,N−1 HN,N HN,N+1 HN,N+2
0 · · · · · · 0 HN+1,N−1 HN+1,N HN+1,N+1 HN+1,N+2
0 · · · · · · · · · 0 HN+2,N HN+2,N+1 HN+2,N+2


,

ΣL =


H−1,−3 H−1,−2

0 H0,−2

 
Dr

−3,1 Dr
−3,2

Dr
−2,1 Dr

−2,2

 
Dr

−1,1 Dr
−1,2

Dr
0,1 Dr

0,2

−1

,

ΣR =


HN+1,N+3 0
HN+2,N+3 HN+2,N+4

 
Dt
N+3,1 Dt

N+3,2
Dt
N+4,1 Dt

N+4,2

 
Dt
N+1,1 Dt

N+1,2
Dt
N+2,1 Dt

N+2,2

−1

.
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Fig. 1. Transmission coefficients for a Ge–Si–Ge (001) double-barrier structure with NBR = 2 and NW = 24 monolayers (sandwiched between n−-Si
regions) for two independently incident electrons with k∥ = (0, 0) (solid curve) and k∥ = (k0, 0) (dashed curve).
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Fig. 2. Transmission coefficients for a Si0.15Ge0.85–Si–Si0.15Ge0.85 (111) double-barrier structure with NBR = 2 and NW = 18 monolayers (sandwiched
between n−-Si regions) for incident electron with k∥ = (0, (2/

√
6)k0).

Within the NEGF formalism, the transmission coefficient T (E) is written as [11–14]

T (E) = Trace[ΓLGdΓRG+

d ], (10)

where the broadening factors are ΓL,R = i(ΣL,R −Σ+

L,R).

3. Results and discussion

Here we present calculated results for the Si1−xGex–Si–Si1−xGex double-barrier structure (DBS) grown in three different
orientations, (001), (111), and (110). The entire DBS is sandwiched between two n−-Si bulk regions. Through this study
the doping concentration in the Si electrodes is assumed to be 1018 cm−3. To understand the electron resonant-tunneling
properties involving a multivalley semiconductor like Si, it is necessary to have a clear picture of the six equivalent ellipse
pockets projected onto planes normal to various growth axes. The center positions of these ellipse pockets are located atk∥ =

(0, 0), (0,±k0), and (±k0, 0) for (001), k∥ = (±(2/
√
6)k0, 0), (±(1/

√
6)k0,±(1/

√
2)k0), and (±(1/

√
6)k0,∓(1/

√
2)k0)

for (111), and k∥ = (0, 0), (±(1/
√
2)k0, 0), and (0,∓k′

0) for (110), where k0 = 0.86 (2π/a) and k′

0 = 0.142(π/a).
The (001) DBS consists of a Si quantum well of 24 monolayers sandwiched between two Ge barriers, each consisting of

two monolayers. For k∥ = (k0, 0) and k∥ = (0, 0), the corresponding barrier heights are 0.125 and 0.73 eV, respectively [9,
23]. Fig. 1 shows calculated transmission coefficients T (E, k∥) of the (001) DBS for k∥ = (0, 0) (solid) and k∥ = (k0, 0)
(dashed).

The (111) DBS considered here consists of a Si quantum well of 18 monolayers sandwiched between two Si0.15Ge0.85
barriers, each consisting of two monolayers. Fig. 2 shows calculated transmission coefficients T (E, k∥) of the (111) DBS for
k∥ = (0, (2/

√
6)k0). The results for electrons derived from the other five valleys are equivalent due to symmetry. The barrier

height for this case is 0.144 eV [9].
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Fig. 3. Transmission coefficients for a Si0.15Ge0.85–Si–Si0.15Ge0.85 (110) double-barrier structure with NBR = 2 and NW = 30 monolayers (sandwiched
between n−-Si regions) for two independently incident electrons with k∥ = (k′

0, 0) (solid curve) and k∥ = (0, (1/
√
2)k0) (dashed curve).

The (110) DBS considered here consists of a Si quantum well of 30 monolayers sandwiched between two Si0.15Ge0.85
barriers, each consisting of two monolayers. The minimum conduction-band energy in the barrier region is −0.12 eV for
k∥ = (0, (1/

√
2)k0) and 0.28 eV for k∥ = (k′

0, 0) (with respect to the Si conduction-band minimum) [9]. Fig. 3 shows
calculated transmission coefficients T (E, k∥) of the (110) DBS for k∥ = (k′

0, 0) (solid) and k∥ = (0, (1/
√
2)k0) (dashed).

Due to the absence of a resonant-tunneling barrier, we found no resonant-tunneling behavior for incident electron with
k∥ = (0, (1/

√
2)k0).

Figs. 1–3 show almost the same figure shapes as those of Chiang et al. [9]. The drawback of Chiang’s method is that the
disposal of the plane-wave states in the right and left reservoirs becomes extremely complicated when many bands are
involved [9]. Furthermore, Chiang’s method required more computational effort. However, Chiang’s method takes the full
band structure into account, and its boundary treatment is straightforward. In this study, we conserve Chiang’s advantage
(boundary treatment), which is used inside the NEGF framework. Then an easy and powerful multiband NEGF method
is developed to solve the transmission coefficient of Si-based semiconductor quantum structures. The proposed method
is easy, but it can become quite sophisticated in quantum transport calculations and saves much computational effort.
Moreover, the ABO model is a tight-binding-like framework, and thus the proposed framework in this study can be used in
a tight-binding method with an atomic-orbital basis for quantum transport calculation.

4. Conclusions

We have developed the multiband treatment of quantum transport in an anisotropic semiconductor (Si-based) system
using the non-equilibrium Green’s function and anti-bonding orbital model. In this study, we have adopted Chiang’s
boundary treatment of the open boundary system into the non-equilibrium Green’s function framework. Then an easy and
powerful multiband treatment method has been developed to solve the transmission coefficient of Si-based semiconductor
quantum structures. Importantly, the Green’s function drawback of the iterative method and Dyson’s approach could be
shown by Chiang’s boundary treatment.
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Appendix

The tight-binding Hamiltonian within the ABO basis for a bulk Si semiconductor (in the basis ordering: s, px, py, pz) can
be written as [10]

HABO(k) =


Es + EssTs + VssCs EsxTx + VsxSx EsxTy + VsxSy EsxTz + VsxSz
−EsxTx − VsxSx Ep + E(1)x + E(2)x ExyTxy ExyTxz
−EsxTy − VsxSy ExyTxy Ep + E(1)y + E(2)y ExyTyz
−EsxTz − VsxSz ExyTxz ExyTyz Ep + E(1)z + E(2)z

 , (A.1)

where Es and Ep are the on-site energies for the s- and p-like ABOs, respectively, Eα,β (α, β = s, x, y, z) denotes the first
nearest-neighbor interaction energies, and Vα,β denotes the second nearest-neighbor interaction energies,
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Tx = 4i sin(kxa/2)[cos(kya/2)+ cos(kza/2)],
Ty = 4i sin(kya/2)[cos(kxa/2)+ cos(kza/2)],
Tz = 4i sin(kza/2)[cos(kxa/2)+ cos(kya/2)],
Txx = 4 cos(kxa/2)[cos(kya/2)+ cos(kza/2)],
Tyy = 4 cos(kya/2)[cos(kxa/2)+ cos(kza/2)],
Tzz = 4 cos(kza/2)[cos(kxa/2)+ cos(kya/2)],
Txy = −4 sin(kxa/2) sin(kya/2),
Txz = −4 sin(kxa/2) sin(kza/2),
Tyz = −4 sin(kya/2) sin(kza/2),
Ts = Txx + Tyy + Tzz,
Sx = 2i sin(kxa),
Sy = 2i sin(kya),
Sz = 2i sin(kza),
Cx = 2 cos(kxa),
Cy = 2 cos(kya),
Cz = 2 cos(kza),
Cs = Cx + Cy + Cz .
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