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a b s t r a c t

A theoretical framework is developed to investigate the magnetoelectroelastic potential in
a multicoated elliptic fibrous composite with piezoelectric and piezomagnetic phases. We
generalize the classic work of Rayleigh (1892) to obtain the electrostatic potential in
ordered conductive composites and its extension to a disordered system (Kuo, 2010; Kuo
& Chen, 2008) to the current coupled magnetoelectroelastic multicoated elliptic compos-
ites. We combine the methods of complex potentials with a re-expansion formulae and
the generalized Rayleigh’s formulation to obtain a complete solution of the multi-field
many-inclusion problem. It is shown that the coefficients of field expansions can be written
in the form of an infinite set of linear algebraic equations. Numerical results are presented
for several configurations. We use this method to study BaTiO3–CoFe2O4 composites and
find that, with appropriate coating, the effective magnetoelectric voltage coefficient can
be enhanced with one order of magnitude compared to their non-coating counterpart.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetoelectric materials, which induce the polarization by a magnetic field, or conversely induce the magnetization by
an electric field, have been the focus of research due to their varieties of microstructural phenomena and macroscopic prop-
erties. These make them promising for a wide range of applications, such as four-state memories, magnetic field sensors, and
magnetically controlled opto-electric devices (Eerenstein, Mathur, & Scott, 2006; Nan, Bichurin, Dong, Viehland, &
Srinivasan, 2008). The study of magneto–electric coupling can be traced back to 1957 when Landau and Lifshitz (1984)
showed the possibility of the coupling between the electric and magnetic fields in a substance with a certain magnetic sym-
metry class. This was subsequently experimentally confirmed in a single crystal Cr2O3 by Astrov (1960) and by Rado and
Folen (1961) over 50 years ago. However, this coupling is weak in single phase materials, and thus has motivated the study
of composites of piezoelectric and piezomagnetic media. The basic idea is to couple a piezoelectric and a piezomagnetic
material using strain: an applied electric field creates a strain in the piezoelectric material which in turn induces a deforma-
tion in the piezomagnetic material, resulting in a magnetic field.

A number of micromechanical models hence were proposed to predict the effective moduli of multiferroic composites.
For instance, Green’s function approach was used by Nan (1994) and Huang and Kuo (1997) to study a fibrous composite
consisting of Barium Titanate and Cobalt Ferrite. For such transversely isotropic fibrous composites, Benveniste (1995)
derived exact connections among effective magnetoelectroelastic moduli based on a formalism discovered by Milgrom
and Shtrikman (1989). Particulate composites were investigated by Harshé, Dougherty, and Newnham (1993) using a cubic
model, while a homogenization micromechanical method was employed by Aboudi (2001). Eshelby’s equivalent inclusion
approach and the mean field Mori–Tanaka model have been generalized to multiferroic composites by Li and Dunn
. All rights reserved.
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(1998a, 1998b), Huang (1998), Li (2000), Wu and Huang (2000) and Srinivas et al. (2006). A two-scale asymptotic homog-
enization theory was adopted by Camacho-Montes, Sabina, Bravo-Castillero, Guinovart-Díaz, and Rodríguez-Ramos (2009)
on the magnetoelectric coupling and cross-property connections in a two-phase multiferroic composite. For a good overview
of the subject, the reader is referred to the review article by Nan et al. (2008).

In a classic work, Lord Rayleigh computed the electrostatic potential for a conducting composite consisting of a periodic
array of cylindrical or spherical inclusions. This was extended to arbitrary arrangements by Kuo and Chen (2008) and to ellip-
tic cylinders by Kuo (2010). These works concern single fields. Later, Kuo and Bhattacharya (submitted for publication) gen-
eralized this methodology to electrostatic, magnetostatic and mechanical coupled fields. In this paper, we extend this
Rayleigh’s formulation further to a multiferroic composite consisting of elliptic cylinders, specifically multicoated ellipses.

Coating plays an important role in high-temperature systems and in various engineering applications. For instance, to re-
duce heat or stress concentration along the interface, interphase layers between the inclusions and the matrix are often
introduced to act as thermal barrier. Graded materials can also be more damage-resistant than their conventional homoge-
neous counterpart (Suresh, 2001). Such interphase layer may have constant properties or spatially varying properties.
Research into graded multiferroics has primarily been confined to bilayer and multilayer structures. Among them, piezoelec-
tric or piezomagnetic coefficients are assumed linear variation in the thickness direction by Chen and Lee (2003), Petrov,
Srinivasan, and Galkina (2008) and Petrov and Srinivasan (2008), while exponentially graded assumption is adopted by
Pan and Han (2005) and Wang et al. (2009). To our knowledge, the subject of piezoelectric/piezomagnetic fibrous composites
with multicoated elliptic cylinders has not been examined in the literature before.

The plan of this article is organized as follows. First we consider a composite medium made of piezoelectric and piezo-
magnetic phases arranged in a microstructure consisting of parallel elliptic cylinders in a matrix in Section 2. The phases are
transversely isotropic and under anti-plane shear with in-plane electromagnetic fields. In this situation, the fields are decou-
pled in the interior of every phase, and the coupling between the fields occurs only through the interface conditions (Kuo &
Bhattacharya, submitted for publication). We exploit this in Section 2.2 to obtain a representation of the solution. The basic
idea is to follow Kuo (2010) and expand each field in each medium in a series. We consider periodic arrays in Section 2.3. In
Section 3 we consider the case of multicoated elliptic cylinders. We show that a (6 � 6) array alone can mathematically sim-
ulate the effects of multiple coatings. We obtain effective properties in Section 4, and significantly show that the macroscopic
properties depend solely on a single expansion coefficient (amongst the infinite). This methodology is illustrated in Section 5
using composites of BaTiO3 and CoFe2O4. We choose this material pair for its practical potential and also because it enables
comparison with previous work. We observe that the composite medium has a non-trivial magnetoelectric coupling even
through the individual components do not. Further, we show that the ME coefficient can be enhanced with an order of mag-
nitude if the BaTiO3 fiber is coated with Terfenol-D.

2. Multiple elliptic cylinders

2.1. Basic formulations

Let us consider an infinite medium R3 containing N arbitrarily distributed, parallel and separated elliptic cylinders. The
domain of the pth elliptic cylinder is denoted Vp, p = 1,2, . . . ,N, and the remaining matrix is denoted Xm. We assume that the
cylinders and the matrix are made of distinct phases. Further, we assume that each phase is either piezoelectric or
piezomagnetic with transversely isotropic symmetry (i.e. has 6 mm symmetry) about the fiber axes. We introduce a
Cartesian coordinate system positioned at a selected point O of the plane with the x- and y-axes in the plane of the
cross-section and z- along the axes of the cylinders (Fig. 1). The centroids of the pth elliptic cylinders are designated as
Op, with Opxp and Opyp axes are directed along the major and minor axes of the ellipse. Each of ellipse has the major and
minor semi-axis, lðpÞx and lðpÞy , and the inter-foci distance is 2dp, where d2

p ¼ lðpÞ2x � lðpÞ2y . The ellipses are well separated so that
any two inclusions will not get in touch with each other.

Let the composite be subjected to the anti-plane shear strain �ezx; �ezy; the in-plane electric fields Ex; Ey; and the magnetic
fields Hx; Hy at infinity. Thus the heterogeneous material is in a state of anti-plane shear problem (Benveniste, 1995; Chen,
1993; Kuo & Bhattacharya, submitted for publication) and can be described by
ux ¼ uy ¼ 0; uz ¼ wðx; yÞ;
u ¼ uðx; yÞ;
w ¼ wðx; yÞ;

ð2:1Þ
where ux, uy, uz are the mechanical displacements along the x-, y-, and z-axes, and u and ware the electric and magnetic
potentials, respectively.

The constitutive laws of the constituents for the non-vanishing fields become
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Fig. 1. The cross-section of the fiber composite.
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where j denotes the component x,y. We can write this compactly as
RU
j ¼ LUV ZV

j ; U;V ¼ w;u;w; j ¼ x; y; ð2:3Þ
where
Rj ¼
rzj

Dj
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0
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1
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�Hj

0
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1
CA: ð2:4Þ
Here rzj,Dj,Bj,ezj,Ej and Hj are the stress, electric displacement, magnetic flux, strain, electric field, and the magnetic field,
respectively. C44,j11,l11 and k11 are the elastic modulus, dielectric permittivity, magnetic permeability and magnetoelectric
coefficients. The shear strains ezx and ezy, in-plane electric fields Ex and Ey, and in-plane magnetic fields Hx and Hy can be de-
rived from the gradient of elastic displacement, electric potential, and magnetic potential as follows:
ezx ¼
@w
@x

; ezy ¼
@w
@y

;

Ex ¼ �
@u
@x

; Ey ¼ �
@u
@y

;

Hx ¼ �
@w
@x

; Hy ¼ �
@w
@y

:

ð2:5Þ
Further, the equilibrium equations, in the absence of body force, electric charge density and electric current density, are
given by
@rzx

@x
þ @rzy

@y
¼ 0;

@Dx

@x
þ @Dy

@y
¼ 0;

@Bx

@x
þ @By

@y
¼ 0:

ð2:6Þ
Substitution of Eq. (2.3) into Eq. (2.6) yields
C44r2wþ e15r2uþ q15r2w ¼ 0;

e15r2w� j11r2u� k11r2w ¼ 0;

q15r2w� k11r2u� l11r2w ¼ 0;

ð2:7Þ
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wherer2 = @2/@x2 + @2/@y2 represents the two-dimensional Laplace operator for the variable x and y. Since L is a nonsingular
matrix, generically we can completely decouple (2.7) into three independent Laplace equations,
r2w ¼ 0; r2u ¼ 0; r2w ¼ 0 ð2:8Þ
in the interior of each phase.
In addition to these differential equations, we have to use interface conditions. We assume that the interfaces are per-

fectly bonded, and therefore the fields satisfy
sZjtjt ¼ 0; s½Rjnjt ¼ sðLZjÞnjt ¼ 0 ð2:9Þ
where s � t denotes the jump in some quantity across the interface, tj is the unit tangent to the interface and nj is the unit
outward normal to the interface, and the repeated index j denotes summing over the components x,y. Since L is different
in each phase, the fields w,u and w are generally coupled by the interface equations.

2.2. Representation of the solution

We start by considering the case that the cylinders are homogeneous. We showed above that the fields are decoupled in
the interior of every phase, but are coupled at the interfaces. Therefore, we may follow Kuo (2010) and use a series expansion
for each field in the interior of each phase and then obtain the coefficients by enforcing the interface and boundary
conditions.

Since w,uand ware harmonic, we can construct an analytic function U(z) = U(z) + iU⁄(z), of the complex variable z = x + iy,
where U⁄ is the conjugate harmonic function, related to U by the Cauchy-Riemann equation
@U
@x
¼ @U�

@y
;

@U
@y
¼ � @U�

@x
; U ¼ w;u;w: ð2:10Þ
Further, the shape of the cross section of the cylinders defines elliptic coordinates: (l > 0, � p < h 6 p)
z ¼ xþ iy ¼ d cosh x ¼ d coshðlþ ihÞ ð2:11Þ
are the most appropriate system for the solution of Laplace’s equation.
We now consider a situation where the composite is subjected to a macroscopically uniaxial loading
wext ¼ �ezxx; uext ¼ �Exx; wext ¼ �Hxx; ð2:12Þ
for constant �ezx; Ex and Hx. We may rewrite this in short as
Uext ¼ CUz; ð2:13Þ
where U represents the appropriate field – the anti-plane deformation w, electric potential u, or magnetic potential w – and
CU ¼ CU

R þ iCU
I the corresponding applied field – �ezx; �Ex or �Hx.

We rewrite the governing equation, Eq. (2.8), in elliptic coordinates (l,h),
r2U ¼ 1

d2ðcosh2l� cos2 hÞ
@2U
@l2 þ

@2U

@h2

 !
¼ 0: ð2:14Þ
The potential field for the pth elliptic cylinder and its surrounding matrix can be expanded with respect to its centroid Op as
UðpÞi ðzpÞ ¼
X1

n¼�1
CUðpÞ

n e�nxp ; CUðpÞ
n ¼ CUðpÞ

�n ð2:15Þ
for the inclusion, and
UðpÞm ðzpÞ ¼
X1

n¼�1
AUðpÞ

n e�nxp þ
X1
n¼1

BUðpÞ
n e�nxp ; AUðpÞ

n ¼ AUðpÞ
�n ð2:16Þ
for the matrix. Here xp = lp + ihp is the local elliptic coordinate centered at the origin of the pth ellipse, the subscripts i and m
denote the inclusion and matrix, respectively. The coefficients AUðpÞ

n ¼ AUðpÞ
nR þ iAUðpÞ

nI ; BUðpÞ
n ¼ BUðpÞ

nR þ iBUðpÞ
nI and

CUðpÞ
n ¼ CUðpÞ

nR þ iCUðpÞ
nI are some complex unknowns to be determined. The superscripts p appearing in (2.15) and (2.16) indi-

cate that the fields are expanded with respect to the pth ellipse centroid.
We recall the interface conditions (2.9) which we rewrite as
ReUðpÞi

���
@Vp

¼ ReUðpÞm

��
@Vp
; ðRUÞðpÞm � np

���
@Vp

¼ ðRUÞðpÞi � np

���
@Vp

ð2:17Þ
where
Rw ¼ ðrzx;rzyÞ; Ru ¼ ðDx;DyÞ; Rw ¼ ðBx;ByÞ; ð2:18Þ
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@Vp : lp = ap denotes the interface between the matrix and the pth elliptic cylinder, and np is the unit outward normal of the
interface @Vp.

Using the orthogonality properties of trigonometric functions, the interface conditions (2.17) provide
aðpÞnK ¼ TðpÞanKbðpÞnK; cðpÞnK ¼ TðpÞcnKbðpÞnK; ð2:19Þ
and AUðpÞ
0 ¼ CUðpÞ

0 ; where
aðpÞnK ¼
AwðpÞ

nK
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nK
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nK

0
B@

1
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BwðpÞ
nK
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nK

BwðpÞ
nK

0
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1
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CwðpÞ
nK
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nK

CwðpÞ
nK

0
B@

1
CA; ð2:20Þ

TðpÞanR ¼ LðmÞ � LðpÞ
� ��1

cosh napLðmÞ þ sinh napLðpÞ
� � e�nap

sinh 2nap
;

TðpÞanI ¼ LðmÞ � LðpÞ
� ��1

sinh napLðmÞ þ cosh napLðpÞ
� � �e�nap

sinh 2nap
;

TðpÞcnR ¼ TðpÞanR þ
e�nap

2 cosh nap
I; TðpÞcnI ¼ TðpÞanI �

e�nap

2 sinh nap
I;

ð2:21Þ
K represents R, the real part, or I, the imaginary part of the coefficients, and I is the 3 � 3 identity tensor.
We now need to relate the solutions to the applied boundary conditions. We do so by applying the Green’s second iden-

tity (Arfken & Weber, 2001) to the matrix domain Xm. This gives
Z
Xm

Gðx; x0Þr02Umðx0Þ �Umðx0Þr02Gðx; x0Þ
h i

dA0 ¼
Z
@Xm

Gðx; x0Þr0Umðx0Þ �Umðx0Þr0Gðx; x0Þ
� �

� n0 ds0; ð2:22Þ
where the prime 0 denotes the operation in reference to the x0 coordinate, n0 is the outward unit normal to the matrix’s
boundary @Xm, dA0 represents the area element for the x0 coordinate, ds0 is the differential arc length. Here G(x;x0) is the
free-space Green’s function for Laplace operator satisfyingr2G(x;x0) = �d(x � x0), where d(x � x0) is the Dirac-delta function.
Following the procedure in Kuo (2010), it can be shown that Eq. (2.22) yields
UmðzÞ ¼ UextðzÞ þ
XN

l¼1

X1
n¼1

BUðlÞ
m e�nxl : ð2:23Þ
This is the consistency equation which relates the external applied fields to the local potential expansions. Note that the field
identity (2.23) is written based on different coordinates.

To proceed, we shift the origin of the expansions (2.23) to a fixed point, say Zp, the centroid of the pth ellipse, by expand-
ing the term e�mxl as Kushch, Shmegera, and Buryachenko (2005)
e�nxl ¼
X1

m¼�1
glp

nme�mxp ; ð2:24Þ
with
glp
nm ¼ ð�1Þmn

dl

dlp

� �nX1
s¼0

v�ðnþmþ2sÞ
lp

Xs

t¼0

ð�1Þs�t

ðs� tÞ!
dp

dlp

� �mþ2t

Mnmtðdl; dpÞ
ðnþmþ t þ s� 1Þ!

ðs� tÞ! ; ð2:25Þ
where dlp � dl þ dp; v lp � Zlp=dlp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZlp=dlpÞ2 � 1

q
and
Mnmtðdl;dpÞ ¼
Xt

k¼0

ðdl=dpÞ2k

k!ðt � kÞ!ðkþ nÞ!ðmþ t � kÞ! : ð2:26Þ
Introducing (2.24) into (2.23), we have the expansion
UðpÞm;nearðzÞ ¼ CUZp þ
X1

n¼�1
BUðpÞ

n þ bUðpÞ
n

� �
e�mxp ; ð2:27Þ
where
bUðpÞ
n ¼ CU dp

2
dn;�1 þ

XN

l–p

X1
m¼1

BUðlÞ
m glp

mn ð2:28Þ
valid for the domain within an ellipse centered in Zp with inter-foci distance 2dlp and passing the pole of lth elliptic coordi-
nate systems closest to Zp (Kushch et al., 2005). Further, since z lies in the matrix domain, Eqs. (2.27) and (2.16) should be
identical. This provides the condition
X1

n¼�1
AUðpÞ

n e�nxp ¼ CUZp þ
X1

n¼�1
bUðpÞ

n e�nxp : ð2:29Þ
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Taking the real part and the imaginary part of (2.29), we find the two conditions
AUðpÞ
nR ¼ CU

R ReZp � CU
I ImZp


 �
dn;0 þ bUðpÞ

nR ; ð2:30Þ
and
AUðpÞ
nI ¼ CU

I ReZp þ CU
R ImZp


 �
dn;0 þ bUðpÞ

nI : ð2:31Þ
Eqs. (2.30), (2.31) and (2.19)1 constitute an infinite set of linear algebraic equations. Upon appropriate truncations of the
expansions terms, we can determine the expansion coefficients AUðpÞ

n ; BUðpÞ
n ; CUðpÞ

n . Here we make one further remark.

Remark. The essential step of the framework is to establish the generalized Rayleigh’s identities, (2.30) and (2.31). We
observe, however, that the derivation of the identities is independent of inclusions’ expansions. In other words, these
identities can be applicable to inclusions with inhomogeneous constituents provided that the admissible fields in the
inclusions and the transition relations, similar to (2.19) can be constructed.
2.3. Periodic arrays

The analysis carried out in the previous section for the arbitrary system with a finite number of cylinders may also be
adapted for the case of a periodic array of cylinders. Here we concentrate on the rectangular lattice, and we sketch the out-
line of the derivation focussing on the differences from the previous situation.

Let us first introduce a Cartesian coordinate system (x,y) positioned at the centroid O of one of the ellipses in a rectangular
array, as shown in Fig. 2. The sides of the rectangular cell parallel to the x and y coordinates are, respectively, denoted by a
and b. The elliptic cylinders are of the same orientation, elliptic radius l = a and inter-foci distance 2d. Uniform intensities Ex

and Hx are applied along the positive x axis, and an anti-plane shear deformation �ezx is applied out of the xy plane. In terms of
elliptic coordinates, the general solution has the admissible form
Ui ¼
X1

n¼�1
CU

n e�nx; CU
n ¼ CU

�n ð2:32Þ
for l < a, and
Um ¼
X1

n¼�1
AU

n e�nx þ
X1
n¼1

BU
n e�nx; AU

n ¼ AU
�n; ð2:33Þ
for l > a. The coefficients AU
n ; BU

n ; and CU
n are unknown complex constants to be determined from the interface and boundary

conditions.
Analogous to (2.19), the continuity conditions at the interface will give constraints (2.19) between the coefficients. Next,

imposing the periodicity conditions analogous to the boundary condition we did to derive (2.30) and (2.31), lead to general-
ized Rayleigh’s identities
AU
nK ¼ bU

nK; K ¼ R; I: ð2:34Þ
Fig. 2. A schematic representation of a unit cell.
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Here the quantities
bU
n ¼ �CU d

2
dn;�1 þ

X1
m¼1

BU
m

X1
l–o

glo
mn; ð2:35Þ

X1
l–o

glo
mn ¼ ð�1Þmn

X1
t¼0

d
2

� �nþmþ2t

Mnmtðd;dÞðnþmþ 2t � 1Þ!Snþmþ2t; ð2:36Þ
where Mnmt(�) is defined in (2.26), and
Sm ¼
X
l–o

Z�m
l ; ð2:37Þ
are the lattice sums characterizing the geometry of the periodic structure, and Zl is the centroid of the lth cylinder when mea-
sured in the complex plane centered at the central point O. The index l runs over all cylinders’ centers underlying the periodic
array except the central one. Previous studies (Rayleigh, 1892) have reported that the sum S2 is conditionally convergent and
its value depends upon the shape of the exterior boundary of the array. A list of S2 for different values of a/b can be found in
Nicrovici and McPhedran (1996).

Eqs. (2.34) and (2.19)1 constitute an infinite set of linear algebraic equations. Upon appropriate truncations of the expan-
sion terms at a finite order M, we can determine the expansion coefficients AU

n ; BU
n , and CU

n .

3. Confocally multicoated elliptic cylinders

From the previous remark, we now consider that the inclusions are confocally multicoated elliptic cylinders with the out-
er elliptic radius að1Þp ; p ¼ 1;2; . . . ;N; where N is the number of inclusions. We denote the matrix as phase 0, with trans-
versely isotropic material parameters Cð0Þ44 ; eð0Þ15 ; qð0Þ15 ; jð0Þ11 ; lð0Þ11 and kð0Þ11 . The multicoated cylinder consists of a core, with
radius lp ¼ aðMÞp , surrounded by ðM� 1Þ layers of coating. The jth layer of the coatings occupies the annulus
V ðjÞp : aðjþ1Þ

p 6 lp 6 aðjÞp ; j ¼ 1;2; . . . ;M; in which Vp ¼ V ð1Þp [ V ð2Þp [ � � � [ V ðMÞp . Here the innermost core is solid so that we have
aðMþ1Þ

p ¼ 0. We assume that the material properties of jth constituent layer of the pth multicoated cylinder are Cðp;jÞ44 ; eðp;jÞ15 ;

qðp;jÞ15 ; jðp;jÞ11 ; lðp;jÞ11 and kðp;jÞ11 .
The admissible potentials in each constituent layer of the multicoated inclusion can be expressed as
Uðp;jÞ ¼
X1

n¼�1
AUðp;jÞ

n e�nxp þ
X1
n¼1

BUðp;jÞ
n e�nxp ; AUðp;jÞ

n ¼ AUðp;jÞ
�n ; ð3:1Þ
where AUðp;jÞ
n ¼ AUðp;jÞ

nR þ iAUðp;jÞ
nI and BUðp;jÞ

n ¼ BUðp;jÞ
nR þ iBUðp;jÞ

nI are unknown complex constants to be determined. Note that the po-
tential at l ? 0 should be finite and thus we can set
BUðp;MÞ
n ¼ 0: ð3:2Þ
We consider that the interfaces are perfectly bonded, the potential and the normal component of flux are continuous
across the interfaces,
ReU p;j�1ð Þ
���
lp¼aðjÞp

¼ ReUðp;jÞ
���
lp¼aðjÞp

;

RU

 � p;j�1ð Þ � nðjÞp

���
lp¼aðjÞp

¼ ðRUÞðp;jÞ � nðjÞp

���
lp¼aðjÞp

:
ð3:3Þ
These continuity conditions lead to
aðp;j�1Þ
nK

bðp;j�1Þ
nK

 !
¼ kðp;jÞnK

aðp;jÞnK

bðp;jÞnK

 !
; K ¼ R; I; j ¼ 1;2; . . . ;M; ð3:4Þ
where
aðp;jÞnK ¼
Awðp;jÞ

nK

Auðp;jÞ
nK

Awðp;jÞ
nK

0
BB@

1
CCA; bðp;jÞnK ¼

Bwðp;jÞ
nK

Buðp;jÞ
nK

Bwðp;jÞ
nK

0
BB@

1
CCA; ð3:5Þ

kðp;jÞnR �
2 cosh naðjÞp I e�naðjÞp I

�2 sinh naðjÞp Lðj�1Þ e�naðjÞp Lðj�1Þ

0
@

1
A
�1

2 cosh naðjÞp I e�naðjÞp I

�2 sinh naðjÞp LðjÞ e�naðjÞp LðjÞ

0
@

1
A;

kðp;jÞnI �
�2 sinh naðjÞp I e�naðjÞp I

2 cosh naðjÞp Lðj�1Þ e�naðjÞp Lðj�1Þ

0
@

1
A
�1

�2 sinh naðjÞp I e�naðjÞp I

2 cosh naðjÞp LðjÞ e�naðjÞp LðjÞ

0
@

1
A;

ð3:6Þ



568 H.-Y. Kuo / International Journal of Engineering Science 49 (2011) 561–575
and I is the 3 � 3 identity matrix. Now, repeated use of (3.4) gives
aðp;0ÞnK

bðp;0ÞnK

 !
¼ Kðj;nÞpK

aðp;jÞnK

bðp;jÞnK

 !
; j ¼ 1;2; . . . ;M; ð3:7Þ
where
Kðj;nÞpK � kðp;1ÞnK kðp;2ÞnK � � �k
ðp;jÞ
nK : ð3:8Þ
For j ¼M, we have
aðp;0ÞnK

bðp;0ÞnK

 !
¼ KðM;nÞ

pK

aðp;MÞnK

bðp;MÞnK

 !
: ð3:9Þ
Further, according to (3.2), (3.9), implies that
aðp;0ÞnK ¼ KðM;nÞ
pK

h i
11

KðM;nÞ
pK

h i�1

21
bðp;0ÞnK : ð3:10Þ
Here ½KðM;nÞ
pK �11 represents the upper-left (3 � 3) submatrix of KðM;nÞ

pK and ½KðM;nÞ
pK �21 is the lower-left (3 � 3) submatrix of KðM;nÞ

pK .
The formulation implies that the effect of the multiple coatings can be incorporated through a recurrence procedure and is
solely represented by a (6 � 6) array alone. We mention that once we construct the admissible field (3.1) and the transition
relation (3.4) in the inhomogneneous inclusions, we can follow the remaining generalized Rayleigh’s framework proposed in
previous section to determine the potential distribution.

4. Effective moduli

We are interested in the effective behavior for a situation where we have a large number of cylinders. The effective mate-
rial properties are defined in terms averaged fields,
hRji � L�j hZji; no summation; ð4:1Þ
where the angular brackets denote the area averages over the representative volume element (unit cell in the case of peri-
odic composites)
hRji ¼
1
V

Z
V

Rjdx; hZji ¼
1
V

Z
V

Zjdx; ð4:2Þ
and L�j denotes the effective magnetoelectroelastic parameters of the composite. Note that since the microstructure is non-
symmetric, the responses of the composite along x and y-axes are different:
L�x ¼
C�55 e�15 q�15

e�15 �j�11 �k�11

q�15 �k�11 �l�11

0
BB@

1
CCA; L�y ¼

C�44 e�24 q�24

e�24 �j�22 �k�22

q�24 �k�22 �l�22

0
BB@

1
CCA: ð4:3Þ
Let the composite be subjected to uniform intensities �ezx; �Ex; and �Hx along the positive x- axis. We can compute the
average Zx by noting that each component is a gradient and applying the divergence theorem. We obtain:
hZU
x i ¼ CU

R : ð4:4Þ
Next, to find hRU
x i, we again use the divergence theorem and the equilibrium condition (including the interface condi-

tions) to obtain
hRU
x i ¼

1
V

Z
V
RU

x dx ¼ 1
V

Z
V
r � ðxRUÞdx ¼ 1

V

Z
@V

xðRUÞm � nds; ð4:5Þ
where RU is defined in (2.18). We then use the expansions (2.16) for the fields to obtain
1
V

Z
@V

xðZUÞm � nds ¼ CU
R �

pdBU
1R

ab
; ð4:6Þ
where
Zw ¼ ðezx; ezyÞ; Zu ¼ �ðEx; EyÞ; Zw ¼ �ðHx;HyÞ: ð4:7Þ
Putting (4.5) and (4.6) together, and recalling the constitutive relation (2.2) for the matrix, we obtain



Table 1
Material parameters of BaTiO3, CoFe2O4 (Li & Dunn, 1998a), and Terfenol-D (Liu et al., 2003; Liu et al.,
2004).

Property BaTiO3 CoFe2O4 Terfenol-D

C44(N/m2) 43 � 109 45.3 � 109 13.6 � 109

e15(C/m2) 11.6 0 0
q15(N/Am) 0 550 108.3
j11(C2/Nm2) 11.2 � 10�9 0.08 � 10�9 0.05 � 10�9

l11(Ns2/C2) 5 � 10�6 590 � 10�6 5.4 � 10�6

k11(Ns/VC) 0 0 0

Fig. 3.
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a
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c

d
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f
Potential contours for a square array composite ðf ¼ 0:2; �ezx ¼ 0; Ex ¼ 0; Hx ¼ 1C=msÞ (a)–(c) BTO fibers embedded in a CFO matrix, (d)–(f) BTO
oated Terfenol-D embedded in a CFO matrix, (a), (d) Vertical displacement (m), (b), (e) Electric potential (V), (c), (f) Magnetic potential (C/s).
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CCCCA: ð4:8Þ
Putting together (4.1) and (4.8) and noting that the coefficients BU
1R depend linearly on the applied field CU

R ; we obtain set of
equations for the effective property L�x. We can determine this by applying different loading combinations between �ezx; Ex

and Hx. Similarly we can determine L�y by applying different loading combinations between �ezy; Ey and Hy.
a

b

c

d

e

f

Effective moduli of a composite of BTO fibers in a CFO matrix versus fiber volume fractions (a) effective elastic modulus, (b) effective dielectric
ivity, (c) effective magnetic permeability, (d) effective piezoelectric modulus, (e) effective piezomagnetic modulus, (f) effective magnetoelectric
ent.
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Fig. 5. Effective moduli of a composite of BTO fibers in a CFO matrix versus the aspect ratio and fiber volume fractions (a) effective elastic modulus, (b)
effective dielectric permittivity, (c) effective magnetic permeability, (d) effective piezoelectric modulus, (e) effective piezomagnetic modulus, (f) effective
magnetoelectric coefficient.
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Fig. 6. Effective moduli of a composite of BTO fibers coated Terfenol-D in a CFO matrix versus fiber volume fractions (a) effective elastic modulus, (b)
effective dielectric permittivity, (c) effective magnetic permeability, (d) effective piezoelectric modulus, (e) effective piezomagnetic modulus, (f) effective
magnetoelectric coefficient.
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5. Results and discussion

To have a better understanding for the theoretical results above, we perform a numerical computation for two- and three-
phase transversely isotropic piezoelectric–piezomagnetic composites with 6 mm material symmetry about the fiber axis. For
the piezoelectric material, we consider the widely used BaTiO3 (BTO). For the peizomagnetic material, we consider CoFe2O4

(CFO) as well as the Terfenol-D alloy (TD). The cylinders are arranged in a square array. The independent material constants
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of these constituents are given in Table 1, where the xy plane is isotropic and the fiber axis is along the z-direction. Note that
in all materials magnetoelectric coefficients are zero, i.e. k11 = 0.

We begin with a composite of BTO fibers in a CFO matrix. Fig. 3 (a–c) show the contours of displacement, electric potential
and magnetic potential with an applied magnetic field. The ratio of the semi-axes lx and ly is 1.2. The magnetic field induces a
mechanical stress in the CFO which in turn results in an electric displacement in the BTO fiber. The magnetic field is attracted
by the BTO since it has a smaller magnetic permeability. Further, Fig. 3 (d–f) show the potential contours for BTO fibers
coated TD in a CFO matrix with an applied magnetic field. The ratio of semi-axis lx between BTO and TD is 0.7. Since the mag-
netic permeability of TD is almost the same as that of BTO, the magnetic potential is similar to its homogeneous counterpart.
However, in this case the contours of vertical displacement and the electric potential have dramatically difference from those
with the homogeneous fiber. The fields in the fiber are now not uniform, and there are field concentrations at the BTO and TD
interfaces.

We now turn to effective moduli of the composite. Fig. 4 shows the effective elastic, dielectric, magnetic, piezoelectric,
piezomagnetic and magnetoelectric moduli for this composite. We assume that the inclusions are circular cylinders, i.e.,
lx ? ly, and the inclusions are in a square array. Therefore there is no distinction between L�x and L�y. The effective moduli vary
nonlinearly with volume fraction, and the curve stops at f ¼ p

4 when the inclusions touch. The magnetoelectric coefficient is
non-zero for every non-zero volume fraction, then reaches a maximum before dropping just as the fibers are close to touch-
ing. Further, Fig. 4 also compares the effective moduli with those predicted by Benveniste (1995) who used the composite
cylinder assemblage (CCA) model and by Camacho-Montes et al. (2009) who employed the asymptotic homogenization
method. In CCA, there is no upper limit on the volume fraction since one can have fibers with various sizes. Still, the overall
magnitudes and trends agree well among our periodic, Benveniste’s CCA, and Camacho-Montes et al.’s homogenization
method. In addition, our numerical results fulfil the compatibility conditions given in Eq. (21) of the work by Benveniste
(1995).

Fig. 5 shows how the effective properties L�x of the composite depend on the fibers’ aspect ratio lx/ly and volume fraction f.
The value of the aspect ratio begins at 4f

p and terminates at p
4f when the inclusions touch in y- and x-direction, respectively. It

is observed that, for a fixed volume fraction, the effective elastic modulus and magnetoelectric coefficient decrease when the
aspect ratio increases. While the effective dielectric permittivity, magnetic permeability, piezoelectric and piezomagnetic
moduli increase monotonously. Furthermore, for a fixed aspect ratio, the effective elastic modulus, dielectric permittivity,
piezoelectric, and magnetoelectric coefficients increase with increasing volume fraction, while the effective magnetic perme-
ability and piezomagetic coefficient decrease when f increases. Interestingly, the trends of the dielectric permittivity and pie-
zoelectric constant are similar, and those of the magneitc permeability and piezomagnetic coefficients are similar as well. In
Fig. 6, we show the effective moduli for the BTO fibers coated TD in a CFO matrix. The ratio of the radius of BTO and TD is 0.8.
We find that the magnetoelectric coefficient k�11 has dramatically enhanced, and the enhancement is increased as the parti-
cles touch.

We finally turn to the magnetoelectric voltage coefficient, which is the important figure of merit for magnetic field sen-
sors. It relates the overall electric field that is generated in the composite when it is subjected to a magnetic field. It combines
the coupling and dielectric coefficients, and is defined by
a�11 ¼
k�11

j�11
: ð5:1Þ
Fig. 7. Effective magnetoelectric voltage coefficient of the composite versus the fiber volume fraction.
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Fig. 7 shows how this coefficient depends on the fiber volume fraction for the above two- and three-phase circular cylinder
cases. Note that there is a qualitative difference between the case of BTO fibers in CFO and BTO fibers coated TD in the CFO
matrix. In the former, the maximum coefficient is for intermediate volume fraction of f = 0.35 where a�11 ¼ 0:0306 V=cmOe.
In contrast, in the case of BTO fibers coated TD in the CFO matrix, the maximum is attained as the fibers near close touching
at f = 0.725 where a�11 ¼ 0:5732 V=cmOe, which is one order of magnitude enhancement of the coupling coefficient.
6. Concluding remarks

In summary, we have extended Rayleigh’s formalism on periodic conductive composites to a magnetoelectroelastic
composite consisting of arbitrarily distributed or periodic arrays of elliptic cylinders under anti-plane shear deformation,
in-plane electric fields and in-plane magnetic intensities. The cylinders can be homogeneous or confocally multicoated.
Expressions for the elastic, electric and magnetic potentials for the cylinders and the matrix are derived, and used to compute
the effective moduli. This extension is a hybrid technique: the admissible potentials for the matrix and inclusions are ex-
panded in complex planes, while the interface conditions are directly satisfied by using elliptic coordinates. It is shown that
the effective properties solely depend on one particular constant BU

1R among the infinite number of expansion coefficients.
Finally, as a practical example, explicit numerical calculations for field distributions and the magnetoelectric effects in
BTO-CFO and BTO-TD-CFO composites are presented and discussed. This example shows the important difference between
the case of BTO fibers in a CFO matrix from the case of BTO fibers coated TD in a CFO matrix. We expect that these results will
be beneficial as design tools for functionally graded tunable composites.
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