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a b s t r a c t

In this paper, wemodel and computationally investigate the effect of spin–orbit interaction
on the electron energy spectra for nanoscale semiconductor quantum rings. Our three-
dimensional mathematical model considers the effective one-electron band Hamiltonian,
the energy- and position-dependent electron effective mass approximation, and the
spin-dependent Ben Daniel–Duke boundary conditions. The nonlinear iterative method
is applied to solve the corresponding nonlinear eigenvalue problem, which converges
monotonically for all energy states. Physically, it is found that the spin-dependent
boundary conditions lead to a spin-splitting of the electron energy states with non-zero
angular momentum in nanoscale InAs/GaAs quantum rings. The spin-splitting is strongly
dependent upon the dimension of the explored quantum ring and is dominated by the inner
radius, the base radius, and the height of the quantum ring. Under zeromagnetic fields, the
spin-splitting energy is decreased when the radius is increased. Meanwhile, it is greater
than that of the InAs/GaAs quantum dot and demonstrates an experimentally measurable
quantity (up to 2 meV) for relatively small semiconductor quantum rings.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nanoscale semiconductor quantum structures have recently been of great interest [1–4]. Among these structures,
quantum rings are known to possess interesting physical properties and have potential applications to the field of
nanoelectronics and optics [5–10]. Electron spin plays an important role in the manipulation of energy states and modifies
the intrinsic property of nanoscale quantum rings. In semiconductor spintronics, the spin-dependent electron confinement
and the spin–orbit interaction impact the energy and electronic properties of semiconductor nanostructures [11–19].
Different theoreticalmodels have been proposed to study the spin–orbit interaction for various quantum structures [11–23].
Three-dimensional (3D) modeling and computer simulation will accurately estimate effects of geometry and spin–orbit
interactions on the energy state in nanoscale semiconductor quantum rings.

In this paper, we computationally explore the effect of spin–orbit interaction on the electron energy states in
nanoscale semiconductor quantum rings. The effective one-band Hamiltonian approximation with the spin-dependent Ben
Daniel–Duke boundary conditions is firstly formulated,where a hard-wall 3D confinement potential (i.e., a barrierwith finite
height) is considered. The hard-wall confinement is physically induced by a realistic discontinuity of the conduction bands
at the edge of a semiconductor quantum ring. To efficiently solve the corresponding nonlinear Schrödinger equation, the
nonlinear iterative method [24–26] is applied to calculate the energy states and thenwavefunctions are solved numerically.
Based upon the monotone property of the electron’s effective mass with respect to each energy state, it can be shown
that the numerical algorithm converges to each energy state monotonically. This solution methodology was developed
in our recent work for the simulation of semiconductor quantum nanostructures [23–27]. A mathematical proof of the
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convergence property of the nonlinear iterative method in semiconductor quantum dot simulation has also been reported
recently [28]. It is robust and cost-effective in the numerical simulation of the spin-dependent semiconductor quantum ring.
Due to a significant spin–orbit interaction in the nonsimply connected torus topology, an experimentally measurable spin-
splitting is computationally observed in nanoscale InAs/GaAs quantum rings. The spin-splitting depends on the variations of
geometrical dimension which are dominated by the inner radius, the base radius, and the height of the quantum ring. Under
zeromagnetic fields, it is found that the examined InAs/GaAs quantum ring can approximately produce 2meV spin-splitting
of the excited electronic stateswhen the inner radius is small and the ratio of the height and the base radius is greater than 1.
It is substantially greater than that of the InAs/GaAs quantum dot (about 1 meV) [10,15].

This article is organized as follows. Section 2 introduces the 3D mathematical model and the corresponding nonlinear
Schrödinger equation for the semiconductor quantum ring. Section 3 describes the numerical simulation method. Section 4
reports the computed results illustrating the effect of spin–orbit interaction on the electron energy spectra for the small
InAs/GaAs quantum rings. Section 4 draws conclusions.

2. Modeling energy state with spin-dependent boundary conditions

Considering electrons confined in a system of the 3D quantum ring and applying an effective one-electron band
Hamiltonian, we have [10,15,23–27]

Ĥ = Ĥ0 + V̂so(r), (1)

where Ĥ0 is the Hamiltonian of the systemwithout the spin–orbit interaction and Vso(r) indicates the spin–orbit interaction
for the conduction band electrons. The expression for Ĥ0 is given by

Ĥ0 = −
h̄2

2
∇r


1

m(E, r)


∇r + V (r), (2)

where ∇r stands for the spatial gradient.m(E, r) is the energy- and position-dependent electron effective mass

1
m(E, r)

=
P2

h̄2


2

E + Eg(r) − V (r)
+

1
E + Eg(r) + ∆(r) − V (r)


. (3)

In Eq. (3),V (r) is the confinement potential, and Eg(r) and∆(r) stand for the position-dependent band gap and the spin–orbit
splitting in the valence band, respectively. P in Eq. (3) is the momentum matrix element. The spin–orbit interaction for the
conduction band electrons Vso(r) is given by [13,15]

V̂so(r) = i∇β(E, r) · [σ × ∇] , (4)

where β(E, r) is the spin–orbit coupling parameter andσ = {σx, σy, σz} is the vector of the Pauli matrices. The energy- and
position-dependent β(E, r) has the form

β(E, r) =
P2

2


1

E + Eg(r) − V (r)
−

1
E + Eg(r) + ∆(r) − V (r)


. (5)

For a system of quantum rings with sharp discontinuity on the conduction band interfaces between the quantum ring
(material 1) and the semiconductor matrix (material 2), the hard-wall confinement potential is

V (r) =


0, r ∈ material 1
V0, r ∈ material 2, (6)

where V0 is the structure band offset. Combining the Hamiltonian in Eqs. (1), (2) and (4), and taking an integration of this
Schrödinger equation with respect to the direction which is perpendicular to interfaces of the system, the spin-dependent
Ben Daniel–Duke boundary conditions for the electron wavefunction Ψ (r) is written as follows:

Ψmaterial 1(rs) = Ψmaterial 2(rs)
h̄2

2m(E, rs)
∇ − iβ(E, rs) [σ × ∇]


n
Ψ (rs) = C0,

(7)

where C0 is some constant, and rs denotes the position of interfaces of the system. The spin-dependent boundary condition
is formed from the difference between the spin–orbit interaction parameters in the quantum ring and the semiconductor
environment matrix. We note that the expressions of electron effective mass in Eq. (3), the spin–orbit coupling parameter
in Eq. (5), and the equations of the Ben Daniel–Duke boundary condition in Eq. (7) are all energy- and position-dependent
relationships in this study.
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Fig. 1. A three-dimensional plot of the disk-shaped semiconductor quantum ring.

The quantum ring, shown in Fig. 1, is with the inner radius Rin, the radius R0, and the thickness z0 in the cylindrical
coordinate (R, φ, z). The origin of the quantum system is at the center of the quantum ring and the z axis is chosen along
the rotation axis. Since the quantum system is cylindrically symmetric, the wavefunction is expressed as

Ψ (r) = Φ(R, z) exp(ilφ), (8)

where l = 0, ±1, ±2, . . . is the electron orbital quantum number and the original model problem is now in the (R, z)
coordinates. From Eqs. (1)–(6) and (8), we obtain the equations

−
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−
h̄2

2m2(E)


∂2

∂R2
+

∂

R∂R
+

∂2

∂z2
−

l2

R2


Φ2(R, z) + V0Φ2(R, z) = EΦ2(R, z), ∀(R, z) ∈ material 2. (10)

The problem is symmetry along the z axis, so the spin-dependent boundary conditions in Eq. (7) are given by Φ1(R, z) =

Φ2(R, z), z = f (R), and
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Φ1(R0, z) = 0, (11)

where z = f (R) is a generating contour of the quantum ring on the {R, z} plane and σ refers to the electron spin polarization
along the z direction.

3. Numerical calculation using the nonlinear iterative method

Dependence of the electron effective mass and spin–orbit coupling parameter on each energy state results in a nonlinear
Schrödinger equation. The nonlinear Schrödinger equation complicates the process of analytical solution in the explored
quantum ring. Therefore, the numerical approach to the solution of the nonlinear Schrödinger equation is advanced in
the calculation of the electronic structure of InAs/GaAs quantum rings. The nonlinear iterative method [24–26] is applied
to solve the problem above for the nanoscale InAs/GaAs quantum rings. Energy states and spin-splitting are numerically
calculated without any fitting parameters. Starting from a given initial energy, the nonlinear iterative method globally
calculates all bounded energies for the corresponding nonlinear algebraic eigenvalue problem. A computational procedure
of the nonlinear iterative method is shown below:

Step 1. Set an initial energy E0;
Step 2. Compute electron effective massm with Eq. (3);
Step 3. Compute spin–orbit coupling parameter β with Eq. (5);
Step 4. Solve the approximated Schrödinger equation as well as the boundary conditions (9)–(11);
Step 5. Update the newer computed energy; and
Step 6. Calculate the error and back to Step 2.
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Fig. 2. The normalized energy sequence versus the number of iterations. Starting from a lower bound of energy (say, E0 = 0 eV), the computed solutions
can be cataloged into two different energy sequences. Both the increasing (upward arrows) and decreasing (downward arrows) energy sequences converge
monotonically.

It could be shown that the energy sequence, shown in Fig. 2, converges monotonically based on a monotone operator
theory. The insets of Fig. 2 exhibit the increasing and decreasing energy sequences for the ground (the left inset) and
the first excited (the right one) energy states. To obtain the complete numerical solution of the Schrödinger equation in
Step 4, the finite element (similarly we can discretize it with finite difference and finite volume methods) approximated
Schrödinger equationwith its boundary conditions leads to a generalized nonlinear algebraic eigenvalue problem [25].With
the proposed nonlinear iterative method above, the eigenvalues of the matrix eigenvalue problem are computed with the
hybrid method [25], which integrates the multishift QR algorithm and the implicitly restarted Arnoldi method [25,29,30].
The iteration will be terminated when the error of the computed energy is convergent to a specified tolerance error. This
method converges monotonically and is cost effective in the simulation of 3D quantum rings.

The energy spectrum of the quantum ring is a set of discrete energy states that is formed and numerated by a set of
numbers (n, l, σ ), where n is the nth solution of the problem with a fixed l and σ . For the same value of n, the parallel
(antiparallel) orbital momentum, and spin, the energy states still have two-fold degeneracy (the well-known Kramers
degeneracy). But nth states with antiparallel orbital momentum and spin are separated from the nth state with parallel
orbital momentum and spin. For cylindrical quantum rings, a conventional notation nLσ for the electron energy states
is adopted, where L = S, P,D, . . . denotes the absolute value of l, and σ = ±1 refers to the electron spin directions
corresponding to the electron angularmomentumdirection. For all calculationswe choose the lowest energy states (n = 1).

4. Results and discussion

In the calculation of the electron energy spectra for InAs/GaAs quantum rings we choose the semiconductor band
structure parameters for InAs as follows [10,15,23–25,27,26]. The energy gap is E1g = 0.42 eV and the spin–orbit splitting
∆1 = 0.48 eV. The value of the nonparabolicity parameter E1p = 3m0P2

1/ h̄2
= 22.2 eV, where m0 is the free electron

effective mass. For GaAs, E2g = 1.52 eV, ∆2 = 0.34 eV, and E2p = 24.2 eV. The band offset is taken as V0 = 0.77 eV. The
spin-splitting effect is obviously zero for the lowest energy state 1S±1. The dependence of the 1P energy level splitting

1E1P = E1P+1 − E1P−1

on the ring size is shown in Fig. 3. Our calculation demonstrates a significant spin-splitting for ultrasmall semiconductor
quantum rings. The splitting is strongly dependent on the ring radius and is decreased when the radius is increased. At
the same time for the quantum ring with relatively small thickness the spin-splitting is small. This is a direct result of the
tunneling of the electron wavefunction into the barrier along the z-direction. It is also related to the energy dependence of
the electron effective mass and the spin–orbit coupling parameters. To clarify the result we have compared the ‘‘weight’’
of the electron wavefunction inside and outside the quantum ring [15,23,27]. For the quantum ring with small thickness
the electron ‘‘spreads’’ out of the quantum ring, and the energy level properties are controlled by the band parameters
of the GaAs matrix. Under this situation an effective difference of spin–orbit coupling parameters is smaller than β1(E =

0) − β2(E = 0). When z0 is increased the difference is also increased and then becomes z-independent. It results in the
splitting effect being significant when z0 is increased.

As shown in Fig. 3, the energy splitting for the state 1P depending on the ring size is defined as 1E1P , where the ring’s
inner radius is 10 nm [6–10]. Our approach demonstrates a significant spin-splitting (2 meV) for an ultrasmall quantum
ring. It is larger than that of a quantum dot (1 meV) which was reported in our recent work [15,23]. For the small InAs/GaAs
quantum ring (z0 = 2 nm and R = 6 nm), the spin-splitting of the state |l| = 1 with different inner radii Rin is summarized
in Table 1. It reports the variation of 1E1P , versus Rin. 1E1P is increased when the inner radius is decreased.
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Fig. 3. The spin-splitting of |l| = 1 states for InAs/GaAs quantum rings with different base radii and heights, where the inner radius is chosen as 2 nm.

Table 1
The 1P energy level splitting versus Rin .

Rin (nm) 2 4 6 8 10

1E1P (meV) 0.81 0.72 0.66 0.58 0.47

5. Conclusions

We have numerically studied the effect of spin–orbit interaction on the electron energy states for ultrasmall
semiconductor quantum rings. It is found that the spin–orbit interaction can significantly modify the electron energy
spectrum of InAs/GaAs semiconductor quantum rings. Under zero magnetic fields, an ultrasmall InAs/GaAs quantum ring
approximately produces 2 meV spin-splitting of the excited electronic states which is substantially greater than that of a
quantum dot (1 meV). The modeling and simulation presented here plays a starting point for estimation of the spin–orbit
interaction effects in 3D semiconductor quantum rings. The spin–orbit interaction provides rich physics and is promising
in nanoelectronic applications. We note that the effect of band offset V0 on the energy state could be explored in the near
future. Multiband and self-consistent potentials will also provide more accurate corrections.
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