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a b s t r a c t

Android-based systems perform slowly in three scenarios: booting, browsing, and streaming. Time

profiling on Android devices involves three unique constraints: (1) the execution flow of a scenario

invokes multiple software layers, (2) these software layers are implemented in different programming

languages, and (3) log space is limited. To compensate for the first and second constraints, we assumed

a staged approach using different profiling tools applied to different layers and programming

languages. As for the last constraint and to avoid generating enormous quantities of irrelevant log

data, we began profiling scenarios from an individual module, and then iteratively profiled an increased

number of modules and layers, and finally consolidated the logs from different layers to identify

bottlenecks. Because of this iteration, we called this approach a staged iterative instrumentation

approach. To analyze the time required to boot the devices, we conducted experiments using off-the-

shelf Android products. We determined that 72% of the booting time was spent initializing the user-

space environment, with 44.4% and 39.2% required to start Android services and managers, and preload

Java classes and resources, respectively. Results from analyzing browsing performance indicate that

networking is the most significant factor, accounting for at least 90% of the delay in browsing. With

regard to online streaming, networking and decoding technologies are two most important factors

occupying 77% of the time required to prepare a 22 MB video file over a Wi-Fi connection. Furthermore,

the overhead of this approach is low. For example, the overhead of CPU loading is about 5% in the

browsing scenario. We believe that this proposed approach to time profiling represents a major step in

the optimization and future development of Android-based devices.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Devices such as Smartphones, set-top boxes, and netbooks
provide users with the ability to access the Internet at anytime,
from anywhere. Among these Internet connectable devices, Smart-
phones operating under Android, an open source platform devel-
oped from Linux in 2009, are expected to garner the most attention
in coming years. Designing a device on the Android operating
system reduces licensing fees, and developers benefit from the
ability to develop new features and test their innovations in an
open source environment (Pieterse and Olivier, 2012). However,
Android-based devices suffer from poor performance in three
areas: booting, browsing, and streaming. Boot-up time is the first
perception users have when trying a new Smartphone, and
browsing and streaming are two usage scenarios commonly
ll rights reserved.

ax: þ886 2 27376777.
encountered by Smartphone subscribers (Comscore.com, 2008).
We compared the time spent booting and browsing using popular
off-the-shelf products. Although all of these products have similar
hardware capabilities, the execution on Android-based products
takes much longer than similar applications on iPhones. Previous
researchers have worked intensively on improving the perfor-
mance in these three areas (Singh et al., 2011; Zhao et al., 2011;
Trestian et al., 2012), and all of these studies have shared three
common procedures. First, profiling tools were used to trace the
flow of execution and the running time of targeted tasks. Second,
the flow of execution was redesigned to reduce the time required
to perform the three tasks. Finally, the improvement in perfor-
mance was evaluated by profiling the system again. Clearly,
profiling tools play an important role in the enhancement of
performance. Profiling tools can be categorized into two types:
instrumentation and sampling techniques (Ghoroghi and Alinaghi,
http://www.docstoc.com/docs/7671023/An-introduction-to-profi
ling-mechanisms-and-Linux-profilers; Patel and Rajawat, 2011).
Instrumentation techniques, such as debug classes (Yoon, 2012;
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Fig. 1. Android architecture.
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Android Developer, http://developer.android.com/reference/
packages.html), log utilities (Yoon, 2012; Android Developer,
http://developer.android.com/reference/packages.html), printk
(Printk Times, http://elinux.org/Printk_Times), Linux Trace Toolkit
Next Generation (LTTng) (Toupin, 2011), and Kernel Function Trace
(KFT) (http://elinux.org/Kernel_Function_Trace) insert profiling
code into the source code of targeted programs, thereby enabling
the profiling results to be collected during execution. On the other
hand, sampling techniques, such as OProfile (Levon, http://oprofile.
sourceforge.net/) and Bootchart (Mahkovec, http://www.bootchart.
org/), collect the process-usage statistics by periodically checking
which program or process is occupying the CPU.

Two difficulties have consistently plagued previous studies.
One problem is the fact that Android is a complex system with
multiple layers, and the characteristics of each profiling tool limit
it to a specific layer or layers within the software, as explained in
Section 2. The other problem is that previous researchers have
validated their ideas on development boards or emulators,
despite the fact that hardware is meant to be optimized for
commercial products. This has resulted in discrepancies between
the performance results obtained in the lab and those provided by
off-the-shelf products. Unlike a development board equipped
with sufficient log space, hardware optimization may leave only
limited space on the end-product, e.g., a 64 KB log buffer on the
HTC Dream Smartphone. As a result, profiling tools work very
effectively on development boards but often encounter out-of-
resource problems on the devices for which they were intended.

This work proposes a novel approach to profiling across multi-
ple layers to identify true bottlenecks in booting, browsing, and
streaming using real-world Android based devices. We revealed
common profiling procedures used for arbitrary scenarios and
developed specific profiling procedures for each scenario. All
procedures were validated on off-the-shelf products, to identify
the true bottlenecks of each scenario. This work has the following
major contributions: (1) we propose a staged iterative instrumen-
tation approach, which has properties of limited log space, multi-
layers, and multi-programming-languages; (2) we solve the imple-
mentation issues of this approach for time profiling booting,
browsing, and streaming using real-world Android devices; and
(3) we conduct extensive evaluations in booting, browsing, and
streaming scenarios and identify the bottlenecks in these scenarios.

The remainder of this paper is organized as follows. In Section 2,
we briefly describe the Android architecture and various profiling
tools. In Sections 3 and 4, we present our proposed methodologies
and the means by which the profiling procedures are implemented.
In Section 5, we present the experimental environment and discuss
the profiling results. Finally, in Section 6, we off conclusions and
suggest directions for future research.
2. Background

This section briefly describes the Android architecture and
various profiling tools.

2.1. Android architecture

As shown in Fig. 1, Android software comprises four major
layers, written in three different programming languages: Java,
Cþþ, and C. From basic hardware compliance to the level con-
trolled by users, the four software layers are the Linux kernel,
running environment, application framework, and applications.
1.
 Linux kernel layer
The Android kernel was derived from the Linux 2.6 kernel, so it
inherits many advantages of Linux such as numerous device
drivers and core operating system functionalities, e.g., memory
management, process management, and networking. In order
to accommodate the tightly constrained resources associated
with embedded devices, Android adds new modules into its
kernel or modifies some parts of the Linux kernel. For example,
Android includes Yet Another Flash File System, 2nd edition
(Yaffs2), an optimized file system for NAND flash, but the
Linux kernel did not. Accordingly, Android can run on many
different types of devices. Moreover, most of the profiling tools
used in common Linux distributions can be adopted for
Android since the entire Linux kernel is written in C program-
ming language.
2.
 Running environment layer
The running environment layer includes two major compo-
nents, native libraries, and Android runtime. Native libraries
contain a set of C and Cþþ libraries, such as libc and OpenGL/
ES, providing common routines for upper layers. In contrast,
Android runtime is designed specifically for Android to meet
the needs of operating in a resource-limited embedded device.
It includes Dalvik virtual machine (VM) and core libraries.
Dalvik VM is derived from Java VM and written in C, Cþþ, and
Java while the core libraries are written in Java containing
common Java classes for the development of applications.
3.
 Application framework layer
The application framework layer contains reusable components,
accessible to applications. Components in this layer are written
in Java, Cþþ, and C programming languages. Among the compo-
nents in this layer, activity and window managers are the two
most important. The former manages the life cycle of applica-
tions, while the latter draws graphic elements, such as status
bars, to provide a foreground graphical-user-interface (GUI).
Furthermore, in Android, only one foreground GUI application
may be displayed at a given time, while other running applica-
tions are managed by the activity manger in the background.
4.
 Applications layer
All user-visible applications on Android can be developed by
anyone, like commercial developers, open-source communities,
and Google, and are written in Java programming language.

2.2. Profiling tools on android

Profiling tools are used to detect hotspots in a program or a set
of programs to alleviate performance issues. A hotspot is a piece
of code that is frequently executed or the execution time of which
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is extremely long. Furthermore, in this article, a piece of code with
an extended execution time, which generally makes users be
intolerable, is defined as a bottleneck. This subsection reviews
nine profiling tools commonly used on a Linux or an Android
platform. Among these nine profiling tools, printk (Printk Times,
http://elinux.org/Printk_Times), OProfile (Levon, http://oprofile.
sourceforge.net/), and Bootchart (Mahkovec, http://www.boot
chart.org/) are applicable in both Linux and Android. Debug
classes (Yoon, 2012; Android Developer, http://developer.
android.com/reference/packages.html), log utilities (Yoon, 2012;
Android Developer, http://developer.android.com/reference/
packages.html), Wlayer (Lee and Lim, 2011), and Profiledroid
(Wei et al., 2012) are four profiling tools specific to Android while
LTTng (Toupin, 2011) and KFT (Kernel Function Trace, http://
elinux.org/Kernel_Function_Trace) are commonly used in Linux,
not ported to Android yet.
1.
Tab
Com

P

In

S

Debug class
Java Debug class built into Android, such as android.os.Debug,
provides developers with the means to create logs and trace
the execution of Android applications. However, the source
code of applications must be implemented with specific code
when Debug class is used. In addition, because of the two
disadvantages, Debug class does not satisfy the profiling
objectives of booting, browsing, or streaming in this work.
First, it is unable to profile native libraries written in C and
Cþþ. Second, it overwrites existing profiling results for every
execution of the instrumented source-code block. As a result,
Debug class is unsuited to a service-type program, which
needs to be executed several times during the three scenarios
mentioned.
2.
 Log utilities
Log utilities, including Java Log class (android.util.Log) and C/
Cþþ native library (liblog), are also built into Android. These
utilities are capable of recording logs during the execution of
user-space applications. Log utilities have two advantages,
compared to Debug class. One advantage is that the utility is
le 1
parison of profiling tools.

rofiling technique Tool Android support Advantages

strumentation Debug class Yes � Call graph

Log utilities Yes � Support Java/C/Cþ

printk Yes � No kernel-version

� Kernel profiling

LTTng No � Low overhead

KFT No � Provide complete

� Kernel profiling

ampling OProfile Yes � Low overhead

Bootchart Yes � Low overhead

� Friendly GUI

Wlayer Yes � Provide whole lay

� Support Kernel-sp

Profiledroid Yes � Multi-layer profil
not limited to Java, but can also be used with C and Cþþ
programs. The other advantage is that these utilities do not
overwrite an existing output, making it possible to execute a
program several times during a single profiling session. How-
ever, Log utilities require human input for instrumentation
and the source code of targeted programs has to be instru-
mented by specific code provided by Log utilities.
3.
 printk
printk is a log-recording function built into the Linux kernel.
Kernel developers are able to insert this function anywhere in
the kernel source to record logs. The advantage of using Printk
is the fact that the functionality does not have any kernel-
version compatibility issues; however the need for human
interaction is a major drawback.
4.
 LTTng and KFT
LTTng and KFT are two profiling tools for tracing Linux kernel
performance. Both LTTng and KFT belong to instrumentation
profiling techniques. In detail, LTTng provides a programming
interface to instrument the source code while KFT uses a
compiler-assisted capability, i.e., the finstrument-functions flag
in GNU compiler collection (gcc), to automatically instrument
profiling routines to every entry and exit of kernel functions.
When the execution reaches an instrumentation point, an event
will occur and the related information of that event is recorded
into a log. The overhead of LTTng is proportional to the number
of instrumentation whereas the overhead of KFT is extremely
high, over 100% of overhead in our measurement. This is
because KFT needs to instrument all kernel functions.
5.
 OProfile
OProfile benefits from a kernel driver and a hardware timer.
The former utilizes the performance counters found in most
modern CPUs to record CPU-related events, such as cache
misses while the latter periodically collects the function-
executing information of either user-space programs or the
kernel. Although the profiling overhead of using OProfile is
low, the resolution of call graphs, i.e., the relationships
between function calls, depends on the granularity of the
hardware timer and may therefore be inaccurate. Furthermore,
Drawbacks

� Not support C,Cþþ

� Trace log will be overwritten

� Human effort for instrumentation

þ � Human effort for instrumentation

capability issue � Human effort for instrumentation

� Not support user-space profiling

� Not support Java on Android

call graph � High overhead

� Not support user-space profiling

� Not support Java on Android

� No kernel-space booting log

� No information for threads

er analysis

ace and user-space profiling

� High overhead

� No information for threads

ing � High overhead

� No information about consumed time
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the porting effort of the kernel driver is a major obstacle in
using OProfile.
6.
 Bootchart
Bootchart is a sampling technique and it profiles the processes
involved in booting into Linux. While booting, a script is run by
the user-space program, init, to periodically gather statistics at
the process level. The overhead of Bootchart is low; however,
the profiling results are too rough to identify true bottlenecks in
Android. The reasons for this are two-fold. First, most Android
services and managers are threads, whereas Bootchart only
presents processes. Second, Bootchart is executed after the
kernel triggers the first user-space program, init, so it is unable
to provide complete profiling information of kernel booting.
7.
 Wlayer
WPlayer provides a whole layer performance analysis tool for
Android platforms. It combines and integrates available open
source performance analysis tools. It is composed of method
profiler, kernel profiler, and profiler controller. Profiler controller
actually enables logging systems in both application and kernel
layers. Method profiler performs method profiling at Android
framework level while kernel profiler performs kernel event
logging. Since additional costs to perform kernel event profiling
are significant in Wlayer, it suffers from high overhead in profiling.
8.
Fig. 2. Staged iterative instrumentation approach. (a) Procedure of staged iterative

instrumentation profiling. (b) Major layers and modules related to Android browsing.
Profiledroid
Profiledroid is a comprehensive, multi-layer system for mon-
itoring and profiling applications on Android. It profiles appli-
cations at four layers: (a) static, or application specification,
(b) user interaction, (c) operating system, and (d) network,
with different tools at different layers. Profiledroid can do
profiling on a multi-layer platform and can be used to find
inconsistencies between application profile and behavior pat-
terns in a systematic way. However, its main drawback is that
it does not provide any profiling results about consumed time.
Also its overhead is high because it adopts different profiling
tools at different layers and analyzes the generated results in
different layers to find their inconsistencies.

Table 1 summarizes the advantages and drawbacks of the
abovementioned nine profiling tools. As previously discussed, no
single profiling tool is capable of profiling the entire processes
that requires attention, across multiple languages, and multiple
layers on Android. Accordingly, in the next section, we propose a
staged iterative approach to instrumentation profiling.
3. Staged iterative instrumentation approach

Designing a time profiling approach for Android involves three
unique properties: (1) limited log space, (2) multi-layers, and (3)
multi-programming-languages.

3.1. Limited log space

To overcome the difficulties imposed by the limited log space
and avoid generating enormous quantities of irrelevant data
during profiling, the proposed approach begins profiling a sce-
nario from a single module, moving on to profile more modules
and layers in a constrained manner. Specifically, the earliest
executed module of a scenario is first selected. The web browser
for the browsing scenario, or any other modules suggested by
domain experts are examples. Figure 2(a) depicts the procedures,
11 steps of the proposed approach, staged iterative instrumenta-
tion profiling. Step 1 is to select a scenario to profile, and then, in
step 2, all functions S of the selected modules M are equipped
with checkpoints. The source code of M is rebuilt, the scenario is
executed, and the profiling results are obtained respectively in
steps 3, 4, and 5. After step 5, checkpoints S are refined in the
following manner as to reduce unnecessary checkpoint S’. In this
manner, the source codes are rebuilt and the scenario is executed
again to obtain refined profiling results. The enormous logs are
refined through one or more iterations, the iterative procedures
from step 6 to step 10, in a single stage. However, the selected
modules M do not necessarily cover all required modules in a
complete execution flow of a scenario. In such cases, modules Mþ

and checkpoints Sþ , in adjacent layers, are included in the profile.
Therefore, a new stage will then begin. This process continues
until no new modules can be added to M.

3.2. Multi-layers multi-languages

The proposed approach takes into account the problems
associated with multiple layers and languages by combining various
profiling tools for each of the modules in an execution flow. As
Fig. 2(a) shows, the selected module M with necessary checkpoints
is executed and its corresponding profiling results are obtained with
a loop from step 2 to step 11. When a module Mþ in the same layer
adopts the other language, the corresponding instrumentation of
this language will be inserted in a new loop. Thus our time-profiling
tool has the property of multi-programming-languages. On the
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other hand, when a module Mþ is in the lower layer, the
corresponding instrumentation for this module is also inserted in
a new loop for further observation. Thus our time-profiling tool has
the property of multi-layers. One resulting issue was that a process
had to be developed in which a proper time-stamped tag, which is
specific to adopted language, should be embedded in each log to
facilitate consolidation of all profiling results from each of the
profiling tools.

3.3. Example using this approach: browsing

We demonstrated the proposed approach by presenting an
example of profiling the processes involved in web browsing.
Web browsers invoke many modules located in various layers to
open a web page. These modules includes, but are not limited to,
the web browser in the application layer, the activity and window
managers in the application framework layer, the surface manger
(a module for screen drawing), the Webkit (a web-browser
engine) in the running environment layer, and the network driver
and touch screen driver in the kernel layer. Figure 2(b) shows the
modules invoked by web browsing.

In the beginning, M contains only the web browser and S is all
of the functions of the browser. Then, the proposed approach
removes unnecessary functions from S iteratively as shown in
steps 6–10 in Fig. 2(a), to reduce the number of checkpoints and
corresponding profiling results. Step 11 determines whether the
activity manager or window manager can be added, resulting in
an additional stage with Mþ¼{activity manager, window man-
ager} and M¼{browser, activity manager, window manager} to
profile the scenario again. The stages end after all invoked
components in the kernel layer have been profiled.

3.4. Potential issue

The proposed approach removes unnecessary checkpoints
depending on the questions which developers are interesting in
Fig. 3. Booting p
manually. However, if these removed checkpoints are important to
the later stages, the profiling results will be bias. This issue is called
mis-uninstrument problem. The solution of this issue is that the
approach rolls back to step 2 and re-instruments related modules M.
4. Implementations on three scenarios

This section details the implementation of the staged instru-
mentation approach on Android. First, we introduced generic
implementation techniques, including the selection of profiling
tools, log consolidation, and the automation of instrumentation.
We then describe specific implementation techniques for each of
the three scenarios, booting, browsing, and streaming.

4.1. Generic implementation
1.
roc
Selection of profiling tools
A number of profiling tools on Android are superior to others
because of their ability to profile multiple layers. Multi-layer
support reduces complexity two-fold. First, it shortens the
time required for users to learn how to use profiling tools and
decreases the complexity involved in modifying code. Second,
it simplifies the form of the results of profiling. Accordingly,
log utilities and printk are selected to profile user-space
modules and kernels, respectively. This is because the former
is capable of profiling all user-space modules and the code-
style of printk is similar to that of log utilities.
2.
 Logs consolidation
Both log utilities and printk include time information in their
profiling results, but unfortunately, time resolution, baselines, and
formats of log utilities’ and printk’s time information are different.
The time resolution of log utilities is in microseconds, and its
format is yy/mm/dd transformed from the output of the cpu_clock
function, and its value is bound to the local CPU. On the other
edures.
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hand, printk’s time resolution is in nanoseconds, its format is a
numerical number transformed from the output of the curren-
t_kernel_time function, and its value is bound to the kernel. To
obtain more precise results, we had to unify the time formats with
the format of printk.
3.
 Auto instrumentation
Because the instrumentation of source-code was an exhaustive
routine, an instrumentation-automation script is used to insert
specific profiling code into specific files or directories, (i.e.,
turning-on checkpoints), and remove the inserted profiling
code, (i.e., turning-off checkpoints). The script used for C, Cþþ,
Fig. 4. Browsing
and Java was able to instrument the source code with the
format in either log utilities or printk. As a result, it was easy to
achieve the procedures of a profiling iteration such as adding
or removing modules from M and S.

4.2. Booting
1.
pro
Boot time
We defined boot time as the period from when the power
bottom is pressed until the boot screen has been completely
cedures.
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drawn, with all Wi-Fi telecom services disabled at their default
factory settings.
2.
 Booting procedures
After the power button is pressed, the Initial Program Loader
(IPL) checks the hardware and loads the Second Program
Loader (SPL), which in turn, loads the compressed kernel
image from flash to memory, decompresses the kernel, and
executes the first kernel function, start_kernel. The kernel first
initializes a great many data structures and tasks, and loads
drivers. Next, the first user-space program, init, is executed. Init
starts the service_manager (the core Android service responsible
for the registration of other Android services), daemon programs,
zygote (the parent process of all Java virtual machines), and
media_server (managing multimedia framework on Android).
When zygote starts, it immediately preloads a number of Java
classes and resources for the acceleration of Java applications, and
then starts the system_server, a process managing all Android
services. System_server scans the flash memory to identify all
installed applications, and creates threads for Android services.
The booting procedure ends at the finish of the bootFinished
routine of the screen-drawing service, SurfaceFlinger.
3.
 Checkpoints
According to the above booting procedures, the boot sequence
is divided into three areas: boot loader, kernel space, and user
space. The first three checkpoints are set at the boundaries of
these three areas. The staged instrumentation approach is then
used to identify the following seven important checkpoints:
the first service (service_manger), the first daemon, the parent
process of virtual machines (zygote), the multimedia server
(media_server), the Java classes and resources preloading
routine, the core of system services (system_server), and the
Fig. 5. Streaming
first system service launched by system_server. Figure 3
illustrates the important modules involved in the booting
procedure. Moreover, each block in Fig. 3 has a corresponding
checkpoint as mentioned before (the same for browsing and
streaming).

4.3. Browsing
1.
pro
Browsing time
Browsing time is defined as the period from when the ‘‘go’’
button is touched on screen in the web browser after a URL has
been specified, and ending after completely loading a specified
webpage.
2.
 Browsing procedures
Pressing the ‘‘go’’ bottom of the screen generates a system event.
In particular, this event is handled by the touch screen driver in
the kernel, and passed to the activity manager (ActivityManager)
and the web browser. The web browser knows the specified URL
and sends the webpage request to Webkit, a built-in web browser
engine in Android. Webkit then uses HTTP protocol to request the
desired webpage, parsing it into a Document Object Model (DOM)
tree. The DOM is beyond the scope of this paper, so the details of
this process are omitted. Usually, a webpage contains multiple
elements loaded together with the target webpage. Webkit con-
tinues queuing and downloading the remaining elements while
drawing the layout on the screen using a 2D drawing library, skia.
3.
 Checkpoints
In the beginning, the module set M contains only the web
browser. After multiple iterations, the following important
checkpoints are identified as illustrated in Fig. 4: the interrupt
request (IRQ) handler of the touch screen driver, the event
cedures.
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handlers in the activity manager and web browser, the
Webkit-invoking function in the web browser, the HTTP
request and response functions, the DOM-tree building and
parsing functions, and the screen layout functions in Webkit.

4.4. Streaming
1.
 Streaming time
The built-in streaming player on Android is called YouTube.
Before profiling the streaming scenario, we had to connect to
the Internet and execute YouTube, showing a list of video icons
on the screen. The streaming time is defined as the period from
when a video icon is touched, until the video finishes playing.
2.
 Streaming procedures
As with the browsing scenario, touching a video icon generates
a system event, which is handled by the touch screen driver
and passed to the activity manager and YouTube in turn.
YouTube then sends the video request to MediaPlayer, a
service for every variety of media-playing requests. Media-
Player dispatches the video-playing request to PVPlayer, the
built-in video player. PVPlayer continues downloading and
decoding video from the Internet, while displaying video on
the screen until the end of play, as notified by the stayAwake
function of MediaPlayers.
3.
Fig. 7. Profiling results of booting procedures.
Checkpoints
YouTube does not release its source, and therefore, the staged
instrumentation approach cannot be applied to YouTube
directly. During the first iteration of the proposed approach,
M includes modules in the application framework layer, and
YouTube still leaves a certain amount of log data, which is
interpreted as checkpoints during profiling. After multiple
iterations, the following important checkpoints are identified
as shown in Fig. 5: the IRQ handler of the touch screen driver,
the event handler in activity manager, the log messages
indicating that YouTube has started loading video, the con-
structors of MediaPlayer and PVPlayer, the video-playing func-
tion in MediaPlayer, the video-downloading, audio-decoding,
and video-decoding functions in PVPlayer, and finally, the end
function, stayAwake, indicating the termination of the video.

5. Experimental results and observations

This section presents the profiling results obtained from an off-
the-shelf Android device for the three user-perceptible scenarios,
booting, browsing, and streaming. The testbed is first described and
important time-consuming functional blocks for each scenario are
discussed in turn.
Fig. 6. Tes
5.1. Testbed

Experiments were conducted on an Android-based Smart-
phone, Android Dev Phone 1, referred to hereafter as DUT. The
reason for selecting this DUT was that the root permissions had
been unlocked for developers to rewrite any program. In addition,
the entire system on the platform and the hardware of this DUT
was the exact same as that of another off-the-shelf commercial
Android Smartphone, the HTC Dream. The version of the platform
used for this DUT was Android Open Source Project (AOSP) 1.6.
The reasons for selecting this platform were that we want to
prove the proposed approach can work in an elder Android
platform and this platform is the first Android version supporting
CDMA/EVDO, 802.1x, and VPNs networking technologies.

Recall that the Android platform allows only one foreground
GUI program to be executed at one time. Hence, to operate
profiling tools on-line and collect profiling results during the
execution of a scenario, a host machine was needed to provide an
alternative, command-line, and operational interface. In addition,
the operating interface on the host was a client program called
tbed.
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Android Debug Bridge (adb), and its corresponding server on the
DUT was adbd. DUT and the host connected to each other through
the USB interface. Finally, the EDGE (2.75G), WCDMA (3G), and
IEEE 802.11 g (Wi-Fi) networks were accessible in the testbed
environment. Figure 6 depicts the described testbed.

5.2. Booting scenario

Figure 7 shows the profiling results for booting with the
checkpoints defined in Section 4. The initialization of the boot
loader, kernel-space, and user-space environment respectively
Fig. 8. Detailed profiling results of booting: (a) distribution of bo

Fig. 9. Profiling results of
required approximately 15%, 13%, and 72% of total boot time as
shown in Fig. 8(a). Furthermore, when drilling down the user-
space initialization, we could observe that two major time-
consuming processes, the startup of services and managers
(44.4% of user space) and Java classes and resource preloading
by zygote (39.2% of user space), as shown in Fig. 8(b).

The reason that the preloading of Java classes and resources
and the startup of services and managers were bottlenecks during
boot-up was that the former attempts to shorten the time to start
applications, while the latter tries to ready all services and
managers before the desktop screen appears.
oting time and (b) distribution of user-space initiation time.

browsing procedures.



Fig. 11. Profiling results of streaming procedures.
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It appears that reducing the number of preloaded Java classes
and resources could considerably decrease the boot time. How-
ever, the startup time for applications would be increased
because the Java VM would have to spend time loading the un-
preloaded Java classes and resources. Hence, it is a tradeoff
between boot time and startup time. On the other hand, in
current Android designs, the desktop screen is shown after all
services and managers are ready. However, for many users, the
later the screen appears, the slower the boot performance is.
Thus, if designers of DUTs want to attract attention for the speed
of their device, they could have the desktop screen drawn as early
as possible and postpone launching services unrelated to the
desktop, when redesigning the boot-sequence.

5.3. Browsing scenario

Figure 9 presents the results of time profiling after loading a
2128 KB webpage with eight attached images. The experiments
were conducted using three different networking technologies,
Wi-Fi, 3G, and 2.75G. The results show that the browsing
performance with 2.75G and Wi-Fi was the slowest and the
fastest among three networking technologies, respectively. The
results also show that downloading element resources consumes
90% of the browsing time, regardless of the network the DUT
connects to. Accordingly, on Android, networking technology is
the most significant factor influencing browsing performance.

There are two interesting things. One is that the overhead of
this proposed approach was about 5% in CPU loading, from 63% to
68%. The other is that the source code of the drivers related to the
Graphic Processing Unit (GPU) were also instrumented in this
experimentation, but with no GPU related output during brows-
ing procedures. Furthermore, results of the experiment showed
that the rendering function consumed only 5% of the browsing
time. It would be easy to believe that the GPU is not invoked
during the process of rendering the browser.

Figure 10 presents the experimental results measuring the
performance of rendering webpages of different sizes under Wi-Fi
networks. The size of webpages is adjusted according to the size
of a single attached web image. The ‘‘others’’ denote the sum of all
execution times excluding the time for downloading webpages.
From Fig. 10, it can be seen that regardless of the size of the
webpage, the time of ‘‘others’’ is small and steady. On the other
hand, network transmission is the most important factor influen-
cing the performance of web browsing.

5.4. Streaming scenario

Figure 11 shows the time profiling results of playing a one-
minute MPEG-4 video from the YouTube site. The video file size
was 22 MB and the DUT accesses Internet through the Wi-Fi
Fig. 10. Profiling results of webpages of various sizes.
interface. No jitter occurred during the experiments, so the
streaming performance perceived by users was the time spent
preparing the video. In other words, users needed to wait 3.64 s to
watch a video after touching the play icon. Obviously, two
bottlenecks residing in video preparation are video-downloading
(1.572 s) and data-decoding (1.068 s), accounting for 77%
(¼(1.572þ1.068)/3.64) of the preparation time. Furthermore,
the data-decoding included audio decoding (0.515 s) and video
decoding (0.553 s).
6. Conclusions

In this work, we developed a staged instrumentation approach
to time profiling using a multi-language, multi-layer platform.
Then this approach for time profiling booting, browsing, and
streaming on off-the-shelf products was implemented and the
execution flow on these scenarios was investigated to verify its
effectiveness.

Although it is well known that the user-space initialization
dominates the time required to boot, until now, no studies have
provided a complete numeric distribution of Android booting
time. This paper first illustrates how 72% of Android booting time
is spent on initializing the user-space environment, 13% on kernel
initialization, and 15% on the boot loader. Furthermore, in user
space, the time required for starting Android services and man-
agers, and preload Java classes and resources are 44.4% and 39.2%,
respectively. As for browsing performance, the experimental
results indicated that networking technology is the most signifi-
cant factor influencing the speed of the Android system. The time
required to draw the screen takes less than 5% of the total time
required to browse a 2128 KB webpage. This also explains why
GPU-acceleration is unnecessary for rendering browser functions.
In the streaming scenario, the Android-based device required
3.64 s for video preparation before it was able to play a video file
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over Wi-Fi connections. In addition, the execution time of video-
downloading and data-decoding accounted for 77% of preparation
time.

The proposed approach to time profiling is capable of inte-
grating energy profiling tools to measure energy consumption
during system runtime. In the future, other scenarios like GPS
navigation, and Android on set-top boxes, will also be profiled.
Although the proposed approach is capable of profiling multi-
language, multi-layer platforms, the profiling results still require
manual analysis. Therefore, if an automatic analysis tool could be
developed, the entire experimental process could be automated.
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