
Mathematical and Computer Modelling 58 (2013) 379–392

Contents lists available at SciVerse ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Matrix representation of the double-curl operator for simulating three
dimensional photonic crystals
Tsung-Ming Huang a, Han-En Hsieh b, Wen-Wei Lin c,∗, Weichung Wang b

a Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan
b Department of Mathematics, National Taiwan University, Taipei, 106, Taiwan
c Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

a r t i c l e i n f o

Keywords:
Photonic crystals
Face centered cubic lattice
The Maxwell equations
Yee’s scheme
Double-curl operator
Matrix representation

a b s t r a c t

Three dimensional photonic crystals can be modeled by the Maxwell equations as a
generalized eigenvalue problem (GEVP). Simulations based on the numerical solutions
of the GEVP are used to reveal physical properties and boost innovative applications of
photonic crystals. However, to solve these GEVP remains a computational challenge in both
timing and accuracy. The GEVP corresponding to the photonic crystals with face centered
cubic (FCC) lattice is one of the challenging eigenvalue problems. From a viewpoint of
matrix computation, we demonstrate how such obstacles can be overcome. Our main
contribution is an explicit matrix representation of the double-curl operator associated
with the photonic crystal with FCC lattice. This particularmatrix represents the degenerate
coefficient matrix of the discrete GEVP obtained by Yee’s scheme. The explicit matrix leads
to an eigendecomposition of the degenerate coefficient matrix and then a fast eigenvalue
solver. Promising numerical results in terms of timing and accuracy are reported for solving
the discrete GEVP arising in three dimensional photonic crystals with various geometric
parameters.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Photonic crystals are made of space-dependent dielectric materials with periodic structures. Full band gap is the most
distinguished feature of photonic crystals and attracts extensive studies in its properties and applications. Numerical
simulations play an essential role to predict the band structures of photonic crystals with various geometric settings. Such
simulations rely on numerical solutions of the generalized eigenvalue problems (GEVP) that are derived fromdiscretizations
of the governing Maxwell equations.

To solve these GEVP, however, is not a trivial task, especially for the three dimensional (3D) photonic crystals. The
obstacle is mainly caused by the facts that (i) the desired eigenvalues are located in the interior of the eigenvalue spectrum,
(ii) the GEVP are of large size, and (iii) a large null space is associated with the coefficient matrix [1,2]. To find the
interior eigenvalues, several eigenvalue solvers have been proposed. The solvers range from the Jacobi–Davidson methods
[3–11] to the shift-and-invert type methods, including the inverse power methods [4,12,2,13] and Lanczos/Arnoldi
methods [4,6,14]. As the GEVP are large, iterative methods are used to solve the resulting linear systems within the
eigenvalue solvers. In addition, to deal with the difficulty due to the null space, several methods have been studied [5,2,9].
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Despite of the different degrees of successes that have been reported in the literature, there is a room to further improve
the efficiency of the eigenvalue solvers. In particular, we focus on the GEVP associated with the photonic crystals with the
face centered cubic (FCC) lattice. The choice is motivated by the fact that the FCC lattice structure demonstrates larger full
band-gap, which is favored in applications in terms of photon localization and photonic defect states. However, it is quite
a challenge to develop an efficient method to solve the GEVP associated with the FCC lattice. The corresponding coefficient
matrix is very complicated and it is hard to explore the properties of thematrix. To overcome the computational difficulty, an
explicit matrix representation of the double-curl operator associated with the 3D FCC photonic crystals is described for the
first time in this article. Based on this explicit matrix representation, several matrix properties are revealed and an efficient
eigenvalue solver is proposed in [15].

This paper is outlined as follows. We first describe the background material in Section 2. By using Yee’s scheme to
discretize the Maxwell equations, we derive the degenerate coefficient matrix of the discretized Maxwell equations in
Section 3. The resulting matrix property and the eigenvalue solver are then briefly presented in Section 4. Numerical results
associated with various geometric parameters are presented in Section 5 to demonstrate the efficiency of the resulting
eigenvalue solver. Finally, we conclude the paper in Section 6.

Throughout this paper, we denote the transpose and the conjugate transpose of a matrix by the superscript ⊤ and
∗, respectively. For the matrix operations, we denote ⊗ and ⊕ the Kronecker product and direct sum of two matrices,
respectively.We denote the imaginary number

√
−1 by ı and the identitymatrix of order n by In. The conjugate of a complex

scalar z ∈ C and a complex vector z ∈ Cn are represented by z̄ and z̄, respectively. The vec(·) is the operator that vectorizes
a matrix by stacking the columns of the matrix.

2. Background

The 3D photonic crystals can be modeled by the Maxwell equations

∇ × ∇ × E = λεE, (1a)
∇ · (εE) = 0, (1b)

where E is the electric field, λ = µ0ω
2 is the unknown eigenvalue, µ0 is the magnetic constant, ω is the frequency of time,

and ε is the material dependent permittivity constants. Since the photonic crystals consist of dielectric materials fabricated
in periodic structure, by Bloch’s Theorem [16], the electric field E of (1) satisfies the quasi-periodic condition

E(x + aℓ) = eı2πk·aℓE(x), ℓ = 1, 2, 3. (2)

Here, 2πk is the Blochwave vector in the first Brillouin zone and aℓ’s are the lattice translation vectors that span the primitive
cell which extends periodically to form the photonic crystals. Yee’s scheme [17] can be used to discretize the Eq. (1) on a
primitive cell with the lattice vectors. The divergence free constraint (1b) is automatically embedded in this approach. The
resulting discretized system is a GEVP

Ae = λBe, (3)

where A is the degenerate coefficient matrix corresponding to the discrete double-curl operator, e is the vectorized E in the
grid points, and B is a positive diagonal matrix determined by ε.

Now, we discuss the lattice translation vectors and the computational domain related to the GEVP associated with the
3D photonic crystal with face centered cubic (FCC) lattice. The lattice translation vectors of FCC are given as

a1 =
a

√
2
[1, 0, 0]⊤, a2 =

a
√
2


1
2
,

√
3
2

, 0

⊤

, a3 =
a

√
2


1
2
,

1

2
√
3
,


2
3

⊤

, (4)

where a is the lattice constant. The length, width, and height of the primitive cell are a
√
2
, a

√
3

2
√
2
and a

√
3
, respectively. On the

other hand, as shown in [18], the standard primitive lattice vectors ã1, ã2, and ã3 for the FCC lattice are

Ã ≡

ã1 ã2 ã3


=

a
2

1 0 1
1 1 0
0 1 1


.

The associated primitive reciprocal lattice vectors b̃1, b̃2, and b̃3 are
b̃1 b̃2 b̃3


=

2π
a

 1 −1 1
1 1 −1

−1 1 1


= 2π


ã1 ã2 ã3

−⊤
.

The corner points of the associated irreducible Brillouin zone are X̃ =
2π
a (0, 1, 0), Ũ =

2π
a ( 1

4 , 1,
1
4 ), L̃ =

2π
a ( 1

2 ,
1
2 ,

1
2 ),

Γ̃ = (0, 0, 0), W̃ =
2π
a ( 1

2 , 1, 0), and K̃ =
2π
a ( 3

4 ,
3
4 , 0). Consequently, for the new primitive lattice vectors a1, a2, and a3 in

(4), the associated primitive reciprocal lattice vectors b1, b2, and b3 are given as
b1 b2 b3


= 2π


a1 a2 a3

−⊤
.
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Since

b1 b2 b3


and


b̃1 b̃2 b̃3


satisfy the relation

b1 b2 b3


= Q

b̃1 b̃2 b̃3


,

where
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b1 b2 b3
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We define the new corner points of the new irreducible Brillouin zone for primitive lattice vectors a1, a2, and a3 by
X = Q X̃,U = Q Ũ, L = Q L̃, Γ = Γ̃ ,W = QW̃ , and K = Q K̃ . It is worth noting that the band structure can be computed by
solving the eigenvalue problems associated with the k’s along the segments connecting X,U, L, Γ , X,W , and K .

3. Explicit matrix representation of the double-curl operator

We use Yee’s scheme [17] to discretize Eq. (1) and derive the explicit matrix representation form of the corresponding
operators to form the GEVP (3) explicitly. Letting

H = ∇ × E, (5)

we have

∇ × H = λεE (6)

from (1). Based on this observation, the matrix representation is derived in two stages: (i) the matrix form of H = ∇ × E is
first derived in Section 3.1 and (ii) the matrix form of ∇ × H = λεE is derived in Section 3.2.

We use the following notations in our derivations. Denoting E = [E1, E2, E3]⊤,H = [H1,H2,H3]
⊤, and ε = [ε1, ε2, ε3]

⊤,
Eqs. (5) and (6) can be rewritten as

∂yE3 − ∂zE2 = H1,
∂zE1 − ∂xE3 = H2,
∂xE2 − ∂yE1 = H3,

(7)

and 
∂yH3 − ∂zH2 = λεE1,
∂zH1 − ∂xH3 = λεE2,
∂xH2 − ∂yH1 = λεE3,

(8)

respectively. Note that Eqs. (7) and (8) are discretized at the centers of cell faces and edges, respectively, in Yee’s scheme.
In the partitions, the constants δx, δy, and δz denote the grid length along the x, y, and z axial directions, respectively. The

constants n1, n2, and n3 are the numbers of grid points in x, y, and z directions, respectively, and n = n1n2n3. We further
assume that n1 = 6m1, n2 = 6m2, and n3 = 6m3 to assure n1, n2, and n3 are multiples of six.

The approximate function values due to finite differences are represented by the grid points indexed by i, j, and k and the
‘‘half grid points’’ indexed by î = i+ 1

2 , ĵ = j+ 1
2 , and k̂ = k+

1
2 . For simplicity, we represent an arbitrary point (rδx, sδy, tδz)

in the computational domain by x(r, s, t), where r, s, t ∈ R. That is,

x(r, s, t) = (rδx, sδy, tδz). (9)

For i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1, and k = 0, . . . , n3 − 1, we define the following notations.

• Let E1(î, j, k), E2(i, ĵ, k), and E3(i, j, k̂) denote approximate values of functions E1, E2, and E3 in vector forms, at the central
edge points x(î, j, k), x(i, ĵ, k), and x(i, j, k̂), respectively.

• Let H1(i, ĵ, k̂),H2(î, j, k̂), and H3(î, ĵ, k) denote approximate values of functions H1,H2, and H3 in vector forms at the
central face points x(i, ĵ, k̂), x(î, j, k̂), and x(î, ĵ, k), respectively.

• Set B1(î, j, k) = ε1(x(î, j, k)), B2(i, ĵ, k) = ε2(x(i, ĵ, k)), and B3(i, j, k̂) = ε3(x(i, j, k̂)).

Finally, by using the vectorization function of a matrix F ∈ Cm1×m2×m3 that

vec (F) =


vec(F(1 : m1, 1 : m2, 1))
vec(F(1 : m1, 1 : m2, 2))

...
vec(F(1 : m1, 1 : m2,m3))

 ,



382 T.-M. Huang et al. / Mathematical and Computer Modelling 58 (2013) 379–392

we define

e =

e⊤

1 e⊤

2 e⊤

3

⊤
∈ C3n (10)

and

h =

h⊤

1 h⊤

2 h⊤

3

⊤
∈ C3n,

with eℓ = vec(Eℓ) and hℓ = vec(Hℓ), for ℓ = 1, 2, 3. We define the 3n-by-3n diagonal matrix

B = diag

vec(B1)

⊤, vec(B2)
⊤, vec(B3)

⊤
⊤

∈ C3n×3n.

3.1. Matrix representation of H = ∇ × E

In this subsection, we derive thematrix representation of the discretization for (7) by finite differences at the central face
points x(i, ĵ, k̂), x(î, j, k̂), and x(î, ĵ, k), respectively. As wewill show in the theorems, the key point is to explore the periodic
properties associated with the lattice translation vectors that define the structure of the target photonic crystals.

The matrix representation derivation of the single curl ∇ × (·) involves the partial derivatives. We separate the
discretization of the partial derivatives with respect to x, y, and z in the following three parts, with a short summary.

Part I. Partial derivative with respect to x for E. Consider the finite difference discretization of ∂xE2 at x(î, ĵ, k) and ∂xE3 at
x(î, j, k̂) that are written as

E2(i + 1, ĵ, k) − E2(i, ĵ, k)
δx

and
E3(i + 1, j, k̂) − E3(i, j, k̂)

δx
, (11)

respectively, for i = 0, 1, . . . , n1 − 1, j = 0, 1, . . . , n2 − 1, and k = 0, 1, . . . , n3 − 1. By Theorem 1 shown below and the
notation eℓ defined in (10), the matrix representations of the discretizations in (11) are C1e2 and C1e3, respectively. Here,

C1 = In2×n3 ⊗ K1 ∈ Cn×n

and

K1 =
1
δx


−1 1

. . .
. . .

−1 1
eı2πk·a1 −1

 ∈ Cn1×n1 .

Theorem 1 (Periodicity along a1). Applying the periodic condition (2) along the lattice translation vector a1 defined in (4), we
have

E2(n1, ĵ, k) = eı2πk·a1E2(0, ĵ, k) and E3(n1, j, k̂) = eı2πk·a1E3(0, j, k̂),

for j = 0, 1, . . . , n2 − 1 and k = 0, 1, . . . , n3 − 1.

Proof. The proof is straightforward by the periodic condition (2). �

Part II. Partial derivative with respect to y for E. Consider the finite difference discretization of ∂yE1 at x(î, ĵ, k) and ∂yE3 at
x(i, ĵ, k̂) that are written as

E1(î, j + 1, k) − E1(î, j, k)
δy

and
E3(i, j + 1, k̂) − E3(i, j, k̂)

δy
, (12)

respectively, for i = 0, 1, . . . , n1 − 1, j = 0, 1, . . . , n2 − 1, and k = 0, 1, . . . , n3 − 1. By Theorem 2 shown below, the
discretizations in (12) can be represented as

K2vec(E1(0̂ : n̂1 − 1, 0 : n2 − 1, k)) and K2vec(E3(0 : n1 − 1, 0 : n2 − 1, k̂)),

respectively, for k = 0, 1, . . . , n3 − 1 and

K2 =
1
δy


−In1 In1

. . .
. . .

−In1 In1
eı2πk·a2 J2 −In1

 ∈ C(n1n2)×(n1n2).

Or equivalently, the matrix representations of the discretizations in (12) are C2e1 and C2e3, respectively. Here,
C2 = In3 ⊗ K2 ∈ Cn×n.
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Theorem 2 (Periodicity along a1 and a2). Applying the quasi-periodic condition (2) along the lattice translation vectors a1 and
a2 defined in (4), we have

E1(0̂ : n̂1 − 1, n2, k) = eı2πk·a2 J2E1(0̂ : n̂1 − 1, 0, k) (13)

and

E3(0 : n1 − 1, n2, k̂) = eı2πk·a2 J2E3(0 : n1 − 1, 0, k̂), (14)

where

J2 =


0 e−ı2πk·a1 I 1

2 n1
I 1
2 n1

0


∈ Cn1×n1 .

Proof. By the definitions in (9), we have

x(i, n2, k̂) = a2 +


i − 3m1

6m1

a
√
2
, 0, k̂δz


. (15)

If 0 ≤ i < 3m1, the vector in (15) can be rewritten as

x(i, n2, k̂) = a2 − a1 +


3m1 + i
6m1

a
√
2
, 0, k̂δz


= a2 − a1 + x(3m1 + i, 0, k̂);

otherwise, we have

x(i, n2, k̂) = a2 + x(i − 3m1, 0, k̂).

The above rewritten implies that

E3(i, n2, k̂) =


eı2πk·(a2−a1)E3(3m1 + i, 0, k̂), if 0 ≤ i < 3m1,

eı2πk·a2E3(i − 3m1, 0, k̂), if 3m1 ≤ i ≤ 6m1 − 1.
(16a)

Similarly,

E1(î, n2, k) =


eı2πk·(a2−a1)E1(3m1 + î, 0, k), if 0 ≤ i < 3m1,

eı2πk·a2E1(î − 3m1, 0, k), if 3m1 ≤ i ≤ 6m1 − 1.
(16b)

The results in (13) and (14) can then be obtained by substituting i from 0 to n1 − 1 into (16). �

Part III. Partial derivative with respect to z for E. Consider the finite difference discretization of ∂zE1 at x(î, j, k̂) and ∂zE2
at x(i, ĵ, k̂) that are written as

E1(î, j, k + 1) − E1(î, j, k)
δz

and
E2(i, ĵ, k + 1) − E2(i, ĵ, k)

δz
, (17)

respectively, for i = 0, 1, . . . , n1 −1, j = 0, 1, . . . , n2 −1, and k = 0, 1, . . . , n3 −1. By Theorem 3 shown below, thematrix
representations of the discretizations in (17) are C3e1 and C3e2, respectively. Here,

C3 ≡ K3 =
1
δz


−In1×n2 In1×n2

. . .
. . .

−In1×n2 In1×n2
eı2πk·a3 J3 −In1×n2

 ∈ Cn×n.

Theorem 3 (Periodicity along a1, a2, and a3).Applying the quasi-periodic condition (2) along the lattice translation vectors a1, a2,
and a3 defined in (4), we have

vec(E1(0̂ : n̂1 − 1, 0 : n2 − 1, n3)) = eı2πk·a3 J3vec(E1(0̂ : n̂1 − 1, 0 : n2 − 1, 0)) (18)

and

vec(E2(0 : n1 − 1, 0̂ : n̂2 − 1, n3)) = eı2πk·a3 J3vec(E2(0 : n1 − 1, 0̂ : n̂2 − 1, 0)), (19)

where

J3 =


0 e−ı2πk·a2 I 1

3 n2
⊗ In1

I 2
3 n2

⊗ J2 0


∈ C(n1n2)×(n1n2).
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Proof. Observing

x(i, ĵ, n3) = a3 +


i − 3m1

6m1

a
√
2
,
j + 1/2 − 2m2

6m2

√
3a

2
√
2
, 0


,

we have the following results. If 0 ≤ j < 2m2, then

x(i, ĵ, n3) = a3 − a2 +


i

6m1

a
√
2
,
j + 1/2 + 4m2

6m2

√
3a

2
√
2
, 0


= a3 − a2 + x(i, 4m2 + ĵ, 0).

If 2m2 ≤ j < 6m2 and 0 ≤ i < 3m1, then

x(i, ĵ, n3) = a3 − a1 +


i + 3m1

6m1

a
√
2
,
j + 1/2 − 2m2

6m2

√
3a

2
√
2
, 0


= a3 − a1 + x(3m1 + i, ĵ − 2m2, 0).

In other cases, i.e., 2m2 ≤ j < 6m2 and 3m1 ≤ i < 6m1,

x(i, ĵ, n3) = a3 + x(i − 3m1, ĵ − 2m2, 0).

Consequently, E2(i, ĵ, n3) can be rewritten as

E2(i, ĵ, n3) =


eı2πk·(a3−a2)E2(i, 4m2 + ĵ, 0), if 0 ≤ j < 2m2,

eı2πk·(a3−a1)E2(3m1 + i, ĵ − 2m2, 0), if 2m2 ≤ j < 6m2, 0 ≤ i < 3m1,

eı2πk·a3E2(i − 3m1, ĵ − 2m2, 0), if 2m2 ≤ j < 6m2, 3m1 ≤ i < 6m1.

(20)

Using (20) with i = 0, 1, . . . , n1 −1 and j = 0, 1, . . . , n2 −1, we prove the periodicity shown in (19). The periodicity shown
in (18) can be obtained similarly. �

A short summary. We have shown that the discretization of H = ∇ × E at central face points can be represented by the
following matrix representation

h = Ce, (21)

where

C =

 0 −C3 C2
C3 0 −C1

−C2 C1 0


.

3.2. Matrix representation of ∇ × H = λεE

Now, we derive the matrix representation for the three equations in (8) by central finite differences at the central edge
points x(î, j, k), x(i, ĵ, k), and x(i, j, k̂), respectively. First, we define the following notations based on the discretization of
H = ∇ × E:

H1(i, ĵ, k̂) =
E3(i, j + 1, k̂) − E3(i, j, k̂)

δy
−

E2(i, ĵ, k + 1) − E2(i, ĵ, k)
δz

, (22a)

H2(î, j, k̂) =
E1(î, j, k + 1) − E1(î, j, k)

δz
−

E3(i + 1, j, k̂) − E3(i, j, k̂)
δx

, (22b)

H3(î, ĵ, k) =
E2(i + 1, ĵ, k) − E2(i, ĵ, k)

δx
−

E1(î, j + 1, k) − E1(î, j, k)
δy

, (22c)

for i = 0, 1, . . . , n1 − 1, j = 0, 1, . . . , n2 − 1, and k = 0, 1, . . . , n3 − 1. The notations in Eq. (22) are useful for analyzing
the periodic properties of Hℓ. These periodical properties are analyzed in Theorems 4–6 shown below. The proofs of these
theorems are given in the Appendix. The matrix representation of ∇ × H are then derived in the following three parts. A
short summary is then presented to illustrate the matrix representation of ∇ × H = λεE.
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Part IV. Partial derivative with respect to x for H . Consider the finite difference discretization of ∂xH2 at x(i, j, k̂) and ∂xH3

at x(i, ĵ, k) that are written as

H2(î, j, k̂) − H2(î − 1, j, k̂)
δx

and
H3(î, ĵ, k) − H3(î − 1, ĵ, k)

δx
, (23)

for i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1, and k = 0, . . . , n3 − 1. By Theorem 4 shown below, the matrix representations of
the discretizations in (23) are −C∗

1h2 and −C∗

1h3.

Theorem 4 (Periodicity of H2(î, j, k̂) and H3(î, ĵ, k)). By (22b), (22c), and the periodicity of Eℓ, for ℓ = 1, 2, 3, we have

H2(−1, j, k̂) = e−ı2πk·a1H2(n̂1, j, k̂) and H3(−1, ĵ, k) = e−ı2πk·a1H3(n̂1, ĵ, k),

for j = 0, 1, . . . , n2 − 1 and k = 0, 1, . . . , n3 − 1.

Part V. Partial derivative with respect to y for H . Consider the finite difference discretization of ∂yH1 at x(i, j, k̂) and ∂yH3

at x(î, j, k) that are written as

H1(i, ĵ, k̂) − H1(i, ĵ − 1, k̂)
δy

and
H3(î, ĵ, k) − H3(î, ĵ − 1, k)

δy
, (24)

for i = 0, 1, . . . , n1 − 1, j = 0, 1, . . . , n2 − 1, and k = 0, 1, . . . , n3 − 1. By Theorem 5 shown below, the matrix represen-
tations of the discretizations in (24) are −K ∗

2 vec(H1(0 : n1 − 1, 0̂ : n̂2 − 1, k̂)) and −K ∗

2 vec(H3(0̂ : n̂1 − 1, 0̂ : n̂2 − 1, k)),
for k = 0, 1, . . . , n3 − 1. In other words, the matrix representation of the discretizations for ∂yH1 and ∂yH3 are −C∗

2h1 and
−C∗

2h3, respectively.

Theorem 5 (Periodicity of H1(i, ĵ, k̂) and H3(î, ĵ, k)). By (22a), (22c), and the periodicity of Eℓ, for ℓ = 1, 2, 3, we have

H1(0 : n1 − 1, −1, k̂) = e−ı2πk·a2 J∗2H1(0 : n1 − 1, n̂2 − 1, k̂) and

H3(0̂ : n̂1 − 1, −1, k) = e−ı2πk·a2 J∗2H3(0̂ : n̂1 − 1, n̂2 − 1, k),

for k = 0, 1, . . . , n3 − 1.

Part VI. Partial derivative with respect to z for H . Consider the finite difference discretization of ∂zH1 at x(i, ĵ, k) and ∂zH2

at x(î, j, k) that are written as

H1(i, ĵ, k̂) − H1(i, ĵ, k̂ − 1)
δz

and
H2(î, j, k̂) − H2(î, j, k̂ − 1)

δz
, (25)

for i = 0, 1, . . . , n1 − 1, j = 0, 1, . . . , n2 − 1, and k = 0, 1, . . . , n3 − 1. By Theorem 6 shown below, the matrix
representations of the discretizations in (25) are −C∗

3h1 and −C∗

3h2.

Theorem 6 (Periodicity of H1(i, ĵ, k̂) and H2(î, j, k̂)). By (22a), (22b), and the periodicity of Eℓ, for ℓ = 1, 2, 3, we have

vec

H1(0 : n1 − 1, 0̂ : n̂2 − 1, −1)


= e−ı2πk·a3 J∗3 vec


H1(0 : n1 − 1, 0̂ : n̂2 − 1, n̂3 − 1)


and (26)

vec

H2(0̂ : n̂1 − 1, 0 : n2 − 1, −1)


= e−ı2πk·a3 J∗3 vec


H2(0̂ : n̂1 − 1, 0 : n2 − 1, n̂3 − 1)


. (27)

A summary. Combining the aforementioned results, the discretization of∇ ×H = λεE can be represented by the following
matrix representation

C∗h = λBe. (28)
Furthermore, by substituting (21) into (28), the discretization of (1) at edges forms the following target GEVP

Ae = λBe, (29)
where

A = C∗C . (30)

Finally, by letting G =

C⊤

1 C⊤

2 C⊤

3

⊤, we conclude this section by the following remarks.
(i) Comparing the results in Theorems 1–3 with Theorems 4–6, we see that (E1, E2, E3) and (H1,H2,H3) have the same

periodic properties.
(ii) The matrices C1, C2, and C3 are the discretizations of the operators ∂x, ∂y and ∂z at the central face points, respectively.
(iii) C⋆

1 , C
⋆
2 and C⋆

3 are the discretizations of the operators −∂x, −∂y and −∂z , at the central edge points, respectively.
(iv) The matrices C∗C and I3 ⊗ (G∗G) are the discretizations of the operators ∇ × ∇× and −∇

2 at the central edge points,
respectively.

(v) The matrix GG∗ is the discretization of the operator −∇(∇·) at the central edge points.
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4. Eigendecompositions and the fast eigenvalue solver

The explicit matrix representation of the Maxwell equations derived in Section 3 is applied to derive the
eigendecomposition of the matrix A in [15]. First, define

θi =
ı2π i
n1

+
ı2πk · a1

n1
,

θi,j =
ı2π j
n2

+
ı2π
n2


k · â2 −

i
2


,

θi,j,k =
ı2πk
n3

+
ı2π
n3


k · â3 −

1
3
(i + j)


,

and

xi =

1 eθi e2θi · · · e(n1−1)θi

⊤
,

yi,j =

1 eθi,j e2θi,j · · · e(n2−1)θi,j

⊤
,

zi,j,k =

1 eθi,j,k e2θi,j,k · · · e(n3−1)θi,j,k

⊤
for i = 1, . . . , n1, j = 1, . . . , n2, and k = 1, . . . , n3. Furthermore, we define

Λq = Λ∗

xΛx + Λ∗

yΛy + Λ∗

zΛz and (31)

Λp = (Λx + Λy + Λz)(Λx + Λy + Λz)
∗

≡ ΛsΛ
∗

s , (32)

where

Λx = Λn1 ⊗ In2n3 , Λy =

⊕

n1
i=1 Λi,n2


⊗ In3 , Λz = ⊕

n1
i=1 ⊕

n2
j=1 Λi,j,n3 , (33)

with

Λn1 = δ−1
x diag


eθ1 − 1, eθ2 − 1, . . . , eθn1 − 1


,

Λi,n2 = δ−1
y diag


eθi,1 − 1, eθi,2 − 1, . . . , eθi,n2 − 1


,

Λi,j,n3 = δ−1
z diag


eθi,j,1 − 1, eθi,j,2 − 1, . . . , eθi,j,n3 − 1


.

We define the unitary matrix T as

T =
1

√
n1n2n3


T1 T2 · · · Tn1


∈ Cn×n (34)

with Ti =

Ti,1 Ti,2 · · · Ti,n2


∈ Cn×(n2n3) and

Ti,j =

zi,j,1 ⊗ yi,j ⊗ xi zi,j,2 ⊗ yi,j ⊗ xi · · · zi,j,n3 ⊗ yi,j ⊗ xi


∈ Cn×n3

for i = 1, . . . , n1 and j = 1, . . . , n2.
In addition, by defining a set B for Bloch wave vectors associated with lattice vectors in (4) by

B =


k = (k1, k2, k3)⊤ ≠ 0

0 ≤ k1 ≤

√
2
a

, 0 ≤ k2 <
2
√
2

√
3a

, 0 ≤ k3 <

√
3
a

, and k ≠

√
2
a


1,

1
√
3
,

1
√
6

⊤


,

we have Λq is positive definite for k ∈ Bk, and 3Λq − Λp is positive definite for k ∈ Bk, δx ≠ δy or δx ≠ δz . Furthermore,
the eigendecomposition of A is shown in the following theorem.

Theorem 7 (Eigendecomposition of A [15]). Let Λq, Λp, and T be defined in (31), (32) and (34), respectively. Also assume that
k ∈ B . We have

Q ∗AQ = diag

0, Λq, Λq


. (35)

Here,

Q = (I3 ⊗ T )

Λx

Λq − ΛxΛ

∗

s

 
Λ∗

z − Λ∗

y


Λy

Λq − ΛyΛ

∗

s

 
Λ∗

x − Λ∗

z


Λz

Λq − ΛzΛ

∗

s

 
Λ∗

y − Λ∗

x



diag


Λ
−

1
2

q ,

3Λ2

q − ΛqΛp
− 1

2 ,

3Λq − Λp

− 1
2


. (36)

and Q is unitary.
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The eigendecomposition stated in Theorem7 is actually a powerful tool to reduce the 3n×3nGEVP (29) to another 2n×2n
standard eigenvalue problem (SEVP) that both of the GEVP and SEVP have the same nonzero 2n eigenvalues. In other words,
this SEVP excludes the n zero eigenvalues in the GEVP [15]. The inverse Lanczos method [19] thus becomes an efficient
eigenvalue solver to compute the smallest positive eigenvalues of the SEVP that are of interest. In contrast, for the GEVP, the
target smallest positive eigenvalues are located in the interior of the eigenvalue spectrum. The convergence behaviors of
the shift-invert Lanczos method and the Jacobi–Davidson method are significantly affected by the n zero eigenvalues [20].
In short, the SEVP not only has smaller size, the eigenvalue solver can converge faster [15].

Now, we describe how the 2n × 2n SEVP can be derived from Theorem 7. More details can be found in [15]. Eq. (35)
suggests that

A = Q ∗

0
Λq

Λq


Q = (I3 ⊗ T ) Λ


Λq

Λq


Λ∗

I3 ⊗ T ∗


, (37)

where

Λ =



Λq − ΛxΛ

∗

s

 
3Λ2

q − ΛqΛp
− 1

2

Λ∗

z − Λ∗

y
 

3Λq − Λp
− 1

2
Λq − ΛyΛ

∗

s

 
3Λ2

q − ΛqΛp
− 1

2

Λ∗

x − Λ∗

z
 

3Λq − Λp
− 1

2
Λq − ΛzΛ

∗

s

 
3Λ2

q − ΛqΛp
− 1

2

Λ∗

y − Λ∗

x
 

3Λq − Λp
− 1

2

 . (38)

Letting As be a 3 × 2 block matrix that

As = (I3 ⊗ T ) Λdiag


Λ
1
2
q , Λ

1
2
q


, (39)

we can rewrite Eq. (37) as A = AsA∗
s and then we have the following theorem.

Theorem 8. Let A and As be defined in (30) and (39), respectively, and k ∈ B . Then

span

B−1As


= {e; Ae = λBe, λ > 0} .

From the result in Theorem 8, we take

e = B−1Aser . (40)

Substituting e in (40) into (29) and using the fact that A = AsA∗
s , the GEVP (29) becomes

AsA∗

s

 
B−1Aser


= λAser . (41)

Pre-multiplying (41) by A∗
s and using the non-singularity of A∗

s As, we can form the following SEVP
A∗

s B
−1As


er = λer . (42)

It is clear that the coefficient matrix

A∗
s B

−1As

of the above SEVP is a 2×2 blockmatrix. Finally, the inverse Lanczosmethod

is applied to compute a few smallest positive eigenvalues of (42) that are of interest, as all of the eigenvalues in the SEVP
are positive.

We summarize the inverse projective Lanczos method (IPL) [15] for solving GEVP (29) via the SEVP (42) in Algorithm 1.
More details of the fast algorithms within the IPL can be found in [15].

Algorithm 1 Inverse projective Lanczos method for solving (29)
1: Compute Λx, Λy, and Λz in (33);
2: Compute Λq, Λp, and Λs in (31) and (32), respectively;
3: Compute Λ as defined in Eq. (38).
4: Apply the inverse Lanczos method to solve the SEVP in (42);
5: Compute e by Eq. (40).

5. Numerical results

The eigenvalue solver due to the explicit matrix representation described in Section 3 are carried out by using MATLAB
2011b. All numerical computations are performed on a HP workstation with two Intel Quad-Core Xeon X5687 3.6 GHz
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Fig. 1. Band structure of the 3D photonic crystals with FCC lattice. The vectors k’s along the boundary of first Brillouin zone. The frequencyω = a
√

λ/(2π)

is shown on the y-axis. The radius of the sphere is r = 0.12a and the connecting spheroid has minor axis length s = 0.09a. In the figure, the notation G
means Γ .

(a) Fixed r = 0.12. (b) Fixed s = 0.07.

Fig. 2. The five smallest frequencies with various s and r for n = 1,728,000.

CPUs, 48 GBmainmemory, and RedHat Linux operation system. The IEEE double-precision floating-point arithmetic is used.
For the geometric structure regarding the 3D photonic crystal with FCC lattice, we consider the structure that consists of
dielectric spheres with connecting spheroid [2]. The radius r of the spheres and the minor axis length s of the spheroid
are r/a = 0.12 and s/a = 0.09, respectively. Inside the structure is the dielectric material with permittivity contrast
εi/εo = 13.

First, we solve the eigenvalue problems associatedwith the k’s along the segments connecting X,U, L, Γ , X,W , and K . In
each of the segments, fifteenuniformdistributed sampling vectorsk are chosen. Thenumber of grid pointsn1 = 24, n2 = 24,
and n3 = 24. The size of A is 41,472×41,472. Fig. 1 shows the computed band structure of the 3D photonic crystals with FCC
lattice versus the sampling vectors k. Clearly, a band gap lies between the second and third smallest positive eigenvalues.

Second, we conduct numerical experiments to evaluate performances of the IPL eigenvalue solver described in Section 4
for solving the GEVP (29) with various geometric parameters r and s. In each set of r and s parameter combinations,
we consider the k vector located in the corner L of the irreducible Brillouin zone and compute the five smallest positive
eigenvalues with n1 = n2 = n3 = 120. The size of A is 5,184,000 × 5,184,000. In the first test problem set, r = 0.12 and s
ranges from 0.03 to 0.13. In the second test problem set, s = 0.07 and r ranges from 0.05 to 0.15. The computed frequencies
are shown in Fig. 2. The corresponding CPU time and iteration numbers of the IPL method are shown in Figs. 3 and 4 for
the first and second test problem set, respectively. These results show that the eigenvalue solver based on the IPL method
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a b

Fig. 3. CPU time and iteration numbers of the IPL eigenvalue solver. The radius r of the spheres is fixed to 0.12 and the minor axis length s is shown on the
x-axis of the figures.

a b

Fig. 4. CPU time and iteration numbers of the IPL eigenvalue solver. The minor axis length s of the spheroid is fixed to 0.07. The radius r of the spheres is
shown on the x-axis of the figures.

is both robust and efficient with respect to different r and s. The IPL eigenvalue solver successfully finds all the band-gap
corresponding to the various photonic structures. The solver is quite fast. Out of all of the 42 test problemswhose dimension
are as large as 3.5millions (2n3

1), the IPL eigenvalue solver takes only 38–70min (with average of 53min) to solve each of the
eigenvalue problems. It is also worth mentioning that the iteration numbers are small for such large eigenvalue problems.

6. Conclusion

An explicit matrix representation for the three-dimensional face centered cubic photonic crystal is described for the
first time. The matrix is constructed by applying Yee’s scheme to discretize the governing Maxwell equations. The matrix
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representation benefits the computations significantly by leading to (i) the eigendecomposition of the degenerate coefficient
matrix corresponding to the discrete double-curl operatorwith theMaxwell equations and (ii) an efficient inverse projective
Lanczos method based eigenvalue solver. Numerical results show that the eigenvalue solver is robust and efficient for
various geometric structure of the photonic crystals. All of these results form a useful tool to conduct photonic crystal shape
optimization for the largest possible band-gap. A reasonable, yet non-trivial, future direction is to generalize the results to
other lattice structures like simple cubic lattice and body centered cubic lattice.
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Appendix

Proof of Theorem 4. By the periodic condition (2), we have

E1(−1, j, k) = e−ı2πk·a1E1(n̂1 − 1, j, k),

E3(0, j, k̂) = e−ı2πk·a1E3(n1, j, k̂), and

E3(−1, j, k̂) = e−ı2πk·a1E3(n1 − 1, j, k̂).

From (22b), we have

H2(−1, j, k̂) = e−ı2πk·a1


E1(n̂1 − 1, j, k + 1) − E1(n̂1 − 1, j, k)

δz
−

E3(n1, j, k̂) − E3(n1 − 1, j, k̂)
δx


= e−ı2πk·a1H2(n̂1 − 1, j, k̂).

Similarly, it holds that H3(−1, ĵ, k) = e−ı2πk·a1H3(n̂1 − 1, ĵ, k). �

Proof of Theorem 5. Observing

x(i, −1, k) = −a2 +


3m1 + i
6m1

a
√
2
,


6m2 −

1
2


1

6m2

a
√
3

2
√
2
, kδz


,

we can see the following results. If 0 ≤ i < 3m1, then

x(i, −1, k) = −a2 + x(3m1 + i, n̂2 − 1, k).

In other cases, i.e., 3m1 ≤ i < 6m1,

x(i, −1, k) = −a2 + a1 +


i − 3m1

6m1

a
√
2
,


6m2 −

1
2


1

6m2

a
√
3

2
√
2
, kδz


= −a2 + a1 + x(i − 3m1, n̂2 − 1, k).

The above results suggest that

E2(i, −1, k) =


e−ı2πk·a2E2(3m1 + i, n̂2 − 1, k), if 0 ≤ i < 3m1,

e−ı2πk·(a2−a1)E2(i − 3m1, n̂2 − 1, k), if 3m1 ≤ i < 6m1.
(43)

Similarly, we also have

E3(i, −ℓ, k̂) =


e−ı2πk·a2E3(3m1 + i, n2 − ℓ, k̂), if 0 ≤ i < 3m1,

e−ı2πk·(a2−a1)E3(i − 3m1, n2 − ℓ, k̂), if 3m1 ≤ i < 6m1,
(44)

for ℓ = 0, 1. Using (22a) with j = −1 and the results in (43) and (44), we have the following results. If 0 ≤ i < 3m1, then

H1(i, −1, k̂) = e−ı2πk·a2


E3(3m1 + i, n2, k̂) − E3(3m1 + i, n2 − 1, k̂)

δy



− e−ı2πk·a2


E2(3m1 + i, n̂2 − 1, k + 1) − E2(3m1 + i, n̂2 − 1, k)

δz


= e−ı2πk·a2H1(3m1 + i, n̂2 − 1, k̂).
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If 3m1 ≤ i < 6m1, then

H1(i, −1, k̂) = e−ı2πk·(a2−a1)


E3(i − 3m1, n2, k̂) − E3(i − 3m1, n2 − 1, k̂)

δy



− e−ı2πk·(a2−a1)

E2(i − 3m1, n̂2 − 1, k + 1) − E2(i − 3m1, n̂2 − 1, k)

δz


= e−ı2πk·(a2−a1)H1(i − 3m1, n̂2 − 1, k̂).

The aforementioned results suggest that

H1(0 : n1 − 1, −1, k̂) = e−ı2πk·a2 J∗2H1(0 : n1 − 1, n̂2 − 1, k̂).

Finally, by using the same technique, we can show that

H3(0̂ : n̂1 − 1, −1, k) = e−ı2πk·a2 J∗2H3(0̂ : n̂1 − 1, n̂2 − 1, k). �

Proof of Theorem 6. By the fact

x(i, ĵ, −1) = −a3 +


i + 3m1

6m1

a
√
2
,
j + 1/2 + 2m2

6m2

a
√
3

2
√
2
,
n3 − 1
n3

a
√
3


,

we have the following results. If 0 ≤ j < 4m2 and 0 ≤ i < 3m1, then

x(i, ĵ, −1) = −a3 + x(i + 3m1, ĵ + 2m2, n3 − 1).

If 0 ≤ j < 4m2 and 3m1 ≤ i < 6m1, then

x(i, ĵ, −1) = −a3 + a1 +


i − 3m1

6m1

a
√
2
,
j + 1/2 + 2m2

6m2

a
√
3

2
√
2
,
n3 − 1
n3

a
√
3


= −a3 + a1 + x(i − 3m1, ĵ + 2m2, n3 − 1).

Otherwise, i.e., 4m2 ≤ j < 6m2, we have

x(i, ĵ, −1) = −a3 + a2 +


i

6m1

a
√
2
,
j + 1/2 − 4m2

6m2

a
√
3

2
√
2
,
n3 − 1
n3

a
√
3


= −a3 + a2 + x(i, ĵ − 4m2, n3 − 1).

Consequently, by the periodic condition in (2), E2(i, ĵ, −1) can be rewritten as

E2(i, ĵ, −1) =


e−ı2πk·a3E2(i + 3m1, ĵ + 2m2, n3 − 1), if 0 ≤ j < 4m2, 0 ≤ i < 3m1,

eı2πk·(a1−a3)E2(i − 3m1, ĵ + 2m2, n3 − 1), if 0 ≤ j < 4m2, 3m1 ≤ i < 6m1,

eı2πk·(a2−a3)E2(i, ĵ − 4m2, n3 − 1), if 4m2 ≤ j < 6m2.

(45a)

Similarly, we also have

E3(i, j, −1) =

e−ı2πk·a3E3(i + 3m1, j + 2m2, n̂3 − 1), if 0 ≤ j < 4m2, 0 ≤ i < 3m1,

eı2πk·(a1−a3)E3(i − 3m1, j + 2m2, n̂3 − 1), if 0 ≤ j < 4m2, 3m1 ≤ i < 6m1,

eı2πk·(a2−a3)E3(i, j − 4m2, n̂3 − 1), if 4m2 ≤ j < 6m2.

(45b)

Using (22a) with k = −1 and the results in (45), we obtain the following results. If 0 ≤ j < 4m2 and 0 ≤ i < 3m1, then

H1(i, ĵ, −1) = e−ı2πk·a3


E3(i + 3m1, j + 2m2 + 1, n̂3 − 1) − E3(i + 3m1, j + 2m2, n̂3 − 1)

δy


− e−ı2πk·a3


E2(i + 3m1, ĵ + 2m2, n3) − E2(i + 3m1, ĵ + 2m2, n3 − 1)

δz


= e−ı2πk·a3H1(i + 3m1, ĵ + 2m2, n̂3 − 1).

That is,

H1(0 : 3m1 − 1, 0̂ : 4m2 − 1, −1) = e−ı2πk·a3H1(3m1 : 6m1 − 1, 2m2 : 6m2 − 1, n̂3 − 1). (46)
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If 0 ≤ j < 4m2 and 3m1 ≤ i < 6m1, then

H1(i, ĵ, −1) = eı2πk·(a1−a3)

E3(i − 3m1, j + 2m2 + 1, n̂3 − 1) − E3(i − 3m1, j + 2m2, n̂3 − 1)

δy


− eı2πk·(a1−a3)


E2(i − 3m1, ĵ + 2m2, n3) − E2(i − 3m1, ĵ + 2m2, n3 − 1)

δz


= eı2πk·(a1−a3)H1(i − 3m1, ĵ + 2m2, n̂3 − 1).

That is,

H1(3m1 : 6m1 − 1, 0̂ : 4m2 − 1, −1) = eı2πk·(a1−a3)H1(0 : 3m1 − 1, 2m2 : 6m2 − 1, n̂3 − 1). (47)

In other cases, i.e., 4m2 ≤ j < 6m2, we have

H1(i, ĵ, −1) = eı2πk·(a2−a3)

E3(i, j − 4m2 + 1, n̂3 − 1) − E3(i, j − 4m2, n̂3 − 1)

δy


− eı2πk·(a2−a3)


E2(i, ĵ − 4m2, n3) − E2(i, ĵ − 4m2, n3 − 1)

δz


= eı2πk·(a2−a3)H1(i, ĵ − 4m2, n̂3 − 1).

That is,

H1(0 : 6m1 − 1, 4m2 : 6m2 − 1, −1) = eı2πk·(a2−a3)H1(0 : 6m1 − 1, 0̂ : 2m2 − 1, n̂3 − 1). (48)

Combining the results in (46)–(48), we obtain the periodicity shown in (26). The periodicity shown in (27) can be proved
similarly. �
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