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SUMS AND PRODUCTS OF CYCLIC OPERATORS

PEI YUAN WU

(Communicated by Palle E. T. Jorgensen)

Abstract. It is proved that every bounded linear operator on a complex sepa-

rable Hilbert space is the sum of two cyclic operators. For the product, we show

that an operator T is the product of finitely many cyclic operators if and only

if the kernel of T* is finite-dimensional. More precisely, if dim ker T* < k

(2 < k < co), then T is the product of at most k + 2 cyclic operators. We

conjecture that in this case at most k cyclic operators would suffice and verify

this for some special classes of operators.

A bounded linear operator T on a complex Hilbert space H is cyclic if
there is a vector x in H such that H is the closed linear span of the vectors
x, Tx, T2x, ... (in this case, x is a cyclic vector of T). It is obvious that
cyclic operators can act only on a separable space. Hence for the rest of the
paper we will consider only Hilbert spaces which are separable.

For such a space H, let W(H) denote the set of all cyclic operators on H.

Topological properties of this set have been studied quite extensively before. It
was discovered that the size of fê(H) relative to that of all operators S8(H)

depends very much on the dimension of the underlying space H. Thus if H

is finite-dimensional, then it is easy to show that fé'(H) is a dense open subset
of â§(H) (cf. [6, p. 499]). It follows in particular that the set of noncyclic
operators is nowhere dense, whence W(H) is of the second category. However,

for infinite-dimensional H, exactly the opposite is true. Indeed, it was proved

in [5] that the set of noncyclic operators is dense in A%S(H). A refinement
of that proof together with some Fredholm index theory, moreover, yields the

existence of an open dense set of noncyclic operators (cf. [ 1, Proposition 11.18]).

This implies that <ê'(H) is nowhere dense, and thus noncyclic operators form
a second category set in 3S(H).

In the following, we will show the abundance of cyclic operators in another

sense. Indeed, in §1, after some preliminaries, we prove that every operator is
the sum of two cyclic operators. This holds on any separable space regardless of
its dimension. We then consider products of cyclic operators in §2. Our main

theorem (Theorem 2.12) says that an operator T is the product of finitely many

cyclic operators if and only if ker T* is finite-dimensional. To be more precise,
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1054 P. Y. WU

we show that if dim ker T* = k (2 < k < oo), then T is the product of at most

k + 2 cyclic operators. We suspect that the smallest number of cyclic operators
required in this case should be k , which we pose as a conjecture. We are able

to verify this for several classes of operators: operators on a finite-dimensional
space, multicyclic operators, operators whose spectrum does not surround zero,

isometries, coisometries, and normal operators.

1. Sum

We start with three propositions, which are the main tools that we use to

prove our sum and product results. The first one reduces our consideration

from the (additive or multiplicative) decomposition of general operators to that

of cyclic operators. It appeared in [10, p. 463] and [4, Theorem 5].

Proposition 1.1. Every operator T can be expressed in a triangular form

T\ *"

0

where n is the multiplicity of T and the T/s are all cyclic.

Recall that the multiplicity of T is the smallest cardinality of vectors
xx, ... , x„ in H for which H is the closed linear span of the set {Tkx¡ : k > 0

and I < j <n} .If T is cyclic, then its multiplicity is 1.
Our second proposition is quite well known (cf. [8, Problem 167]). It presents

a special matrix form for every cyclic operator.

Proposition 1.2. An operator is cyclic if and only if it has the matrix representa-

tion
' ax *"

bx   a2

bi    "■•

.0

with all bn's nonzero.

Finally, we have

Proposition 1.3. If T has the form
~TX *'

T2

.0

where the T^s are all cyclic and have mutually disjoint spectra, then T must be

cyclic.

This result is an easy consequence of the following three facts: ( 1 ) if T is of

the above form, then \Tin ® Tn is a quasiaffine transform of T, that is, there

is an injective operator X with dense range such that X(^2„ ® T„) = TX [3,

ii *
T2

.0 T,
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SUMS AND PRODUCTS OF CYCLIC OPERATORS 1055

Proposition 2.5]; (2) if the Tn's are cyclic and have mutually disjoint spectra,

then 5In © Tn is cyclic [11, Corollary 1.77]; (3) if S is a quasiaifine transform

of T and S is cyclic, then so is T.
The following corollary appeared in [9, Proposition 3.6].

Corollary 1.4. If

T =

ax
a2

is triangular with distinct a^s, then the diagonal operator

diag(a„) =

ax

0

0
a%

is a quasiaffine transform of T and T is cyclic.

Now we are ready for our main result in this section.

Theorem 1.5. Every operator is the sum of two cyclic operators.

Proof. By Proposition 1.1, we may assume that

~TX *"

T =

. 0

T2

where the  T„'s are cyclic.   (The proof for finitely many  T„'s is the same.)

Proposition 1.2 enables us to assume further that each Tn is of the form

bn\   an2

b«2

0

with nonzero b„fs. We have the decomposition

an\

bnX   an2

bn2

c„x +d„i

bn\

bn\

cn2 + d„i

b„2

7n2

+

e„\

Lo

en2
= S„ + R„,
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1056 P. Y. WU

where the c„/s and d„\ are all real, ¿„'s are distinct, and en/s are distinct

Hence

T =

[Sx

0

s2
+

Ri

0

R7
= S + R.

In choosing the c„/s and i/„'s, we may assume that they are such that {H-S^U}

is bounded by a fixed number, say, M. Then \\R„\\ < \\T„\\ + \\S„\\ < \\T\\ + M
for all n, whence R is a bounded operator and therefore S is a bounded
operator. We now show that both S and R are cyclic. Since S„ is the sum of
the scalar dni and a Hermitian operator, the distinctness of the dn's implies

that the spectra a(S„)'s are mutually disjoint. Also, by Proposition 1.2, each

Sn is cyclic. Hence Proposition 1.3 implies that S is cyclic. On the other hand,

by Corollary 1.4, the diagonal operator diag(e„7) is a quasiaffine transform of

Rn . Hence D = J2n ©diag(e„;) is a quasiaffine transform of R = £„ ®Rn ■

Since the enfs are all distinct, D is a cyclic operator, whence R is a cyclic
operator. This completes the proof.   D

2. Product

In this section, we consider products of cyclic operators. An obvious neces-
sary condition for an operator T to be expressible as a product of k ( 1 < k <
oo ) cyclic operators is that dim ker T* < k. Indeed, for k = 1 this is trivial.
Assuming its validity for k, we prove it for k + 1. Let T = Tx-- TkTk+x be

a product of Ác + 1 cyclic operators, and let S =TX-Tk. Then T* = Tk+lS*

implies that

dim ker T* = dim ker S* + dim(ran S* n ker 7"fc*+1 )

< dim ker S* + dim ker Tk+l <k+l.

In view of the partial evidences discussed below, we suspect that, when k>2,

this necessary condition is also sufficient. This we propose as

Conjecture 2.1. An operator T is the product of k  (2 < k < oo) cyclic operators

if and only if dim ker T* <k.

We remark that in the above statement we may as well replace " T is the

product of k cyclic operators" by " T is the product of at most k cyclic oper-

ators" due to the following lemma.

Lemma 2.2. Every cyclic operator is the product of two other cyclic operators.

Proof. Assume that

T =

ax
bx   a2

L0
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SUMS AND PRODUCTS OF CYCLIC OPERATORS 1057

where the b„'s are nonzero. We decompose

T =

C\

0

01
c2

[dx
ex

0

d2

e2

where c„'s are distinct and the e„'s are all nonzero. Then T is the product of
two cyclic operators.   G

Falling short of proving the preceding conjecture in its full strength, we are

only able to verify it for several classes of special operators. We start with the
finite-dimensional case.

Proposition 2.3. On a finite-dimensional space, T is the product of k (2 <k <

oo) cyclic operators if and only if dim ker T* <k.

Proof. We prove that dim ker T* = k implies that T is the product of k cyclic

operators. Since the property of cyclicity is preserved under similarity, we may
assume that T is of the form

0 0 0 0
ax

0 a„

= Tx®---®Tk®Tk+x

where 7) is of size n¡ for 7 = 1,
that

0

0

k + 1 and the a,'s are all nonzero. Note

0

A
0

fbx 01

bN\

= sxs2,

where N = nx -\-\- nk and

w
bj =

if 1 < 7 < A and

j ¿nx + l,nx + n2 + l

otherwise,

«i + --- + nk_x + 1,

and that

Tjfc+i =

7AT+1

0 bN+n

CX

L0

01

c„

RXR1-^2:

where ¿>¿v+i, • • • , bn+n are all nonzero and distinct and the c/s are nonzero

and distinct and also distinct from the nonzero bfs. Letting A¡ = Sj © Rj,
j = 1, 2, we have T = AXA2 . By Proposition 1.3, Ax is cyclic. On the other
hand, since A2 is a diagonal operator with k - 1 zero diagonals, we can express

it as a product of k - 1 diagonal operators each with distinct diagonals. Hence
A2 is the product of k - 1 cyclic operators, and therefore T is the product of
k cyclic operators.   D
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Corollary 2.4. On an n-dimensional space, every operator is the product of n

cyclic operators and n is the smallest such number.

Disposing of the finite-dimensional case, we move next to operators on

infinite-dimensional spaces. Let the multiplicity of an operator T be denoted
by m(T). Since dim ker T* <m(T) for any operator T, the next proposition

is weaker than what we proposed in Conjecture 2.1. Recall that a multicyclic

operator is one that has finite multiplicity.

Proposition 2.5. If T is a multicyclic operator with multiplicity m, then T is

the product of m cyclic operators.

Proof. We prove this by induction on m. Obviously, this is true for m = 1.

Assuming its validity for any operator T with m(T) = m, we prove it for

m + 1. So let T be an operator with multiplicity m + 1. By [10, p. 463], we

have the triangulation ~TX    X

0    T2
T =

where Tx is cyclic and m(T2) = m. Hence T2 = Sx ■ • ■ Sm-XS'm is a product

of m cyclic operators by the induction hypothesis. On the other hand, using

Lemma 2.2 we obtain Tx = Rx-- Rm+X, where the R/s are all cyclic and each

Rj , j = I,... , m , is diagonal and invertible with a(Rj) disjoint from o(Sj)

when j = I,..., m — 1. Moreover, let S'm = SmSm+x, where both factors are

cyclic, o(Sm) is disjoint from o(Rm) and Sm+X is diagonal and invertible with

a(Sm+i) disjoint from o(Rm+x). Finally, let

Qj
Rj    0
0    Si

j =1, ... ,m,

and

Qm+\ =
^m+i   Pm   ■Rx X

S„0 om+i

Then each Qj is cyclic by Proposition 1.3 and T = Qx- ■ Qm+i ■   □

To obtain other product results, we need the following lemma. It is an im-

provement over Lemma 2.2 for certain special cyclic operators. An operator is

triangular if it can be represented in the matrix form

ai

Lo

a2

Lemma 2.6. If T is a cyclic operator with dense range, then T = TXT2, where

Tx is unitary cyclic and T2 is triangular cyclic.

Proof. By Proposition 1.2, we may assume that T = [t¡j] with tiyi-X ^ 0 for
/ > 2 and r,; = 0 for i - j > 2. In the following, we will construct a matrix

U = [u¡j] with the following properties:

(i)   UU* = I,
(ii)   M/,,+1 ̂  0 for i > 1 and Uy = 0 for j - i > 2, and

(iii)   UT = [au] with an = 0 for i -j > 1.
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SUMS AND PRODUCTS OF CYCLIC OPERATORS 1059

This is done by first letting

(1) vx=t2x

and

(2) u» = -(uiri,«-i + --- + Uii-irB-i,«-i)A»,»-i   for n > 2.

Then, for each n > 1, let

x   1/2    / x 1/2
n \ In+1

(3) a„ = \vH+l\/   EKI2 EK- 2

,,, r-(««/^+i)E;"=1Ki2 if««+1^0,
(4) ■«;„ = < J

\\ 1 otherwise,

and let un = [m„iw„2 ■ ■ ■ ], the nth row of U, be

(5) [a„vx---a„v„ w„ 0 0---].

To verify (i), note that

IM2 = |a„|2£N2 + KI2
j=i

= | K+ii2/ (e;:,1 n2) + {eu \vj\2) i (e;"=+í n2) = i ifvn+1 / o,

1 0 + 1 = 1 otherwise

and, for « > m > 1, that

m

un-um= "Y^anVjämVj + a„vm+xwm

j=l

= an j am E \Vj\2 + vm+xwm J = 0

by (3)-(5). As for (ii), we have

n
2

|"«,»+i| = \wn\ = (\an\/\vn+x\)^2\Vj

In \*     (nil \"2 /„+> y

-(En2)  /En2    > 1^2.1/ÍEn2)   >°

if vn+x ¿0 by (1) and (3)-(5) and uu = 0 for j - i > 2 by (5). Finally, for
i - j > I,

;'+i 7+1

ay = E M*kj = Q' E u*^' = °
k=\ k=\

by (2) and (5), which verifies (iii).
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We next show that U is actually unitary. In view of (i) above, we need only

prove that U is one-to-one. So let x = [xxx2 ■ ■ ■ f be such that Ux = 0. We
will prove that x also satisfies T*x = 0. Since T has dense range, this would

imply that x = 0 as desired. We let y = [yxy2 ■ ■ • ]l = T*x. Our goal can be

accomplished by showing that (a) there are infinitely many nonzero a„'s and

(b) if a„ ¿ 0, then yx = ■ ■ ■ = y„-X = 0.
To prove (a), assume that there is some «o > 1 such that a„ = 0 for all

n > no ■ From (3), we have vn+x = 0 for n > no ; hence, v = \vxv2 • ■ ■ f is
a square-summable vector which satisfies T*v = 0 by (2). Since T has dense

range, this implies that v = 0, whence t2x = vx = 0 by (1) contradicting our

assumption. To prove (b), we assume that a„ ^ 0 for some n > 2. From Ux =

0, we deduce that [xx • • • x„] is orthogonal to [uix ■ ■ ■ ïïin] for i = I, ... , n-l.

These latter vectors together with \UnX ■ ■ •«„„] are mutually orthogonal by (i).

Since a„ ^ 0 and vx = t2x ^ 0, \UnX •••«„„] = [anvx •■•anv„] is a nonzero

vector. Hence [xx ■• x„] is a multiple of \unX • ••«„„]. Since this latter vector

is orthogonal to [tXj ■ • ■ t„j] for all j = 1.n — 1 by (iii), the same is true

for [xx  ■xn]. Thus

y, = hjX\ + ■■■ + tnjx„ = 0,       j =1, ... ,n-l.

Let A = UT. Since T = U*A and r,,,-i ^ 0 for all i, we deduce that
the diagonals of A are all nonzero. Hence it is possible to find a unitary di-

agonal operator D such that the diagonals of the triangular operator DA are
all distinct. If Tx = U*D* and T2 = DA, then T = TXT2 is the asserted
factorization.   D

Now it is time to claim our rewards after such a laborious work. Note that
if Conjecture 2.1 is indeed true, then every invertible operator should be the

product of two cyclic operators. Not able to prove this, we show that the asser-

tion is true under a more restricted condition. We say that a compact subset
K of C does not surround 0 if 0 is in the unbounded component of C\K or,
equivalently, if 0 is not in the polynomially convex hull of K.

Proposition 2.7. If the spectrum of T does not surround 0, then T is the product

of two cyclic operators.

Proof. By Proposition 1.1, we assume that T is of the form [Ty], where r„
is cyclic for all /' and Ttj = 0 for i > j. It is easily seen that o (Tu) is
contained in the polynomially convex hull of o(T) (cf. [12, Theorem 0.8]).

Hence our hypothesis implies that r„ is invertible for all i. Thus Lemma 2.6
is applicable and we obtain r„ = U¡A¡, where U¡ is unitary cyclic and A, is

triangular cyclic. Let {/,} be a sequence of distinct real numbers between 1

and 2, and let V¡ = r,C/, and B¡ = Ai/r¡. Then Tu = VjBj. Since the 5,'s
together with the ,4,'s are all invertible, we may make further adjustments, as

in the end of the proof of Lemma 2.6, so that the diagonals of all the 5,'s are

distinct. If

r, =

V\    TX2B2      TXiB3

V2        T2iBAx

and   T2 =

rfii

Lo

o
B2

B3
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then T = TXT2. Note that the relation B~x = nAy1 = riT¡¡xUi implies that

||.B,_1|| < 2||r-1|| for all /.whence T2 is invertible and therefore Tx is indeed
a bounded operator. Since the VAs are cyclic and their spectra are mutually
disjoint, Proposition 1.3 implies that Tx is cyclic. On the other hand, if D¡

is the diagonal operator whose diagonals are exactly those of Bt, then D¡ is a
quasiaffine transform of 2?, by Corollary 1.4. Hence E( © A is a quasiaffine

transform of T2 . Since £, © A is itself a diagonal operator with distinct
diagonals, it is cyclic, whence T2 is cyclic. This completes the proof.   D

The next result is another application of Lemma 2.6.

Theorem 2.8. Let T = £„ 0 Tn, where the T^s are cyclic. If k > 2 and Tn
has dense range for all n> k, then T is the product of k cyclic operators.

Proof. Using Lemma 2.2, we may express each T„ , n = l,...,k,asa product

Tn = TnX---Tnk, where Tnfs are all cyclic and each Tnj, j ¿ n,isa diagonal
operator with spectrum disjoint from the spectra of all the other r,/s. For
the remaining T„% we use Lemma 2.6 to obtain Tn = U„An, where U„ is

unitary cyclic and An is triangular cyclic. We further express these T„'s as a

product Tn = TnX---Tnk (n > k), where each TnX is a distinct multiple of

U„ with spectrum disjoint from the spectra of Txx, ... ,Tkx, and each T„j,

j = 2, ... ,k, is either triangular cyclic or diagonal cyclic with the closure

of its distinct diagonals disjoint from the spectra of TXj, ... , Tk¡. Let S¡ =
Y,n © Tnj:, j = 1, ... , k. Obviously, T = Sx ■ ■ ■ Sk . S\ is cyclic by the above
construction and Proposition 1.3. To prove the cyclicity of the remaining Sfs,
let D„j (n > k and j = 2,... , k) be the diagonal operator with diagonals
exactly those of T„j. Since

oo

TXj®---@Tkj®   E  ®D»j> j = 2,...,k,
n=k+\

is cyclic and is a quasiaffine transform of Sj again by the above construction
and Proposition 1.3, we conclude that Sj is cyclic as asserted.   D

There are several corollaries of the preceding theorem. By the spectral theo-
rem and the Wold decomposition, every isometry can be expressed as the direct
sum of simple unilateral shifts and cyclic unitary operators. Thus Theorem 2.8
is applicable and we obtain

Corollary 2.9. An isometry T is the product of k (2 < k < oo) cyclic operators

if and only if dim ker T* <k.

In a similar fashion, every coisometry is the direct sum of some backward

shift and cyclic unitary operators. Since the former summand is cyclic [8, Prob-
lem 160], Theorem 2.8 implies the following corollary.

Corollary 2.10. Every coisometry is the product of two cyclic operators.

We remark that part of Corollary 2.9 also follows from a result of Halmos

[7, Theorem 2] that an isometry T with dim ker T* = k is the product of k
simple unilateral shifts and that Corollary 2.10 follows from the result of Brown
[2, Theorem 3] that every coisometry is the product of some backward shift and
a simple unilateral shift.
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For a normal operator T with dim ker T* = k, we have, by the spectral

theorem, the decomposition T = ¿Z™=1 © Tn , where Tx,... ,Tk are the zero

operators on a one-dimensional space and every T„ (n > k) is one-to-one with
dense range. Hence we have

Corollary 2.11. A normal operator T is the product of k (2 < k < oo) cyclic

operators if and only if dim ker T* <k.

Concluding this paper, our final result says that products of (finitely many)
cyclic operators can be characterized by the condition that the dimension of

ker T* be finite. It is obtained by combining the preceding three corollaries.

Theorem 2.12. An operator T with dim ker T* < k (2 < k < oo) is the product

of at most k + 2 cyclic operators.

Proof. If dim ker T < dim ker T*, then the polar decomposition of T yields

T = VP, where V is an isometry with dim ker V* = dim ker T* - dim ker T

and P = (T*T)XI2 satisfies kerP = ker7\ Hence, by Corollaries 2.9 and 2.11,
V and P are, respectively, the products of m and n cyclic operators, where

m = max{dimker T* - dim ker T, 2} and n = max{dimker T, 2} . It follows

that T is the product of k + 2 cyclic operators.
On the other hand, if dim ker T > dim ker T*, then consider the decom-

position T = PV, where P = (TT*)XI2 and V is a coisometry. Since
dim ker P = dim ker T* < k, Corollary 2.11 implies that P is the product of k
cyclic operators. Also, V is the product of two cyclic operators by Corollary
2.10. Hence in this case our assertion also follows.   D

Note that in the preceding proof we actually showed that T is the product
of k cyclic operators if 2 < dim ker T and dim ker T + 2 < dim ker T* < k
(2< k < oo).

Added in proof

Applying the Gram-Schmidt process to the column vectors of a matrix, we can

obtain an infinite-dimensional QR decomposition: every operator with dense
range is the product of a unitary operator and a triangular operator. The proof
of Lemma 2.6 can then be considerably shortened by using such an argument.

This observation results from a sharp remark made by Professor Tzon-Tzer Lu

in a presentation of results contained herein.
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