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a b s t r a c t

In this paper, we study the parallel complexity of analytic functions. We investigate the
complexity of computing the derivatives, integrals, and zeros of NC or logarithmic-space
computable analytic functions, where NC denotes the complexity class of sets acceptable
by polynomial-size, polylogarithmic-depth, uniform Boolean circuits. It is shown that
the derivatives and integrals of NC (or logarithmic-space) computable analytic functions
remain NC (or, respectively, logarithmic-space) computable. We also study the problem of
finding all zeros of an NC computable analytic function inside an NC computable Jordan
curve, and show that, under a uniformity condition on the function values on the Jordan
curve, all zeros can be found in NC .

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We are interested in the parallel-time complexity of analytic functions defined on the real lineR or the complex planeC,
under the Turing machine-based model of computation. The general computational complexity theory of real-valued func-
tions in this computationalmodel has been established by Ko and Friedman [17], who introduced the concept of polynomial-
time computable real functions and studied the computational complexity of numerical operations on polynomial-time
computable real functions (see also Ko [16]). Hoover [14,15] extended this theory to the study of the parallel-time complex-
ity of real functions. He introduced the notion of NC computable real functions as the mathematical equivalence of the class
of real functions that are efficiently solvable by parallel machines, where NC denotes the complexity class of sets acceptable
by polynomial-size, polylogarithmic-depth, uniform Boolean circuits.

While polynomial-time computable real functions are considered feasibly computable functions, numerical operations,
such as differentiation and integration, on these functions are often infeasible. On the other hand, these numerical operations
become feasible when they are applied only to polynomial-time computable analytic functions. More precisely, Ko and
Friedman [18] and Müller [22] showed that, for a polynomial-time computable analytic function, its derivative, integral,
and zeros are all polynomial-time computable. In this paper, we extend this study to the class of NC computable analytic
functions and investigate the parallel complexity of the derivatives, integrals, and zeros of these functions.

It is known, in the study of polynomial-time computable analytic functions, that, for a polynomial-time computable
function f that is analytic in a neighborhood containing the origin 0, the sequence {f (n)(0)/n!} is polynomial-time uniformly
computable (see Ko [16]). We extend this result to NC and logarithmic-space computable analytic functions; namely, we
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show that if f is an NC or logarithmic-space computable analytic function defined on a neighborhood containing the origin
0, then the sequence {f (n)(0)/n!} of derivatives is NC or logarithmic-space uniformly computable, respectively.

An immediate consequence of the above result is that the integral

f (t)dt of an NC or logarithmic-space computable

analytic function is also NC or logarithmic-space computable, respectively. In addition, we can also apply this result to show
that the zeros of NC computable analytic functions are also NC computable. We consider the problem of finding all zeros
of an analytic function inside a Jordan curve (see, e.g., Henrici [13]). This problem has been attempted by various methods,
including methods based on bisection algorithms (see, e.g., Yakoubsohn [26] and Meylan et al. [21]), simultaneous iterative
methods based on Newton’s method (see, e.g., Petkovic et al. [24,25]), and the quadrature methods based on numerical
integration (see, e.g., Kravanja et al. [20] and Delves et al. [10]). We show, in this paper, that the quadrature method can
be parallelized so that the zeros of an NC computable analytic function inside an NC computable Jordan curve Γ are all NC
computable if (i) f is analytic on a simply connected domain that covers Γ , and (ii) there is an absolute constant c > 0 such
that |f (z)| > c for all z on or near Γ .

The computationalmodels used in this paper include the oracle Turingmachinemodel of Ko [16] and the Boolean circuit
model of Hoover [14]. We give, in Section 2, the definitions and basic properties of these computational models. The results
about NC computability of the derivatives and integrals of NC computable analytic functions are presented in Section 3. The
NC computability of zeros of NC computable analytic functions is studied in Section 4.

2. Preliminaries

This paper involves notions used in both discrete computation and continuous computation. The basic computational
objects in discrete computation are integers and binary strings. Wewrite ℓ(w) to denote the length of a binary stringw, and
reserve the notation |x| to denote the absolute value of a real number x. We write ⟨s, t⟩ to denote the pairing function on
two strings (or integers), and write ∥S∥ to denote the number of elements in a (finite) set S.

The basic computational objects in continuous computation are dyadic rationals in D = {m/2n
: m ∈ Z, n ∈ N}. For a

fixed integer n ∈ N, we write Dn = {m/2n
: m ∈ Z}. Each dyadic rational d has infinitely many binary representations, each

with a different number of trailing zeros. For each such representation s, we write ℓ(s) to denote its length. If the specific
representation of a dyadic rational d is understood (often the shortest binary representation), then we write ℓ(d) to denote
the length of this representation. We also use dyadic complex numbers d = dx + idy whose real and imaginary parts dx and
dy are both dyadic rationals, and we define the length of d as ℓ(d) = max(ℓ(dx), ℓ(dy)).

For a subset S of C, we write ∂S to denote its boundary. For a point z ∈ C and a set S ⊆ C, we let δ(z, S) be the distance
between z and S, i.e., δ(z, S) = inf{|z − z′

| : z′
∈ S}.

The main complexity classes that are used in this paper include the circuit complexity class NC and the following
complexity classes defined by Turing machine complexity (see, e.g., Du and Ko [11]).

P: the class of sets accepted by deterministic polynomial-time Turing machines.
NP: the class of sets accepted by nondeterministic polynomial-time Turing machines.

L the class of sets accepted by deterministic logarithmic-space Turing machines.
NL: the class of sets accepted by nondeterministic logarithmic-space Turing machines.
#P: the class of functions that count the number of accepting paths of nondeterministic polynomial-time machines.
#L: the class of functions that count the number of accepting paths of nondeterministic logarithmic-space machines.1

For each i ≥ 0, the complexity class NC i consists of languages A ⊆ {0, 1}∗ for which there exists a family {Cn} of Boolean
circuits with the following properties (see, e.g., Du and Ko [11]).

(a) There exists a Turing machineM that constructs (the encoding of) each Cn in space O(log n).
(b) For all n > 0, Cn has n input nodes and accepts An = A ∩ {0, 1}n.
(c) There exist a polynomial function p and a constant k > 0, such that, for all n > 0, size(Cn) ≤ p(n) and depth(Cn) ≤

k logi n.

We call {Cn} an NC i circuit family. We let NC be the union of NC i for all i ≥ 0.
For each deterministic complexity class of languages, we add the prefix F to denote the corresponding class of functions;

for example, FP is the class of polynomial-time computable functions (mapping strings to strings).
The inclusive relations among these complexity classes are

NC1
⊆ L ⊆ NL ⊆ NC2

⊆ NC ⊆ P ⊆ NP

and

#L ⊆ FNC2
⊆ FP ⊆ #P.

Whether any of these inclusions is proper is unknown. The reader is referred to Du and Ko [11] for general properties of
these complexity classes and to Alvarez and Jenner [1] for the properties of #L.

1 We assume that there is a polynomial-time clock attached to such machines, for otherwise there can be infinitely many accepting paths.
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A continuous object such as a real number or a real function contains an infinite amount of information, and we need
to use discrete functions to represent it. We say that a function φ : N→D binary converges to (or represents) a real number
x if (i) for all n ≥ 0, φ(n) ∈ Dn, and (ii) for all n ≥ 0, |φ(n) − x| ≤ 2−n. We call such a function φ a Cauchy function of
x. For a complex number z = x + iy, where x, y ∈ R, we use two functions φx, φy : N→D that binary converge to x and
y, respectively, to represent it. Suppose that C is a complexity class such as L, NC , or P . We say that a real number x is a C
computable number if there exists a Cauchy function φ for x such that φ is C computable.

Our basic computational model for computing a real function is the oracle Turing machine (see Ko [16]). Intuitively, to
compute a function f : [0, 1]→R, a Cauchy function φ for the input real number x is given in the form of an oracle function,
and the oracle machine asks the oracle function φ for some values φ(n) as the approximation to input x and outputs an
approximate value to the real number f (x). In other words, the oracle machine maps a Cauchy function for x to a Cauchy
function for y = f (x). Since the oracle machine must halt in a finite number of steps, it cannot determine the exact value
of x and, hence, it only produces approximate values for the real number y. Therefore, a function f computable by such an
oracle machine must be continuous, and its complexity depends on its modulus of continuity. In the following, we say that
m : N→N is a modulus of continuity of f if, for n ∈ N and x, y ∈ [0, 1],

|x − y| ≤ 2−m(n)
⇒ |f (x)− f (y)| ≤ 2−n.

With this notion of modulus of continuity, we can define computable real functions without dealing with the oracle Turing
machines.
Definition 2.1. A real function f : [0, 1]→R is computable if
(a) f has a computable modulus of continuity, and
(b) there exists a computable function ψ : (D ∩ [0, 1]) × N→D such that, for all d ∈ D ∩ [0, 1] and all n ∈ N, |ψ(d, n)

− f (d)| ≤ 2−n.
Definition 2.2. A real function f : [0, 1]→R is polynomial-time computable if
(a) f has a polynomial modulus of continuity, and
(b) there exists a functionψ : (D ∩ [0, 1])× N→D such that (i) for all d ∈ D ∩ [0, 1] and all n ∈ N, |ψ(d, n)− f (d)| ≤ 2−n,

and (ii) ψ is polynomial-time computable, where the complexity is measured in terms of ℓ(d) + n (i.e., there exist
a polynomial p and a Turing machine M such that on input d ∈ D ∩ [0, 1] and n ∈ N, M outputs ψ(d, n) in time
p(ℓ(d)+ n)).
We call the integer n in ψ(d, n) in the above definition the (output) precision parameter for f . We use n instead of log n

for the complexity measure in Definition 2.2, since we actually require the error to be within 2−n instead of within n−1.
The notion of polynomial-time computable real functions can be extended to NC computable real functions as follows.

Definition 2.3. Suppose that i ≥ 0. A function f : [0, 1]→R is said to be NC i computable if
(a) f has a polynomial modulus of continuity, and
(b) there exists an NC i circuit family {Cn} with the following properties:

(i) the circuit C⟨n,m⟩ has m input gates and n output gates; and
(ii) for any integers m, n > 0 and any d ∈ Dm ∩ [0, 1], C⟨n,m⟩ outputs, on input d, a dyadic rational number e such that

|e − f (d)| ≤ 2−n.
We say that a real function f is NC computable if it is NC i computable for some i ≥ 0.
The above definitions are certainly extendible to functions from [0, 1] or [0, 1]2 to R or C, and to other complexity

classes. We omit the precise definitions. Suppose that C is a complexity class such as P , L, or NC . We write CR to denote the
class of all C computable real numbers, and CC[0,1] to denote the class of all C computable real functions defined on [0, 1].
Relationships among complexity classes of real functions are closely related to those among complexity classes of discrete
languages. For instance, Hoover [15] proved that NCC[0,1] = PC[0,1] if and only if NC = P .

Let S ⊆ C be a bounded domain, that is, a bounded, nonempty, open and connected subset of C. Note that the notions
of computability and complexity of a function defined on a compact set cannot be extended directly to that of a function
defined on an open set. For example, consider f (x) = 1/x on the open set (0, 1): f (x) does not have a modulus function,
because limx→0 f (x) = ∞, so f (x) is not computable by Definition 2.1. In other words, when a point z ∈ S gets closer to the
boundary ∂S of S, it may require more resources (time, space, etc.) to approximate f (z) to a predetermined precision 2−n.
Our remedy is tomodify the precision parameter; that is, if n is the precision parameter and δ(z, ∂S) ≥ 2−k for some integer
k ≥ 0, we use n+ k, instead of n, as the complexity measure. Similar treatments have been used by Chou and Ko [8] and Ko
and Yu [19]. The following definition is the NC version of this approach.
Definition 2.4. Let S ⊆ C be a bounded domain, and ∂S its boundary. Suppose that i ≥ 0. A complex function f : S→C is
NC i computable if the following conditions hold.
(a) f has a polynomial modulus. More precisely, there exists a polynomial function p : N→N such that, for allm, n ∈ N and

all z1, z2 ∈ S, if δ(zi, ∂S) ≥ 2−m for both i = 1, 2, and |z1 − z2| ≤ 2−p(m+n), then |f (z1)− f (z2)| ≤ 2−n.
(b) There exists an NC i circuit family {Cn} with the following properties:

(i) the circuit C⟨n,m,k⟩ has 2m input gates and 2n output gates; and
(ii) for any integers n,m, k > 0 and a dyadic point d ∈ S ∩ D2

m, C⟨n,m,k⟩ outputs, on input d ∈ S, a dyadic point e such
that |e − f (d)| ≤ 2−n, provided that δ(d, ∂S) ≥ 2−k.
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3. Derivatives and integration of NC analytic functions

It is known that the computation of derivatives and integrals for polynomial-time computable real functions is, in gen-
eral, infeasible, but it becomes feasible if we restrict our attention to polynomial-time computable analytic functions (see
Ko [16]). We will prove similar results for NC computable real functions.

We first extend the infeasibility results about derivatives of polynomial-time computable real functions to NC com-
putable real functions. The proofs of Theorems 3.1–3.3 below are similar to those for polynomial-time computable functions
in Ko [16]. We omit them here.

The first result is that an NC computable real function is not necessarily differentiable.

Theorem 3.1. There exists an NC1 computable function f : [0, 1]→R that is nowhere differentiable.

When the derivatives exist, their complexity is determined by their moduli of continuity. In the worst case, the deriva-
tives may exist but could be incomputable in a dense set of [0, 1]. In the following, Ck

[0, 1] denotes the set of functions f :

[0, 1]→R that have continuous kth derivatives f (k), and C∞
[0, 1] denotes the set of infinitely differentiable functions

f : [0, 1]→R.

Theorem 3.2. Let f : [0, 1]→R be an NC computable function.
(a) Suppose that f has a continuous derivative on [0, 1]. Then, f ′ is NC computable on [0, 1] if and only if f ′ has a polynomial

modulus of continuity on [0, 1].
(b) If f ∈ Ck

[0, 1] for some k > 0, then f (i) is NC computable for i < k.
(c) If f ∈ C∞

[0, 1], then f (i) is NC computable for all i > 0.

Theorem 3.3. There exists an NC computable function f : [0, 1]→R whose derivative f ′ exists everywhere in [0, 1] but f ′(d) is
not a computable real number for all d ∈ D ∩ [0, 1].

Next, we consider the complexity of integration. As integration is in some sense a summation, it is not surprising that it
is related to counting classes. Friedman [12] showed that the complexity of the integral of a polynomial-time computable
real function can be characterized by the counting class #P . In the following, we show that this result can be extended to
NC computable real functions.

Theorem 3.4. Let C be one of the complexity classes L, NC, or P and FC be the corresponding class of functions. The following are
equivalent:

(a) Let f : [0, 1]→R be a C computable function. Then, h(x) =
 x
0 f (t)dt is a C computable function.

(b) Let f : [0, 1]→R be a C computable function in C∞
[0, 1]. Then, h(x) =

 x
0 f (t)dt is a C computable function.

(c) FC = #P.

Proof (Sketch). For each C of complexity classes L, NC , and P , we define two complexity classes: ∃C and#C. The class ∃C
consists of languages A for which there exist a language B ∈ C and a polynomial function p such that, for allw ∈ {0, 1}∗,

w ∈ A ⇔ (∃v ∈ {0, 1}p(ℓ(w)))⟨w, v⟩ ∈ B.

The class#C consists of functions g for which there exist a language B ∈ C and a polynomial function p such that, for all
w ∈ {0, 1}∗,

g(w) = ∥{u : ℓ(u) = p(ℓ(w)) and ⟨w, u⟩ ∈ B}∥.

It is obvious that ∃P = NP and #P = #P (see, e.g., Du and Ko [11]). However, we do not know whether ∃L = NL or#L = #L. In fact, it is not hard to prove that ∃L = ∃NC = NP and #L = #NC = #P . For instance, since the evaluation
of a 3-CNF (conjunctive normal form) Boolean formula is in NC1, the famous NP-complete problem Sat is in ∃L, and the
associated counting problem #Sat is in#L. From this relation, it is most likely that#L ≠ #L (recall that #L ⊆ FNC2

⊆ FP).
Now, a proof similar to that of Theorem 5.33 in Ko [16] establishes that (a) ⇔ (b) ⇔ FC = #C, and the theorem

follows from the fact that#L = #NC = #P . �

In part (c) of Theorem 3.2, we showed that, for a given NC computable function f ∈ C∞
[0, 1], each derivative f (n) is NC

computable. However, the sequence {f (n)} is not necessarily NC uniformly computable (see Bläser [3]). For integration,
Theorem 3.4 shows that it has higher complexity #P than FNC , under the assumption that #P ≠ FNC . In the following,
we show that, for NC computable analytic functions, the sequence {f (n)} of derivatives must be uniformly NC computable,
and the integral


f must be in FNC .We consider complex analytic functions instead of real analytic functions, but the results

also hold for the real analytic case.
Let S be a domain. A function f : S→C is called an analytic function if, for every point z ∈ S, f ′(z) exists, or, equivalently,

if, for every point z ∈ S, there is a power series that converges to f at a neighborhood of z. It is obvious that, if f is analytic,
then it is infinitely differentiable. If f is analytic in a domain containing a real interval [a, b] ⊆ S such that, for every x ∈ [a, b],
the coefficients of the power series of f at x are all real numbers, we say that f is real analytic on [a, b].
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Next, let us define the concept of uniform computability (see [16]).

Definition 3.5. (a) A sequence {xn} of real (or complex) numbers is logarithmic-space uniformly computable if there exists
a Turing machine M that, on input ⟨n, k⟩, computes, in space O(log(n + k)), a dyadic number (or, respectively, a dyadic
complex number) approximating xn within an error ≤ 2−k.

(b) A sequence {xn} of real (or complex) numbers is NC uniformly computable2 if there exists an NC i circuit family {Cn}

for some i ≥ 0 such that, for any n, k > 0, C⟨n,k⟩ outputs a dyadic number (or, respectively, a dyadic complex number) d
such that |d − xn| ≤ 2−k. We also say that {xn} is NC i uniformly computable if the circuits Cn are NC i circuits.

Similar to the above definition, the concept of logarithmic-space or NC uniformly computable sequences {fn} of real
functions can be defined by adding uniformity requirements to Definitions 2.1–2.4. For example, we say that a sequence {fn}
has a uniform polynomial modulus if there exists a polynomial function p such that, for any n, k > 0 and any x1, x2 ∈ [0, 1],
|x1 − x2| ≤ 2−p(n+k)

⇒ |fn(x1)− fn(x2)| ≤ 2−k.
In the following,we use boldface symbols to indicate complex numbers. In particular, 0denotes the origin of the complex

plane.

Theorem 3.6. Suppose that f is an analytic function defined on a domain S that contains the unit disk, and that C is either the
complexity class L or NC i for some i ≥ 1. If f is C computable, then {f (k)(0)/k!} is a C uniformly computable sequence, with the
complexity measured in terms of n+ k+⌈logM⌉, where n is the size of the sequence, k is the output precision, and M is an upper
bound of |f (z)| on the unit disk.

Proof. We present a proof for the case where C = NC i for some fixed i > 0 and f is real analytic on [0, 1]. The proofs of the
other cases where f is a complex analytic function or C = L are similar.

Let an = f (n)(0)/n!, n ∈ N. In the following, we apply the method of Newton interpolation to compute approximate
values of a1, a2, . . . , an, with error≤2−n. (For convenience, wemake the output precision equal to the size of the sequence.)
LetM be an upper bound of |f | on the closed unit disk. Let b = 2−cn for some constant c such that bM(n+ 1) ≤ 2−(n+2) and
(1 − b)n+2

≥ 1/2. Also let xk = k · 2−(c+1)n, 0 ≤ k ≤ n. Then, we have 0 = x0 < x1 < · · · < xn ≤ b = 2nx1. Now, define

a′

k =

k
j=0
(−1)j

k
j


f (xk−j)

k! xk1
, 1 ≤ k ≤ n.

It is known that a′

k = f (k)(ξk)/k! for some ξk ∈ [0, xk] ⊆ [0, b] (see, e.g., Burden and Faires [5]),3 and thus

|a′

k − ak| =
1
k!

·

 
[0,ξk]

f (k+1)(t)dt
 ≤

b
k!

· max
t∈[0,b]

f (k+1)(t)
.

By Cauchy’s integral formula [13], we have, for t ∈ [0, b],

f (k+1)(t) =
(k + 1)!

2π i


|z−t|=1−b

f (z)
(z − t)k+2

dz

Therefore,

max
t∈[0,b]

f (k+1)(t)
 ≤

M(k + 1)!
(1 − b)k+2

,

and

|a′

k − ak| ≤
bM(k + 1)
(1 − b)k+2

≤
bM(n + 1)
(1 − b)n+2

≤ 2−(n+1).

Next, we design a circuit C⟨k,n⟩ of four layers to approximate a′

k with error ≤ 2−(n+1).

(1) The bottom layer of C⟨k,n⟩ contains 2k + 2 circuits. Among them, k + 1 circuits D1,j, for 0 ≤ j ≤ k, compute the integers
(−1)j

k
j


, for 0 ≤ j ≤ k; and another k + 1 circuits D2,j, for 0 ≤ j ≤ k, compute approximate values of f (xj), 0 ≤ j ≤ k,

with error ≤ 2−(k(c+1)n+n+2k+1).
(2) The second layer from the bottom contains k + 1 circuits D3,j, for 0 ≤ j ≤ k, each multiplying the outputs of D1,j and

D2,k−j to get an approximate value of (−1)j
k
j


f (xk−j). It also contains a circuit D4 that computes k!.

2 The word ‘‘uniformly’’ here refers to the uniform computation of the sequence {xn}, and is not to be confused with the uniform computation of the
Boolean circuit family in the definition of ‘‘uniform NC ’’.
3 This is the only place where we need the assumption of the real analyticity of f . Formula a′

k = f (k)(ξk)/k! does not hold, in general, for complex analytic
functions. However, for the case that f is a complex analytic function, we can define two real analytic functions g and h such that f (x) = g(x) + ih(x) on
the x-axis. Then, the derivatives of f at 0 can be found from those of g and h.
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(3) The third layer from the bottom has two circuits. The first one is an addition circuit D5 that adds the outputs of circuits
D3,j, 0 ≤ j ≤ k, to get an approximate value of

k
j=0(−1)j

k
j


f (xk−j). The other is a multiplication circuit D6 that

computes, from the output of D4, k!xk1 (since xk1 = 2−k(c+1)n, this circuit is actually a shifting circuit).
(4) The top layer is a division circuit D7 that divides the output of D5 by the output of D6. The output of D7 is the output of

C⟨n,k⟩.

We note that, for each j = 0, 1, . . . , k, the output of D2,j is an approximation to f (xj) with error ≤ 2−(k(c+1)n+n+2k+1).
Since

k
j


≤ 2k, the output of D3,j is an approximation to (−1)j

k
j


f (xk−j) with error ≤ 2−(k(c+1)n+n+k+1), and the output of

D5 is an approximation to
k

j=0(−1)j
k
j


f (xk−j) with error ≤ 2−(k(c+1)n+n+1). Finally, k!xk1 ≥ 2−k(c+1)n, and so the output of

D7 is an approximate to a′

k with total error ≤ 2−(n+1), as is required.
We note that the integers involved in the above computation are all of length polynomial in n (for example, n! is

represented by a binary string of length O(n log n)). Also, apart from the circuits D2,j that compute f (xj), all other subcircuits
of C⟨n,k⟩ are in NC1; that is, they are of size polynomial in n, and of depth linear in log n. In particular, the circuit D1,j that
computes (−1)j

k
j


is in NC1, since the iterated product of n n-bit integers, as well as the division of two n-bit numbers,

is computable in NC1 (see Beame et al. [2] and Chiu et al. [7]). Thus, the whole circuit is of size polynomial in n and of
depth O(depth(f )+ log n), where depth(f ) is the depth of the circuit family that computes f . This completes the proof of the
theorem. �

Theorem 3.7. Suppose that f is an analytic function defined on a domain S that contains the unit disk, Γ is a C computable
simple curve inside the unit disk, and C is either the complexity class L or NC i for some i ≥ 1. If f is C computable, then


Γ
f (z)dz

is a C computable complex number, with the complexity measured in terms of k + ⌈logM⌉, where k is the output precision and
M is an upper bound of |f (z)| on the unit disk.

Proof. The proof is similar to that in Ko [16] (pages 208–209). Again, we only present a proof for the case C = NC i for i > 0.
First, we note that, since Γ lies inside the unit disk, the integral


Γ
f depends only on the two end points of Γ . Assume

that Γ is an arc starting at x and ending at y, where x and y both are NC i computable complex numbers. Now, suppose that
f has a power series

f (z) =

∞
n=0

an(z − z0)n

at some point z0 with radius of convergence r < 1 such that both x and y lie in the closed disk N(z0, r/2) = {z : |z − z0| ≤

r/2}. Then,

Γ
f =


Γ1

f +

Γ2

f , where Γ1 is the line segment from x to z0, and Γ2 is the line segment from z0 to y. To
compute


Γ2

f , we note that |an| ≤ M/rn for all n ≥ 0, where M is an upper bound of |f (z)| on the set {z : |z − z0| = r}.
From this bound, we can compute an approximate value of the integral


Γ2

f within error 2−k as follows.

(1) Compute the approximate values of the first p = k + ⌈logM⌉ + 1 coefficients an, 0 ≤ n < p, each of error ≤ 2−(k+p+1).
(2) Compute approximate values of the integrals

Γ2

(z − z0)ndz =
(y − z0)n+1

n + 1

for n = 0, 1, . . . , p − 1, each within error 2−(k+p+⌈logM⌉+⌈log r⌉n+2).
(3) For each n = 0, 1, . . . , p − 1, multiply the approximate value of an from step (1) and the approximate value of

Γ2
(z − z0)ndz from step (2).

(4) Add all values from step (3).

To check the error of the above approximation, we let bn denote (y − z0)n+1/(n + 1), for 0 ≤ n < p. Also, let a′
n,

0 ≤ n < p, denote the outputs of step (1), and b′
n, 0 ≤ n < p, be the outputs of step (2). We first note that |an| ≤ M/rn and

|b′
n| < 1, and so

|anbn − a′
nb

′
n| ≤ |an| · |bn − b′

n| + |b′
n| · |an − a′

n|

≤
M
rn

· 2−(k+p+⌈logM⌉+⌈log r⌉n+2)
+ 2−(k+p+2)

≤ 2−(k+p+2)
+ 2−(k+p+2)

= 2−(k+p+1).

Next, note that
∞
n=p

anbn ≤

∞
n=p

M
rn

·
rn+1

2n+1(n + 1)
≤

∞
n=p

M
2n+1

=
M
2p

= 2−(k+1).
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Therefore, the error of the above approximation for

Γ2

f is at most

∞
n=p

anbn +

p−1
n=0

|anbn − a′

nb
′

n| ≤ 2−(k+1)
+

p−1
n=0

2−(k+p+1)
≤ 2−k.

For the complexity of this computation, we know, from Theorem 3.6, that step (1) can be done inNC i. Furthermore, steps
(2)–(4) are easily seen to be computable inNC1. So, the integral


Γ2

f isNC i computable, and, similarly,

Γ1

f (and hence

Γ
f )

is NC i computable.
Next, for the general case, we note, from the compactness of the unit disk, that there exist a finite number of open disks

Di = N(zi, ri/2), 1 ≤ i ≤ m, that cover the unit disk such that f has a power series at zi with radius of convergence ri. For
any two disks Di and Dj with a nonempty intersection, select a pointwij. Then, we can find a path from x to y in the unit disk,

x, zi1 ,wi1i2 , zi2 ,wi2 i3 , zi3 . . . , zit , y,

where 1 ≤ i1, . . . , it ≤ m, such that the following hold.
(i) x ∈ Di1 and y ∈ Dit .
(ii) For each j = 1, 2, . . . , t − 1, Dij and Dij+1 have a nonempty intersection.

Now, we can compute the integral of f on each segment of this path as above and then sum them up to get

Γ
f . Note that

the finite covering {Di} of the unit disk (and hence {zi} and {wij}) depends only on the function f . Therefore, the computation
of the subpath from z1 to zt can be precomputed and stored in a table. All we need is to find the disks Di1 and Dit that contain
x and y, respectively. Since x and y are NC i computable complex numbers, the whole computation of


Γ
f can be done in

NC i. �

4. Zeros of an NC analytic function

We consider, in this section, the following problem. Given a simply connected domain S that contains a Jordan curve Γ
and an NC computable function f that is analytic on S, find all zeros of f inside Γ . To study this problem in our setting, we
first assume that the given Jordan curve Γ is NC computable; that is, there exists an NC computable function g : [0, 1]→C
such that g([0, 1]) = Γ , g is 1–1 on [0, 1) and g(0) = g(1). In the above, if p is a modulus function of g , we also say that it is
a modulus function of Γ . In addition, we assume that the function f has no zeros on Γ , because it is, in general, undecidable
whether a zero of f lies on Γ , or equivalently, whether the minimum modulus minz∈Γ |f (z)| of f on Γ is greater than zero.
Intuitively, the smaller minz∈Γ |f (z)| is, the harder it is to compute the zeros of f inside Γ .

We are going to apply the quadrature method to find all zeros of an analytic function f inside a Jordan curve Γ . This
method can be described in the following four steps (cf. Kravanja et al. [20] and Delves et al. [10]).

Step 1. (Computing the number of zeros.)
Compute the number of zeros by the principle of the argument (see, e.g., Henrici [13]):

n =
1

2π i


Γ

f ′(z)
f (z)

dz.

Step 2. (Computing the Newton sums.)
Let z1, . . . , zn be all zeros of f inside Γ . The ith Newton sum si, for 1 ≤ i ≤ n, is defined as si = zi1 + · · · + zin. We can

compute them by

si =
1

2π i


Γ

zi
f ′(z)
f (z)

dz,

for 1 ≤ i ≤ n (see, e.g., Henrici [13]).

Step 3. (Computing the associated polynomial.)
Compute the associated polynomial pn(z) = Πn

i=1(z − zi) = zn + σ1zn−1
+ · · · + σn for zeros of f in Γ . The coefficients

σ1, . . . , σn can be computed using Newton’s Identities (see, e.g., Carpentier and Dos Santos [6]):
s1 + σ1 = 0
s2 + s1σ1 + 2σ2 = 0
...
sn + sn−1σ1 + · · · + s1σn−1 + nσn = 0.

(4.1)

Step 4. (Solving the associated polynomial.)
Compute the zeros of the polynomial pn(z).
To show that the above method can be parallelized in our formal computational model, we need more precise assump-

tions about f and Γ .
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Theorem 4.1. Let S be a simply connected domain that contains an NC computable Jordan curve Γ . Let f be an analytic function
on S. Assume that there exist two constants n0, n1 ∈ N such that

(a) for all z ∈ Γ , δ(z, ∂S) ≥ 2−n0 ;
(b) |f (z)| > 2−n1 for all z ∈ S1 = {z ∈ C : δ(z,Γ ) ≤ 2−n0}; and
(c) f (z) is NC computable on S1.

Then, the problem of finding all zeros of f inside Γ is NC solvable, with the complexity measured in terms of 2q(n0+1)
+n1 +n+ k,

where n is the number of zeros of f inside Γ , k is the precision parameter, and q is the modulus function of Γ .

Proof. We check that each of the four steps above can be implemented in NC .
Steps 1 and 2. These two steps involve integration of meromorphic functions f ′/f and zi(f ′(z)/f (z)), for i = 1, 2, . . . , n.

Note that these functions do not have zeros on S1, and so we may treat them as NC computable analytic functions on S1 and
compute the integrals as in Theorem 3.7.

To bemore precise, assume that g : [0, 1]→C is anNC computable functionwhose image isΓ . For j = 0, 1, . . . , 2q(n0+1),
we compute zj as an approximation to g(j2−q(n0+1)) with error ≤ 2−(n0+1). Then, we get a piecewise linear closed curve Γ ′

that is at most 2−n0 away from Γ , with breakpoints z0, z1, . . . , z2q(n0+1)
−1, z2q(n0+1) = z0. Also, since |f (z)| > 2−n1 , we know

that f ′(z)/f (z) and zi(f ′(z)/f (z)) have upper boundM2n1 , for some constantM > 0, on z ∈ Γ .
Let Γ ′

j , 0 ≤ j ≤ 2q(n0+1)−1, be the line segment connecting zj to zj+1. Then, by Theorem 3.7, each integral

Γ ′
j
(f ′/f ) or

Γ ′
j
zi(f ′/f ), with 1 ≤ i ≤ n, can be computed in NC, with complexity measured in terms of log(M2n1)+ k = O(n1 + k). The

total value

2q(n0+1)
k=1


Γ ′
k

zi(f ′/f ) =


Γ ′

zi(f ′/f ) =


Γ

zi(f ′/f )

is also NC computable, with complexity measured in terms of 2q(n0+1)
+ n1 + k, since iterated addition is in NC1 (see, e.g.,

Beame et al. [2]). It follows that the Newton sums can be computed in NC, with complexity measured in terms of 2q(n0+1)

+ n1 + n + k.
Step 3. This step involves the computation of the inverse of a lower triangular matrix, which is NC2 computable.
We first rewrite the Eq. (4.1) as follows:

σ1 = −s1
s1σ1 + 2σ2 = −s2
...
sn−1σ1 + · · · + s1σn−1 + nσn = −sn.

(4.2)

That is, coefficients σ1, . . . , σn are the unknowns of an equation AX = −B, where A = (aij)n×n is an n × n lower triangular
matrix with entries aij = si−j for 1 ≤ j < i ≤ n and aii = i for 1 ≤ i ≤ n, X is the column vector (σ1, . . . , σn)T , and B is the
column vector (s1, . . . , sn)T . So X = −A−1B, where A−1 is the inverse matrix of A. It is known that computing the inverse
of a triangular matrix and computing the product of two matrices are NC2 computable (see, e.g., Csanky [9] and Borodin
et al. [4]). In the following, we present an error analysis to show that the computation of the inverse matrix A−1 is still NC2

computable when the coefficients of A are given by oracles.
Assume that |si| ≤ 2m for some m > 0, for 1 ≤ i ≤ n (so that m = O(n1 + ⌈logM⌉ + n)). To get approximate values

for σi, for 1 ≤ i ≤ n, we need, from Step 2, approximate values di to si, for 1 ≤ i ≤ n, with |di − si| ≤ 2−cn−k−1, where
c = ⌈log n⌉ + m. We can estimate the error caused by using di to replace si in solving Eq. (4.2) as follows.

We know that, for any n × n matrix D = (dij)n×n with det(D) ≠ 0,

D−1
=

1
det(D)


(−1)i+j det(Dij)


n×n
,

where det(D) is the determinant ofD, andDij is the submatrix ofDwith the ith row and jth column ofD removed. In addition,
note that the determinant of D is the sum of all (−1)p(π)d1π(1) · · · dnπ(n) over all permutations π of {1, 2, . . . , n}, where p(π)
is the minimum number of exchanges to obtain π from the identical permutation.

Let A′ denote the matrix A with each si replaced by di, for 1 ≤ i ≤ n. We first observe that det(A) = det(A′) = n!, and,
for each pair (i, j) with 1 ≤ i, j ≤ n, | det(Aij)| ≤ (n − 1)!2m(n−1). Next, to estimate | det(Aij) − det(A′

ij)|, we note that, for
real numbers a1, a2, . . . , an and b1, b2, . . . , bn, if |ai| ≤ M , |bi| ≤ M , and |ai − bi| ≤ ϵ, for all 1 ≤ i ≤ n, then we have

|a1a2 · · · an − b1b2 · · · bn| ≤ |a1 · · · an−2an−1an − a1 · · · an−2an−1bn|
+ |a1 · · · an−2an−1 bn − a1 · · · an−2 bn−1bn|
+ · · · + |a1 b2 · · · bn−1 bn − b1 b2 · · · bn−1 bn|

≤ nMn−1 ϵ.



56 F. Yu, K. Ko / Theoretical Computer Science 489–490 (2013) 48–57

Therefore, we get, for 1 ≤ i, j ≤ n,

| det(Aij)− det(A′

ij| ≤


π

 
1≤p≤n
p≠i

ap,π(p) −


1≤p≤n
p≠i

a′

p,π(p)


≤ (n − 1)! (n − 1) 2m(n−1) 2−cn−k−1

≤ 2−m−k−1,

where π ranges over all one-to-one mappings from {1, 2, . . . , n} − {i} to {1, 2, . . . , n} − {j}.
Now recall that, for each 1 ≤ i ≤ n,

σi = −

n
j=1

(−1)i+j det(Aij)sj
n!

, and σ ′

i = −

n
j=1

(−1)i+j det(A′

ij)dj

n!
. (4.3)

So, we get, for each 1 ≤ i ≤ n,

|σi − σ ′

i | ≤
1
n!

n
j=1

| det(Aij)sj − det(A′

ij)dj|

≤
1
n!

n
j=1


|sj − dj| · | det(Aij)| + |dj| · | det(Aij)− det(A′

ij)|


≤
n
n!

·

2−cn−k−1(n − 1)! · 2m(n−1)

+ 2m
· 2−m−k−1

≤ 2−(k+1)
+ 2−(k+1)

= 2−k.

Step 4. For polynomial functions, it has been shown in Neff [23] that all zeros of a polynomial can be found in NC3. His
model is also based on bit-operation measurement, and his algorithm can be easily adapted to our oracle model. Indeed,
Neff [23] has already given the error analysis as follows.

Lemma 4.2 ([23]). Suppose that P(z) = zn + an−1zn−1
+· · ·+ a1z+ a0 and Q (z) = zn + bn−1zn−1

+· · ·+ b1z+ b0, and that
M and k are integers such that, for all 1 ≤ i ≤ n−1, |ai| ≤ M−1 and |ai−bi| ≤ 2−ℓ. Then, there is a one-to-one correspondence
between zeros of P and zeros of Q such that, for each pair of corresponding zero u of P and zero v of Q , |u−v| < 2logM+log n+2−ℓ/n.

Now, from (4.3), we know that, for 1 ≤ i ≤ n,

|σi| ≤
1
n!

n
j=1

| det(Ai,j)| · |sj| ≤
n
n!

· (n − 1)!2m(n−1)2m
= 2mn.

Therefore, from the above lemma, if we compute, in Step 3, approximate values σ ′

i to σi within error ≤ 2−(mn+⌈log n⌉+k+2)n,
then the zeros found by Neff’s algorithm are within error 2−k of the zeros of pn(z).

Let us review the total complexity of the four steps. Suppose that we compute, in Step 2, the Newton sums s1, s2, . . . , sn
with errors at most 2−(2c+mn+k+2)n−1, where c = m + ⌈log n⌉. Then, using these approximate values in Step 3, we get
approximate values of σ1, σ2, . . . , σn of errors at most 2−(c+mn+k+2)n. This error bound in turn guarantees that the output of
Step 4 approximates the zeros of f inside Γ with errors at most 2−k. This shows that the whole process can be accomplished
in NC, with complexity measured in terms of 2q(n0+1)

+ n1 + n + k (note thatm = O(n1 + ⌈logM⌉ + n)). �

We remark that, when f and Γ are log-space computable, so are the first two steps of the above quadrature method.
However, we do not know whether Step 3 can be done in logarithmic space. Moreover, Neff’s NC algorithm of computing
all zeros of a polynomial is of depth log3 n. Thus, it is still open whether the problem is log-space solvable for this case.

In addition, it is important to point out that our result is of only theoretical interests.We proved that the zeros of analytic
functions can be found in NC, but the complexity bound we used may be very loose. In particular, the constant 2q(n0+1) and
the measurem used in the complexity measure appear quite large for practical implementation of the quadrature method.
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