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a b s t r a c t

Within the envelop-function framework, we developed the finite element method to
calculate theminibands in the realist Silicon nanocrystal array. This method clearly reveals
the miniband formation and accurately calculates the E–K dispersion relationship. In
the simple 1D array, the deduced miniband structure matches well with the analytic
Kronig–Penney method. More importantly, it can better simulate the 2D and 3D nano-
crystal array, which avoids approximations of the quantum cubic box and the independent
periodic potential of the multi-dimension Kronig–Penney method. Further, this model is
utilized to calculate miniband structure of realistic 2D-array Silicon nanodisk array for
guiding quantum dot solar cell design.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The quantum dots (QDs) solar cell is a promising candidate for the next-generation ultra-high efficiency solar cell.
For example, with working as the intermediate band solar cell, its theoretical conversion efficiency exceeds 63%, which
aroused great interest in the theoretical and experimental researches [1–6]. When uniform QDs are closely packed as
the superlattice, the wavefunction diffuses into neighboring QDs and couples with each other to broaden the discrete
quantum levels to form finite-width minibands. Minibands structure is the key parameters for QDs solar cell application,
which determines two-photon transition and photo-generation carrier transport. With approximations of the quantum
cubic box and the independent periodic potential, the analytic Kronig–Penney method is developed to describe the high-
dimension QDs superlattices, which offer much significant information for QDs solar cell design [7,8]. With the great
development of nanotechnologies and device processes, the more accurate method should be developed to instruct
realistic QDs fabrication. For example, well-developed Stranski–Krastanow technology commonly fabricates sphere, lens
or even irregular QD with mixture 2D quantum state of wetting layer. Especially, a promising top-down nanotechnology,
neutral beam etching combined with bio-template, provides greater flexibility in engineering quantum structures such as
independently adjustable diameter, thickness, interdot space, incline angle, matrix materials and so on [9,10]. The finite
element method (FEM) is an intuitive and effective technology to simulate the complex and realistic physics properties,
such as strain distribution, surface potential and energy band structure [11,12].
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Fig. 1. (a) Structure sketch of 1D Si/SiC superlattice. (b) The E–K dispersions calculated by the Kronig–Penney model (Solid line), and FEM (dot plots) with
1, 5, 11 wells.

In this paper, we develop the finite elementmethod to simulateminibands structure in a realistic and arbitrary QD array.
This method settles down well theoretical approximations of the high-dimensional Kronig–Penney method and reveals
some significant information for 2D array Silicon nanodisc design.

2. The computational model

With the one-band envelop-function theory, the electronic structure is described as the Schrödinger equation:

− ∇ ·


h2

2m
∇ϕ


+ Vϕ = Eϕ (1)

where h,mV , E, ϕ are Planck’s constant divided by 2π , the effective mass, the position-dependent potential energy,
quantum levels, and the electron envelope function, respectively. The Si-based solar cell has very significant commercial
value. Here, we suggest developing an Si/3C–SiC quantum dot for solar cell application, and their physics constants are used
as input parameters. The complex quantum structure is discretized in the real space with the FEM [13]. The nonuniform
mesh is adopted to greatly speed up the calculation process. The discretized Schrodinger equation forms a serial of partial
differential equations, and is solved as the eigenvalue problem. The FEM is a variation reformulation and keeps the
wavefunction continuous at interfaces. To approach the infinite superlattice, the Dirac-boundary is set at least 10 times
larger than the QD array total length.

Firstly, we consider a simply 1 dimensional Si/SiC quantum well, as shown in the Fig. 1(a). In the single well, the
wavefunction is localized and forms a serials of discrete levels; with increasing the well numbers, their wavefunctions are
coupled with each other and result in the level splitting, and finally form broaden minibands. Here, the number of states in
every miniband is equal to the number of wells.

In an infinite superlattice, the wavefunction has the Bloch wave form:

ϕnk(r) = eik·rφnk(r). (2)
Thus, if the superlattice grain is enough large, the sublevel order has the below relationship with the Bloch vector, k,

[13,14]

k =
iπ

(N + 1)d
, i = 1 : N, (3)

where,N is thewell number and d is the periodic length of grain.With this relationship, we can develop the FEM to calculate
the E–K dispersion relationship. The multi-dimension case can be treated as a multi orthometric wave vector.

With the Bloch theorem, the simple 1D superlattice can get an analytical solution, the classic Kronig–Penneymethod [7],
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where d is the sum of thewell thickness and the barrier thickness,mi is the effectivemass in thewell or barrier. This analytic
resolution is used to verify our developed FEM. However, for multiple dimensions, the Kronig–Penney method needs extra
approximations, for example, the quantum cubic box and the independent periodic potential.
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Fig. 2. Independent periodic potential approximation for multi-dimension Kronig–Penney method V (r) = V (x) + V (y).

3. Numerical results and discussion

Fig. 1 reveals a 1D Si/SiC superlattice. The structure sketch is shown as the Fig. 1(a). In the 1D case, the Kronig–Penney
model can accurately calculate the E–K dispersion relationship without extra approximation, shown as the solid line in
Fig. 1(b). Results of our FEM are shown as the solid circle, square and triangle responding to 1, 5, 11 wells, respectively. From
this figure, we can find that the sub-levels correspond well with the energy in the same wave vector; and with increasing
the well number, dot plots gradually approach the ideal E–K dispersion. According to Eq. (4), the E–K dispersion follows
exponential relationship, thus has very small difference at the two bottoms. Thus, we think that more than 11 wells per
array is enough to describe the whole miniband.

In more dimensions, the relationship between sub level order and Bloch vector can be simply treated as a multi-
orthometric 1D relationship. However, the multidimensional Kronig–Penney method has to take the below approximation,

V (r) = V (x) + V (y). (5)
Then, E–K dispersion can be treated as the vector sum of the independent 1D case. A major problem lies in that the

above potential overestimates the potential at the diagonal corner, 2V at the shade zone (3V for 3D case), as shown in Fig. 2.
Obviously, this method only deals with the rectangle or cubic dot.

2D rectangle structure and the first-Brillouin zone (FBZ) are shown Fig. 3(a), and the E–K dispersion calculated by the
FEM (solid circle) and Kronig–Penney method (solid line) are shown in the Fig. 3(b). Whole trends of this two method are
very similar; due to effects of periodic potential, the ground level gradually increases along Γ –X–M crystal direction, and
returned to Γ point, which forms 2D in-plan minibands. For a more accurate comparison, we found that in this 2D case, the
Kronig–Penneymethod underestimates the E–K dispersion, especially along the Γ –M direction, the diagonal direction, and
the difference is near to 5 meV around theM point. It is reasonable in physics; the overestimated potential in diagonal zone
decreases the wavefunction diffusion probability into the neighbor dots to weaken the energy dispersion.

Due to low potential surface potential, the realistic quantum dot inclines to form a circle or spherical interface. In Fig. 4,
we compare the rectangle quantum dot and circle quantum dot array. We found that the circle dot markedly increases
the minibands’ energy, more than 24 meV around the M point. A major reason is that the circle quantum dot decreases
the average quantum confinement size to increase the confinement energy. If we up-shift the rectangle dot minibands
with confinement energy difference in single dot, the E–K dispersion of the square dot is weakly stronger than that of
the circle dot, which can be attributed to the increased average inter-dot space. Thus, for some rough estimation with the
Kronig–Penney method, a considerable amendment is to add an additional confinement energy difference in the rectangle
or cubic dot.

A top-to-down nanotechnology, neutral beam etching combined with a bio-template, becomes promising for an ultra-
high quality QD array with high uniformity, quasi-crystal alignment, and high sheet density [9,10]. The FEM is used to
calculate the miniband structures of this realistic 3D nanodisk. Due to the balance of interactions such as chemical bonding,
Coulomb potential and so on, the hexagonal alignment, for example Wurtzite structure, is a common crystal structure. We
build up the below model to describe a realistic Si/SiC 2D array. A structure sketch is shown in Fig. 5(a). FEM is used to
discretize the Schrodinger equation in the real space. The nonuniform mesh is adopted to greatly speed up the calculation
process, as shown in Fig. 5(b). The minimummesh is 0.02 nm, which is far smaller than single QD size and used to describe
the internal interfaces. In one case, the total mesh is around 1.2 million and costs 16 GB of memory. A common workstation
can resolve these partial differential equations well. The FEM model also can be used to calculate a more complex, realistic
and large structure, for example cubic or Wurtzite-like QD superlattice. In that case, optimizing arithmetic to deduce the
mesh total or parallel program in clusters can effectively speed up the calculation.

As shown in Fig. 5(c), we want to point out that ND fabricated by the top-to-down process is a special quantum dot
structure with two independently controllable structure parameters, diameter and thickness, which breaks the symmetric
of atomic orbit so that the 3-fold degenerate p-orbit becomes a 2-fold degenerate (121) orbit and nondegenerate (210) orbit.
In cylindrical coordinates, the wavefunction is therefore expressed as

Ψ = cos(lz)JM(mr) exp(inθ), l = 1, . . . ,∞, m = 1, . . . ,∞, |n| = 0, . . . ,m − 1, (6)
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Fig. 3. (a) The square QD 2D array and the first Brillouin zone. (b) The E–K dispersions calculated by the Kronig–Penney model (Solid line), and FEM (dot
plots).
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Fig. 4. (a) The square QD 2D array and the circle QD 2D array. (b) The E–K dispersions.

where, l,m, n are three main quantum numbers, which denote different minibands. These two independently controllable
structure parameters bring higher flexibility in miniband design, for example the more controllable bandgap and sub-
bandgap.

Minibands’ level and width are the key parameters for solar cell application. Fig. 6 reveals a minibands structure in
a serial of QD array with different diameter and thickness. The important regulation is that miniband positions inverse-
squarely decrease with increasing thickness and diameter, which is determined by the classic quantum size effect; due to
in-planewavefunction coupling, theminibands’ width strongly depends on the diameter and is basically independent of the
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Fig. 5. (a) Realistic Si/SiC ND 2D array. (b) Nonuniform mesh for calculation. (c) Electron wavefunction and quantum numbers.
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Fig. 6. The minibands structure depends on (a) the thickness, and (b) diameter.

thickness. In addition, those minibands’ absolute values are also helpful for verifying our experimental results and further
guide QD solar cell design [15].

4. Conclusions

The FEM is developed to calculate the minibands structure in a nanocrystal array. In the simple 1D array, this method
matches well with the analytic Kronig–Penney method, and without extra approximation, it can be simply developed
to a 2D or 3D realistic nanocrystal array. By comparing to multi-dimensional Kronig–Penney, we have an intuitionistic
understanding about the effects of the quantum cubic box and the independent periodic potential in rough estimation.
Further, this model is utilized to calculate miniband structure of a realistic 2D-array Silicon nanodisk array for guiding
quantum dot solar cell design.
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