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Abstract This paper describes a dynamic group-based dif-
ferential evolution (GDE) algorithm for global optimization
problems. The GDE algorithm provides a generalized evo-
lution process based on two mutation operations to enhance
search capability. Initially, all individuals in the population
are grouped into a superior group and an inferior group
based on their fitness values. The two groups perform differ-
ent mutation operations. The local mutation model is applied
to individuals with better fitness values, i.e., in the superior
group, to search for better solutions near the current best
position. The global mutation model is applied to the infe-
rior group, which is composed of individuals with lower fit-
ness values, to search for potential solutions. Subsequently,
the GDE algorithm employs crossover and selection oper-
ations to produce offspring for the next generation. In this
paper, an adaptive tuning strategy based on the well-known
1/5th rule is used to dynamically reassign the group size. It
is thus helpful to trade off between the exploration ability
and the exploitation ability. To validate the performance of
the GDE algorithm, 13 numerical benchmark functions are
tested. The simulation results indicate that the approach is
effective and efficient.
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1 Introduction

Evolutionary algorithms (EAs) have become a popular op-
timization tool for global optimization problems [1-7]. The
optimization processes the EAs usually adopt are stochastic
search techniques that work with a set of individuals (i.e.,
solutions) instead of just a single solution, using evolution
operators to naturally produce offspring for the next genera-
tion. Algorithms such as genetic algorithms (GAs) [8—13],
evolutionary programming (EP) [14], evolution strategies
(ESs) [15], particle swarm optimization (PSO) [9-11, 16—
20] and differential evolution (DE) [21-28] are well-known,
effectual and classical evolutionary methods.

Among EAs, differential evolution has interested re-
searchers [29-42] in recent years. The DE algorithm pro-
posed by Storn and Price [21, 22] is an efficient and effec-
tive global optimizer in the continuous search domain. It has
been shown to perform better than genetic algorithms or par-
ticle swarm optimization in several numerical benchmarks
[21, 22, 36, 43]. The DE algorithm employs the difference
between two randomly selected individuals as the source of
random variations for a third individual. It can be applied to
difficult optimization problems [21, 22]. However, the DE
algorithm may favor the exploitation ability or the explo-
ration ability [31, 32]. To address this problem, Rahnamayan
et al. [40] proposed a faster global search and optimization
algorithm, called the opposition-based differential evolution
(ODE). The ODE employed opposition-based learning to
choose better solutions by simultaneously checking the fit-
ness of the opposite solution in the current population. ODE
processes can increase the diversity of the population. In [30,
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41, 44], the researchers proposed a modified differential evo-
lution (MODE) for an adaptive neural fuzzy network and
a locally recurrent neuro-fuzzy system design. MODE pro-
vides a cluster-based mutation scheme to prevent the algo-
rithm from being trapped in local optima of the search space.
The concept of balancing the exploration and exploitation
abilities was proposed by Das et al. [31]. These authors de-
signed a novel mutation operator, the neighborhood-based
mutation operation, to handle the problem of stagnation. In
their study, they utilized a new mutation strategy with the
ring topology of the neighborhood to find potential indi-
viduals in the population. Noman and Iba [37] proposed an
adaptive crossover operation with local searching (XLS) to
increase the exploitation ability of the DE algorithm. The
adaptive XLS uses a simple hill-climbing algorithm to adap-
tively determine the search length for the crossover process.
These authors successfully trained the DE algorithm to ef-
fectively explore the neighborhood of each individual and
locate the global optimum at a minimum solution.

Unlike previous studies, this study develops a new pro-
cess without depending on other learning algorithms to solve
the imbalanced evolution problem. This process employs the
inherent properties of the DE algorithm. The process com-
bines two classical mutation strategies instead of a single
mutation model. The DE/rand/bin approach has a powerful
exploitation ability, and the DE/best/bin approach has an ef-
ficient exploration ability. The approach in this study com-
bines the two operations to achieve a balance between the
exploration ability and the exploitation ability.

In this study, a group-based DE (GDE) algorithm is
proposed for numerical optimization problems. The GDE
model is a new process based on two mutation operations.
Initially, all individuals in the population are grouped into a
superior group and an inferior group, based on their fitness
values. The superior group uses the DE/rand mutation oper-
ation to search potential solutions and maintain population
diversity. The inferior group employs the DE/best mutation
model to increase convergence. Subsequently, the crossover
and selection operations are employed for offspring produc-
tion. A self-adaptive strategy based on the 1/5th rule for au-
tomatically tuning group size is then applied in the proposed
process. Finally, the proposed GDE algorithm is applied to
13 well-known numerical benchmark functions, including
unimodal and multimodal function problems. The contribu-
tions of this study are summarized as follows:

(1) The proposed GDE algorithm employs the inherent
properties of the DE algorithm to solve the evolution
imbalance problem. The GDE algorithm combines two
mutation operations to balance the exploration ability
and the exploitation ability.

(2) A self-adaptive strategy based on the 1/5th rule is pro-
posed to automatically tune the group size without prior
user knowledge, improving the robustness of the algo-
rithm.
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(3) Thirteen well-known numerical benchmark functions
are used to validate the performance of the GDE algo-
rithm. In statistical tests, the GDE algorithm shows sig-
nificantly better performance than other EAs.

The rest of this paper is organized as follows. Section 2
describes the basic procedure of differential evolution. The
GDE flow chart and details of the adaptive group size control
strategy are presented in Sect. 3. Simulation results compar-
ing GDE with other evolutionary algorithms are presented
in Sect. 4. Concluding remarks are presented in Sect. 5.

2 Differential evolution

This section introduces a complete DE algorithm. The pro-
cess of the DE algorithm, like other evolutionary algorithms,
produces offspring of the next generation by mutation oper-
ations, crossover operations and selection operations. Fig-
ure 1 shows a standard flow chart of the DE algorithm.

Initially, a population of NP D-dimensional parameter
vectors, which represent the candidate solutions (individu-
als), is generated by a uniformly random process. All in-
dividuals and the search space are constrained by the pre-
scribed minimum Xpin = (X1, min, X2.mins - - - » XD, min) and
maximum Xmax = (X1, max, X2,max - - - » XD,max) parameter
bounds. A simple representation of the ith individual at the
current generation, Gen, is shown as follows:

Initialize
Population

5

Performance
Evaluation

)

Mutation
Operation

Gen=Gen+1 l

A

Crossover

Operation

'

Selection
Operation

Meeting
Termination

NO

Return Optimal
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Fig. 1 The flow chart of basic DE algorithm. Gen is the generation
counter
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Xi,Gen = (xi,l,Gen’ Xi,2,Gen» Xi,3,Gens + -+ »
Xi,D—1,Gen» Xi,D,Gen)- (D

After the first NP individuals are produced, the fitness eval-
uation process measures the quality of the individuals to cal-
culate the individual performance. The succeeding steps, in-
cluding mutation, crossover and selection, are described in
the following sections.

2.1 Mutation operation

Each individual in the current generation is allowed to breed
through mating with other randomly selected individuals
from the population. The process randomly selects a par-
ent pool of three individuals to produce an offspring. For
each individual X; g0, i = 1,2, ..., NP, where gen denotes
the current generation and NP is population size, three other
random individuals, X1 gen, X;2,gen and X3 gey, are selected
from the population such that r1,72 and r3 € {1, 2, ..., NP}
and i # r1 # r2 # r3. In this way, a parent pool of four in-
dividuals is formed to produce an offspring. The following
are different mutation strategies frequently used in the liter-
ature:

DE/rand/1:
DE/best/1:

Vi,gen = Xrl,gen + F(Xr2,gen - Xr3,gen) 2)

Vi,gen = ngest,gen

+ F(X1,gen — X2, gen) (3)
DE/target-to-best:
Vigen = Xr1,gen + F Xgbest,gen

— Xy 1,gen) + F(Xy2,gen — X13,gen) 4
DE/rand/2:  V; gen =X 1,gen + F (X2, gen — X3, gen)
+ F(Xr3,gen — Xrd,gen) (5)
DE/best/2: Vi gen = Xgbest,gen + F (Xr1,gen

- Xr2,gen) + F(Xr3,gen - Xr4,gen)
(6)

where F is the scaling factor € [0, 1] and Xgpesr, gen is the
best-so-far individual (i.e., Xgpesr, gen stores the best fitness
value in the population up to the current time). The DE al-
gorithm usually employs a different mutation strategy, de-
pending on the problem being solved. The “DE/rand/1”
and “DE/rand/2” mutations, with more exploration abil-
ity, are suitable for multimodal problems. The “DE/best/1”,
“DE/best/2” and “DE/target-to-best/1” mutations, which
consider the best information in the generation, are more
suitable for unimodal problems.

2.2 Crossover operation
After the mutation operation, the DE algorithm uses a

crossover operation, often referred to as discrete recombi-
nation, in which the mutated individual V; g, is mated with

X gen and generates the offspring U; 4e,. The elements of
an individual U; g, are inherited from X gop and V; gep,
which are determined by the parameter crossover probabil-
ity (CR € [0, 1]), as follows:

if rand(d) < CR 7
if rand(d) > CR )

whered = 1,2, ..., D denotes the dth element of individual
vectors, D is total number of elements of the individual vec-
tor and rand (d) € [0, 1] is the dth evaluation of a random
number generator.

Vi,d,gen’

Ui,d,gen - {Xi d,gen

2.3 Selection operation

The DE algorithm applies the selection operation to deter-
mine whether the individual survives to the next genera-
tion. A knockout competition occurs between each individ-
ual X; 4., and its offspring U; 4¢,,, and the winner, selected
deterministically based on objective function values, is then
promoted to the next generation. The selection operation is
described as follows:

e _ { if fitness(X gen) < fitness(U; gen)

i.gentl otherwise

Xi,geny

®)

Ui,gen s

where fitness(z) is the fitness value of individual z. After the
selection operation, the population gets better or retains the
same fitness value, but never deteriorates.

3 Group-based differential evolution

This section describes the GDE learning process. This learn-
ing process groups the population into a superior group and
an inferior group. The two groups perform different muta-
tion operations to produce offspring for the next generation.
An adaptive group size tuning strategy is also applied to find
a suitable group size.

3.1 GDE algorithm

In the DE algorithm, the mutation operation is a kernel oper-
ator that acts on all individuals to search potential solutions
and leads to successful evolution performance. For various
problems, different mutation strategies are often employed
in the DE algorithm. Choosing the correct mutation strategy
to model a practical problem is difficult, however. Therefore,
in this study, a GDE model is proposed with exploration and
exploitation abilities. The model combines the two muta-
tion strategies to enhance performance for solving practical
problems. A flow chart of the GDE algorithm is shown in
Fig. 2.

In the first step of the GDE, a population of NP D-
dimensional individuals is generated by a uniformly ran-
dom process, and the fitness value of all individuals is deter-
mined. A sorting process is used to arrange all individuals
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Fig. 2 The flow chart of GDE -
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based on increasing fitness, i.e., fitness| < fitness, < --- <
fitnessy p_; < fitnessy p for minimum objective problems.
According to the fitness values, we group all individuals into
an inferior group and a superior group, called Group A and
Group B. Group A, containing GS individuals with the low-
est fitness values, performs a global search to increase the
diversity in the population and widely seek potential solu-
tions. The other (NP — GS) individuals composing Group B
perform a local search to actively detect better solutions near
their current best position. A complete mutation operation
based on Group A and Group B is shown as follows:

Group A: Vi een =X gen + Fu(Xi1,gen — X2, 6en)>
i=1,2,....GS ©9)
Group BV gen = Xgpesr,gen + Fp (X3, gen — Xrd,gen),
j=12,...,(NP—GS) (10)

where F, and Fj, are scale factors; G S indicates group size;
X1, gen> Xr2,gen» Xr3,gen and X4 gep are random individuals
selected from the population; and i # 71 £ r2 and r3 # r4.
Next, crossover and selection operations are performed, as
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shown in Sect. 2 for the traditional DE process. All steps are
repeated until the process reaches the terminal condition.

3.2 Self-adaptive strategy based on the 1/5th rule

Parameter control, which can directly influence the conver-
gence speed and search capability, is an important task in the
evolutionary algorithm [39, 45]. Previously, the trial-and-
error method for choosing suitable parameters was used, re-
quiring multiple optimization runs. For this model, however,
a self-adaptive approach is proposed based on the 1/5th rule
for dynamic group size tuning. The 1/5th rule [46, 47] is a
well-known method for parameter tuning and is usually used
in evolution strategies for controlling the mutation strength.
The idea of the 1/5th rule is to balance local searching and
global searching based on the probability of success, P. If
P > 1/5, then the algorithm increases the global search ca-
pability; otherwise, if P > 1/5, the algorithm increases the
local search capability. If P = 1/5, the algorithm stays the
same. Based on this concept, a group size with similar char-
acteristics is adapted by the 1/5th rule to balance the ex-
ploration and exploitation abilities in GDE. A larger GS



Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems 45

Initialization: assign initial group size GS, adjustment
factor B € [0,1] and period G, as number of generation.

Algorithm:
1) Perform GDE algorithm.
2) Every G, generation,
o Calculate the number N of updating global best
solution in Group B.
o Determine an estimate of success probability P as

N
p=== 11
G, (n

o Change group size GS according to

round(GS /) if P>1/5
GS = round(GS - ) if P<1/5 (12)
GS if P=1/5

Fig.3 1/5th rule algorithm for group size tuning in the GDE algorithm

means that the GDE favors exploration to increase the pop-
ulation diversity. A smaller GS means that the GDE favors
exploitation to actively search for better solutions near the
current best position. Therefore, the 1/5th rule is an appro-
priate parameter tuning strategy for the GDE. The complete
self-adaptive parameter tuning strategy, based on the 1/5th
rule, is shown in Fig. 3. In this process, the probability of
success is calculated by counting the successful instances
updating the best solution. The group size is adjusted by an
adjustment factor 8. In (17), round(.) is to set the value to
the nearest integer.

When GS = NP, the mutation operation completely fa-
vors global information for evolving a better individual. In
this case, the GDE algorithm equals the traditional DE algo-
rithm with the DE/rand/1 mutation operation. At the other
extreme, when GS = 0, the GDE algorithm completely fa-
vors local information, which equals the traditional DE al-
gorithm with the DE/best/I mutation operation.

4 Simulation results

To verify the performance of the new algorithm, a set of
thirteen classical benchmark test functions [14, 48, 49] is
used for comparison. The analytical form of these functions
is given in Table 1, where D denotes the dimensionality of
the problem. Based on their properties, the functions can be
divided into unimodal functions and multimodal functions.
The functions f] through f4 are continuous unimodal func-
tions; f5 is a discontinuous step function; fg is a noisy quar-
tic function; f7 is the Rosenbrock function; which is a mul-
timodal function problem for D > 3 [48]; and fg through
f13 are multimodal functions, with number of local minima
increasing exponentially with the problem dimension [49].
In addition, f3 is the only boundary-constrained function in-
vestigated in this study. All these functions have an optimal
value at zero.

The GDE algorithm is compared with three classic DE al-
gorithms, DE/rand/1, DE/best/1, and DE/target-to-best. For
comparison, the parameters of the GDE algorithm are fixed
at F, =0.5, F, = 0.8, CR, = CR, = 0.9, initial group size
GS = NP/2, adjustment factor 8 = 0.9 and Gp = 20 in all
simulations. The parameter settings for the three classic DE
algorithms are recommended and used as follows:

DE/rand/1: F =0.5and CR=0.9 [22, 35, 50]

DE/best/1: F =0.8 and CR=0.9 [31]

DE/target-to-best/1: F =0.8 and CR = 0.9 [33].

Many authors report success with these parameter set-
tings. In all simulations, the population size, NP, is set to
100 and 300 in the cases of D = 10, and D = 30, respec-
tively. The maximum number of function evaluations (FEs)
is set to 100,000 when solving 10-D problems, and 300,000
when solving 30-D problems. All results are based on 50
independent runs. Section 4.3 demonstrates the significant
difference between the methods based on a statistical com-
parison process. An additional simulation based on a two-
difference vector is discussed in Sect. 4.4.

4.1 Results for the 10-D numerical function problem

In this simulation, the GDE, DE/rand/1, DE/best/1 and
DE/target-to-best/1 algorithms are applied to 10-dimensional
problems on 13 benchmark test functions. Table 2 shows
the detailed performance of the GDE, DE/rand/1, DE/best/1
and DE/target-to-best/1 algorithms, including the mean and
STD performance for 50 independent runs. From this ta-
ble, the proposed GDE achieves better performance than
the other algorithms and obtains the best results for nine
of the thirteen functions. When comparing only the three
traditional DE algorithms, the DE/target-to-best/bin algo-
rithm often performs better than either the DE/rand/bin or
the DE/best/1 algorithm for the benchmark test functions.
The DE/best/1 algorithm shows different behavior from the
other three traditional DE algorithms when applied to f;.
The learning curves of the GDE, DE/rand/1, DE/best/1 and
DE/target-to-best/1 algorithms for all 13 test functions for
low dimensional (D = 10) problems are shown in Fig. 4.
Based on the results, GDE converges faster than the other
algorithms for all 13 benchmark test functions.

4.2 Results for the 30-D numerical function problem

To verify the capability of the algorithm on 30-dimensional
problems, the GDE, DE/rand/1, DE/best/1 and DE/target-
to-best/1 algorithms are applied to the 13 benchmark test
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Table 1 Benchmark functions. D is the dimensional of the function

Group Test functions Search range D Optimal value
o 2 D 10 0
Unimodal fi= __Zl(xi) [—100, 100] and
> D 30
fo= 2" Ixil+ IT Il [—10, 1017
i=1 i=1
D i 2
=2 x [—100, 100]°
i=1\j=1
fa = max |x;]| [—100, 100]?
1
D
f5 =Y (xi +0.5) [—100, 100]”
i=1
lD
fo= Y ix}+rand(0, 1) [—1.28,1.28]P
i=1
D
Multimodal 1= [100(xi41 — x?) + (x; — D?] [—30,301°
i=1
D
fo=Y —x;sin/[x;] + D - 418.98288727243369 [—500, 50017
i=l
D
fo=3[xi — 10cos(2mx;) + 10] [—5.12,5.12]P
i=l1
D
fio=—20exp( 0.2 [ 5 > x? [—32,32]°
i=1
D
—exp % > cosRux;i) | +20+e
i=1
L2, 2 5
it = qo05 22— 11 cos(j—;i) +1 [—600, 60017
i=1 i=1
o D—1
fia= Di 10sin*Gryn) + Y (i — D*[1 4+ 10sin*(ryig1)]  [-50,501”
i=1
D
+(p — 1)2} + ) u(xi, 10,100, 4)
i=1
where
1
yi=1+ Z(xi + 1) and u(x;, a, k, m)
k(x; —a)™, ifx; >a
= {k(—x,- —a)", ifxi<—a
0, otherwise
1 D—1
fs=15 {sin2(3nx1) + > 0 = DP[1 +sin*Grrxi)] [—50, 501°

i=1
+(p — D1+ sinz(ZnXD)]}

D
+> ux;, 10,100, 4)

i=1

where
k(x; —a)™, ifx; >a
u(xj,a,k,m)=1k(—x; —a)", ifx;<-—a
0, otherwise

@ Springer



Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems 47

Table 2 Experimental results of the GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin algorithms for 10 dimensional problems, averaged

over 50 independent runs

Function Max.FEs GDE DE/rand/1 DE/best/1 DE/target-to-best/1
g
Mean (STD)
f 100,000 4.821e-46 1.382¢-36 1.602¢e-39 2.954e-41
(1.137e-45) (1.193e-36) (1.392¢-39) (2.694¢-41)
b 100,000 2.875e-21 7.475e-19 4.291e-20 9.352e-21
(4.999¢-21) (3.587e-19) (3.637e-20) (3.646e-21)
f 100,000 1.338e-24 1.168e-20 1.084e-22 4.685e-24
(2.777e-24) (9.579¢-21) (1.351e-22) (3.772e-24)
fa 100,000 1.042¢-14 3.048e-13 2.683e-14 3.943e-15
(2.914e-14) (2.354e-13) (2.802e-14) (1.695e-15)
fs 100,000 1.325e-15 2.325e-12 2.278e-21 5.986e-22
(3.371e-15) (3.350e-12) (3.287e-21) (1.260e-22)
fe 100,000 0.000e+00 0.000e+00 0.000e+00 0.000e+00
(0.000e+00) (0.000e+00) (0.000e+00) (0.000e+00)
fi 100,000 1.329¢-03 1.78e-03 2.011e-03 1.694e-03
(6.047e-04) (6.776e-04) (8.390e-04) (7.761e-04)
I3 100,000 2.787e+02 2.460e+02 6.664e+02 5.012e+02
(1.871e+02) (3.611e+02) (3.734e+02) (1.347e+02)
fo 100,000 5.597e+00 1.882e+01 6.467e+00 2.192e+01
(1.570e+00) (3.235e+00) (1.641e+00) (3.391e+00)
fio 100,000 7.993e-15 4.440e-15 5.151e-15 4.440e-15
(2.901e-15) (0.000e+00) (1.497e-15) (0.000e+00)
S 100,000 8.883e-02 1.819e-02 1.219¢-02 3.127e-02
(4.691e-02) (9.154e-02) (1.021e-01) (8.615e-02)
fi2 100,000 4.7116e-32 4.7116e-32 4.711e-32 4.711e-32
(1.153e-47) (1.153e-47) (1.153e-47) (1.153e-47)
f13 100,000 1.349¢-32 1.349¢-32 1.349¢-32 1.349¢-32
(2.884e-48) (2.884e-48) (2.884e-48) (2.884e-48)
Average Rank 9/13 4/13 4/13 6/13

functions. Table 3 shows the detailed performance of the
GDE, DE/rand/bin, DE/best/bin and DE/target-to-best/bin
algorithms, including the means and STD performance for
50 independent runs. As shown in the table, the GDE al-
gorithm performs better than the other algorithms on the
13 benchmark test functions. In 30-dimensional problems,
the traditional DE algorithms have problems obtaining bet-
ter solutions. The GDE algorithm results in the best solution
for thirteen out of thirteen functions. Comparing only the
three traditional DE algorithms, the DE/target-to-best/1 al-
gorithm shows very different behavior when applied to f4
and f12. The DE/target-to-best/1 algorithm performs bet-
ter overall from among the three traditional DE algorithms.
The learning curves of the GDE, DE/rand/1, DE/best/1 and
DE/target-to-best/1 algorithms for the 13 test functions ap-
plied to the 30-dimensional problems are shown in Fig. 5.
This figure shows that GDE converges faster than the other

algorithms on both unimodal and multimodal function prob-
lems.

4.3 Statistical comparison using the Wilcoxon signed ranks
test

To understand the significant difference between the GDE
and the traditional DE algorithms applied to multiple test
functions, a statistical procedure based on the Wilcoxon
signed ranks test [51, 52] is performed. This test, a non-
parametric alternative to the paired t-test, ranks the differ-
ences in performance of two models for each data set, ignor-
ing the signs, and then compares the ranks for the positive
and the negative differences. In this study, the GDE is cho-
sen as the control algorithm to compare with the traditional
DE algorithms. The performance of an algorithm differs sig-
nificantly if the corresponding statistic z differs by at least
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Fig. 4 The best learning curve of the GDE, DE/rand/1, DE/best/1 and
DE/target-to-best/1 algorithms on 13 test function for 10 dimensional
problems. (a) Function 1: fi; (b) Function 2: f; (¢) Function 3: f3;

the critical value, —1.96. The statistic z is calculated as fol-
lows:
Min(R+, R—) — IN(N + 1)
Z == 9
LNV +DEN + 1)

(1D

where N is the number of test functions, R+ is the sum of
ranks for the data sets on which the second algorithm outper-
formed the first, and R— is the sum of ranks for the opposite
case.

Statistical comparisons are performed for both 10- and
30-dimensional problems and N = 26. Table 4 presents
a complete set of results for the Wilcoxon signed ranks
test. The statistic z = —2.73, —3.50 and —2.82 for GDE
versus DE/rand/1, GDE versus DE/best/1 and GDE versus
DE/target-to-best/1, respectively. For all cases, the statistic

@ Springer

(d) Function 4: f4; (e) Function 5: f5; (f) Function 6: fg; (g) Func-
tion 7: f7; (h) Function 8: fg; (i) Function 9: fo; (j) Function 10: fjo;
(k) Function 11: fi1; (1) Function 12: fj2; (m) Function 13: f}3

z is smaller than the critical value, which means that the
GDE is significantly better than DE/rand/1, DE/best/1 and
DE/target-to-best/1 in this simulation.

4.4 Comparison with other algorithms

Further results regarding the comparison of the GDE algo-
rithm with other evolutionary algorithms is presented in this
section. These algorithms include CEP [53], ALEP [54],
BestLevy [54], NSDE [55] and RTEP [53]. Table 5 shows
the comparative results with respect to 30-dimensional prob-
lems. The GDE algorithm showed the best results for five of
eight functions, i.e., Function 1, Function 3, Function 10,
Function 12 and Function 13. The overall results show that
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Fig. 4 (Continued)

the GDE algorithm is a more effective algorithm than other
competitive algorithms.

5 Conclusions

This study has proposed a group-based DE algorithm for
numerical optimization problems. The GDE algorithm per-
forms two mutation operations based on different groupings
to effectively search for the optimal solution. This algorithm,
which has both exploitation and exploration abilities, is a
generalized DE model. In addition, an adaptive parameter
tuning strategy based on the 1/5th rule is used to dynami-
cally adjust the group size. The simulation results demon-
strate that the GDE method performs better than other EAs
for optimization problems.

Two advanced topics on the proposed GDE should be ad-
dressed in future research. First, the GDE may adopt other
further learning methods to improve performance. For ex-
ample, Norouzzadeh [17] used a fuzzy logic to enhance
performance in PSO. This method increases the possibili-
ties when searching potential solutions. Additionally, future
simulations will include applying the GDE to neuro-fuzzy
system optimizations.
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Table 3 Experimental results of the GDE, DE/rand/1, DE/best/1 and DE/target-to-best/1 algorithms for 30 dimensional problems, averaged over
50 independent runs

Function Max.FEs GDE DE/rand/1 DE/best/1 DE/target-to-best/1
Mean (STD)

f 300,000 6.074e-24 1.355e-03 4.968e-04 1.096e-04
(8.536e-24) (5.304e-04) (3.323e-04) (4.7257e-05)

f 300,000 1.759e-07 2.130e-01 2.882e-02 2.040e-02
(4.185e-07) (7.311e-02) (7.528e-03) (8.340e-03)

f3 300,000 1.746e-02 1.314e+03 4.742e+02 2.692e+02
(2.105e-02) (3.752e+02) (1.814e+02) (7.346+01)

f4 300,000 3.256e-01 2.813e+00 1.000e+00 8.337e-01
(2.675e-01) (3.646e+01) (3.224e-01) (1.919¢-01)

fs 300,000 5.217e+00 2.722e+01 3.384e+01 2.856e+01
(5.189¢+00) (6.322e-01) (2.827e+01) (2.035e+01)

fe 300,000 1.557e-23 1.363e-03 6.735e-04 1.032e-04
(2.651e-23) (3.836e-04) (3.156e-04) (3.624e-05)

f 300,000 1.899¢-02 2.483e-02 2.759e-02 2.029e-02
(6.103e-03) (6.148e-03) (6.852e-03) (5.103e-03)

I3 300,000 2.897e+03 7.000e+03 3.097e+03 4.377e+03
(8.860e+02) (2.866e+02) (7.152e+02) (1.338e+03)

fo 300,000 4.745e+01 1.964e+02 1.106e+02 2.019e+02
(1.201e+01) (7.629e+01) (1.898e+01) (6.946e+00)

fio 300,000 2.129e-10 1.796e-02 8.160e-03 3.603e-03
(1.127e-10) (3.406e-03) (2.819e-03) (9.845e-04)

fu 300,000 8.127¢-03 7.260e-03 5.785e-03 4.030e-03
(9.785e-03) (2.931e-03) (5.361e-03) (3.991e-03)

fiz 300,000 6.133e-21 5.678e-04 1.191e-04 3.317e-05
(7.051e-22) (2.638e-04) (7.364e-05) (3.053e-05)

f13 300,000 5.541e-23 2.508e-03 1.401e-03 1.024e-04
(9.190e-23) (9.607e-04) (3.463e-03) (7.882¢-05)

Average Rank 13/13 0/13 0/13 0/13

Table 4 Result of Wilcoxon signed ranks test for numerical function problems

Algorithm Min(R+, R—) z Critical value Final result

—1.96 . .

DE/rand/1 48 —2.73 Rejected the hypothesis

DE/best/1 43 —3.50 Rejected the hypothesis

DE/target-to-best/1 52 —2.82 Rejected the hypothesis

Table 5 Comparison with other evolutionary algorithms (D = 30), including GDE, CEP [53], ALEP [54], BestLevy [54], NSDE [55] and RTEP

[53]
Function GDE CEP [53] ALEP [54] BestLevy [54] NSDE [55] RTEP [53]
Mean

N 6.07e-24 9.10e-04 6.32e-04 6.59¢-04 7.10e-17 7.50e-18
f3 1.74e-17 2.10e+02 4.18e-02 3.06e+4-01 7.90e-16 2.40e-15
fq 1.89¢-02 8.60e+01 4.34e+01 5.77e+01 5.90e-28 1.10e+00
fo 4.74e+4-01 4.34e+01 5.85e+00 1.30e+01 - 2.50e-14
f10 1.62¢-10 1.50e+00 1.90e-02 3.10e-02 1.69e-09 2.00e-10
f11 8.12¢-03 8.70e-00 2.4e-02 1.80e-02 5.80e-16 2.70e-25
f12 6.13e-21 4.80e-01 6.00e-06 3.00e-05 5.40e-16 3.20e-13
f13 5.54e-23 8.90e-02 9.80e-05 2.60e-04 6.40e-17 7.10e-08
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Fig. 5 The best learning curve of the GDE, DE/rand/1, DE/best/1 and (d) Function 4: fy; (e) Function 5: f5; (f) Function 6: fg; (g) Func-
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