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An Approach to Enlarge Learning Space
Coverage for Robot Learning Control

Kuu-Young Young,Member, IEEE and Shaw-Ji Shiah

Abstract—In robot learning control, the learning space for other hand, if a learning controller is used, the consequences
executing general motions of multijoint robot manipulators is  of using incomplete models and inaccurate model parameters

quite large. Consequently, for most learning scher_nes, the learning may not be very significant. Because they are capable of
controllers are used as subordinates to conventional controllers

or the learning process needs to be repeated each time a neWtaCkIIng highly Comple)f_dynam'cs W'_thOUt explicit model
trajectory is encountered, although learning controllers are con- dependence and identification, learning controllers are an
sidered to be capable of generalization. In this paper, we propose attractive alternative in robot motion control [10], [24].

an approach for larger learning space coverage in robot learning  Two well-known types of learning controllers for robot

control. In this approach, a new structure for learning control is o, inn control are artificial neural networks and fuzzy sys-
proposed to organize information storage via effective memory

management. The proposed structure is motivated by the con- [€MS. Both are biologically inspired and intended to model
cept of human motor program and consists mainly of a fuzzy human experience [25], [28]. The structure of artificial neural
system and a cerebellar model articulation controller (CMAC)- networks is modeled after the organization of the brain,
type neural network. The fuzzy system is used for governing a gjthough the similarity between the two is actually slight

number of sampled motions in a class of motions. The CMAC-
type neural network is used to generalize the parameters of [25]. On the other hand, fuzzy systems are meant to encode

the fuzzy system, which are appropriate for the governing of Pieces of knowledge presented by experts [13], [17], [24].
the sampled motions, to deal with the whole class of motions. In some previous research involving the application of these
Under this design, in some sense the qualitative fuzzy rules in the two types of learning controllers, they are used to assist
fuzzy system are generalized by the CMAC-type neural network iy the control of a robot manipulator, while a conventional

and then a larger learning space can be covered. Therefore, the . . .
learning effort is dramatically reduced in dealing with a wide control algorithm, e.g., PD or PID control, is responsible

range of robot motions, while the learning process is performed for the major portion of the control [14], [16], [18]. In this

only once. Simulations emulating ball carrying under various approach, the conventional control algorithm brings the system
conditions are presented to demonstrate the effectiveness of theclose to the desired state and the learning mechanism then
proposed approach. compensates for the remaining error. On the other hand, some
Index Terms—CMAC-type neural network, fuzzy system, hu- systems use learning algorithms alone to execute the control.
man motor program, learning space coverage, robot learning However, although these learning controllers are considered to
control. be capable of generalization, most of them need to repeat the
learning process each time a new trajectory is encountered

|. INTRODUCTION [11]. Otherwise, a neural network will consist of a huge

apumber of neurons or a fuzzy system will require too many

HE dynamics of robot manipulators are, in general, _ .
nonlinear and complex. Therefore, conventional ﬁxeayles because the learning space needed to handle arbitrary
' jectories is too large.

gain, linear feedback controllers are not capable of ef'fectivetrgf71 ; . . .
controlling movements of multijoint robot manipulators un- To sum up, one major problem in using learning cont.rollers
der different distance, velocity, and load requirements. The th_at_ the learning space f°T executing general mouong of
nonlinear dynamic interaction in multijoint movements caﬁ]UItIJOInt robot manipulators is too large [20], [22]'_ In this
be compensated for through the use of feedback. To achi@@Per. We propose an approach  for Igrger learning space
better compensation for dynamic interaction in approach‘égVerage in robot !earnmg con.trol. In this approach,'a new
using feedback for conventional robot control (e.g., the Corﬁgructqre for Iearnm.g contrql is proposed to organize in-
puted torque method), a complete, nonlinear dynamic modg{mation storage via effective memory management. The
describing the robot manipulator is needed [6]. The u&foPosed structure is motivated by the concept of human
of a complicated nonlinear dynamic model makes real-tinf8Otor Program and consists mainly of a fuzzy system and a
implementation difficult [16]. Moreover, it is by no means aigerebellor model artlculatlon. controller (CMAC)_-type neural
easy task to identify the model parameters accurately. On fHgWork. The fuzzy system is used for governing a number
of sampled motions in a class of motions. To allow for
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Fig. 1. A simplified human motor control block diagram.

to deal with the whole class of motions. One reason fam dealing with fast movement. Therefore, open-loop control
adopting the CMAC-type neural network rather than anotheright be more appropriate for governing fast human move-
type of neural network is that its learning for certain motionsient and a concept of motor program was proposed [19], [21].
will not affect that for other motions too much [1]. Thus,The basic idea in human motor program is that movement
training patterns can be added or deleted easily accordingdemands are specified by the CNS in advance and then
the performance. In addition, this type of network has a stroegecuted in an essentially open-loop manner. When activated,
generalization capability and simple structure. Under thike motor program generates motor commands and sends them
design, in some sense the qualitative fuzzy rules in the fuzizy the peripheral neuromotor system for execution. Where a
system are generalized by the CMAC-type neural networlass of movements is concerned, the storage of complex motor
and then a larger learning space can be covered. Theref@mgrams for each movement may not be appropriate. Instead,
the learning effort is dramatically reduced in dealing witlthe motor program should be generalized, simple to operate,
a wide range of robot motions, while the learning processd efficient in storage. Thus, a single motor program will
is performed only once. Biological backgrounds of humape enough to accommodate a wide variety of movements.
motor program are discussed in Section Il. The propos@doper parameters corresponding to a particular movement
approach and a robot learning control scheme based on it eam then be supplied to the motor program in execution. In
described in Section lll. Simulations emulating ball carryingther words, the motor program should abstractand the
with various distances, velocities and loads that demonstrataresponding control parameters should be efficiently stored
the effectiveness of the proposed approach are describedaid manipulated [21]. Although there is still doubt concerning
Section IV. Finally, discussions and conclusions are statedvimether the control strategy employed by the CNS is in
Section V. fact open-loop and it is not yet clear which parameters of
movement motor programs control [19], the concept of human
motor programs is attractive.
II. HUMAN MOTOR PROGRAM

The proposed approach is motivated by the concept of
human motor program, which is derived from the study
of human movement and has stimulated research in humann the proposed approach, we take advantage of the merits
control strategies [3], [5], [7], [12], [19], [21], [26]. Fig. 1 of a fuzzy system and a CMAC-type neural network to emulate
shows a simplified human motor control block diagram, which motor program with the appealing characteristics described
governs human limb movements. In Fig. 1, we see that humalmove. A fuzzy system is used to represent the abstract motor
movement is governed by a hierarchical structure [11], [21grogram and a CMAC-type neural network is used to manage
According to different demands, the central nervous systahe parameters. Through fuzzy logic and representation, the
(CNS) makes movement plans. Appropriate motor commanfigzy system manipulates information in a linguistic way. In
are then generated and sent to the peripheral neuromaosense, the fuzzy system encodes knowledge via qualitative
system, which modifies the motor commands via sensamyles rather than via precise quantitative description. This
feedback. The peripheral neuromotor system behaves afea@ure makes the fuzzy system an appealing choice for
local controller that adapts to different movements, loadsmulating a motor program. The parameters specifying the
and environments in addition to accepting commands frofuzzy rules for governing sampled motions are stored and
the CNS [8]. Finally, the modified commands are sent to theanipulated by the CMAC-type neural network to deal with
muscular-skeletal system for movement execution. With théswide range of motions. The combination of a fuzzy system
hierarchical structure, the difficulty of performing complexand a neural network in this way is novel and exploits the
movements can be shared by the CNS at the higher level andrits of the motor program.
the local controller at the lower level. In order to simplify the complexity in learning, we also clas-

Because feedback processing in the human motor contsdl robot motions according to their features in advance. As an
system is slow, long delays are experienced in the transferefample, a group of arbitrary robot motions can be categorized
sensory information to the higher level of the hierarchy. Fanto a class of motions of various movement distances with
slow movement, long delays may cause no serious problethe same movement velocity and load or a class of motions of
when feedback control is employed by the higher level of therious movement velocities with the same movement distance
hierarchy; however, the effect of delays cannot be ignoreahd load, etc. Under this arrangement, a class of motions with

I1l. PROPOSEDAPPROACH
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the same feature are expected to correspond to similar fuzzy
parameters. Consequently, the data with which the CMACx wotion
type neural network, which executes the generalization, wilfrom classes E:>

of motions

have to deal will exhibit less nonlinearity. Further discussions fearsoeory. | Parameters of the FNN
on motion feature selection will be given in Section V. Pa- Execntion
rameters of the fuzzy system for various classes of motions
can also be incorporated into the same neural network at the
expense of greater memory requirements. For instance, the e | Local T | Robot
neural network can store parameters corresponding to a grouy g9 ™™ controller [™| dynamics >
of motions which reach different destinations with different
velocities and loads. Naturally, a fuzzy system is not the only { :
choice for representing a motor program. For instance, the 99

gains of a conventional PD or PID controller or the torquesy. 2. conceptual organization of a robot learning control scheme.

to move the robot links can also be generalized by a neural

network to govern various robot motions. However, we believe o . )

that generalization of qualitative fuzzy rules is more effectiv'® actual position and velocity vectors obtained from sensory
than that of quantitative numerical data, because the former fR€dPack, an®;, andKq are symmetric positive definite gain
volves the generalization of abstract representations and tetfdrices for stability considerations [6]. o

to cover a larger learning space. In Section III-E, discussions!" the proposed scheme, in some sense, the intelligence for
are given for comparing the generalization capability based BIPtion governing is mainly attributed to the FNN and CMAC,

using qualitative fuzzy rules and quantitative numerical dat&nd the local controller deals with the sensory feedback
only. Thus, the success of the proposed scheme depends on

designing the FNN and CMAC to generate proper motion
A. Robot Learning Control Scheme commands for various maotions in the classes. Proper learning
rocesses are also imperative for determining the weights in

) networks. The structures and learning processes for the
develop a learning control scheme that can govern gen

. o . N and CMAC will be discussed in Sections IlI-B and C,
motions of general multijoint robot manipulators. Instead, we . . o .
respectively. Two stages of learning, the first involving the

will concentrate on demonstrating the effect of the combinati N and the second the CMAC, are needed for the system to
of the fuzzy system and the CMAC-type neural networ : ,
arn to govern classes of motions. In the first stage, proper

in our proposed approach for leaming space coverage. czJ;\e:rameters of the FNN will be learned for sampled motions.

this purpose, a robot learning control scheme based on : S
roposed approach is proposed and its conceptual organizatloref se parameters will then be used as training patters to set
P up the CMAC in the second stage of learning. Later, after

Syetem are motions from dasses of motions with the safgZ"TI"d (he CMAC wil supply proper parameters o the FNN
Y of the governing of input desired motions. The interaction

featur_es. For each motion fromaclass of mofuons, its traJeCth%tween the FNN and the CMAC in leaming classes of
descriptor, e.g., movement distance, velocity, load, or other

features, is used as an index and inputted into the CMA&OtIons is described in Section lll-D.
type neural network (CMAC). A set of parameters will then i
be solicited from the CMAC and sent forward to the fuzz{- 'mplementation of the FNN
system. With the set of parameters representing the fuzzyThe fuzzy system is implemented in the form of a fuzzy-
rules, the fuzzy system can govern the motion, along with tineural network, as shown in Fig. 3. An FNN is designed
desired position and velocity trajectories of the motion, whicio realize the process of fuzzy reasoning using the structure
are also inputted to the fuzzy system. The fuzzy systema$ a neural network. The parameters of fuzzy reasoning are
implemented in the form of a fuzzy neural network (FNN) andxpressed by the connection weights or node functions of the
generates motion commands sent forward to a local controlleeural network [4], [15]. The representation of a fuzzy system
In turn, the local controller, which emulates the peripheraising a fuzzy-neural network enables us to take advantage of
neuromotor system shown in Fig. 1, modulates the motidhe learning capability of the neural network for automatic
command via sensory feedback and uses the resultant signattong of the parameters in the fuzzy system. In Fig. 3, the
move the robot manipulator [27]. According to some biologicahputs to the FNN are the position and velocity trajectories
evidence, human motor program may provide only the desirefila sampled motion and the output is the motion command.
position for movement control [19]. Therefore, to simplify thaVe chose an FNN with a structure similar to that in [4]. The
design of the learning scheme, only the desired position andneason for this choice is that the numbers of fuzzy rules and
desired velocity is specified in the motion command. A simplmembership functions for input and output are prespecified
position control law with linear damping is then adopted fan this type of FNN. Thus, for various motions there are the
the local controller [23] same number of fuzzy parameters with the same attributes.
. Consequently, these fuzzy parameters are appropriate to be
7= Kp(Cm —q) — Kaq (1) genera?ized )l;y the neura)I/ rﬁ)etwork to deal V\E)Ifh 2 class of
whereC,,, stands for the motion command vectqrandqg are motions. On the other hand, an FNN with a variable structure

CMAC

Learning
Lt

4.

y

At the current stage of the study, we do not intend t
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Fig. 3. The structure of the FNN.
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Fig. 4. The fuzzy inference process in the FNN.

(such as that in [15]), is flexible and effective in learningThe fuzzy inference process is as shown in Fig. 4. Each of the

However, in this type of FNN, the number of fuzzy parameteftve layers performs one stage of the fuzzy inference process,

may vary with different robot motions. This feature makes thizs described below.

type of FNN unsuitable for the present application in which Layer 1: This layer is the input layer, and inputs are

the fuzzy parameters must be generalized. transmitted to the next layer directly without any computation.
The structure of the FNN adopted here consists of five laydrs Fig. 3, there are two nodes for two inpugs and ¢, of

of nodes, which are of the same type within the same layenotions of a single degree-of-freedom.



YOUNG AND SHIAH: LEARNING SPACE COVERAGE FOR ROBOT LEARNING CONTROL 515

A motion :>

from classes CMAC
of motions Trajectory .
descriptor

]

qr

Ca Local T | Robot 4
0. FNN (g contoller [ 400 g o R
- (PD type)
q

Fig. 5. Learning processes for the proposed approach.

Layer 2: This layer is intended for the input membership Layer 4: This layer is intended for the output membership
functions. Each nodéin this layer has a node function functions. Each nodéin this layer performs an inverse gf
02 = () ) to Ioc_ate theX—coo_rdinate of the centroid of thg membership
¢ function O} by using the local mean-of-maximum method
wherep: X — [0, 1] is a membership function and is the (LMOM) [4]
input to node. The triangular membership function is adopted,

4 -1 3
as described below. 07 = i (07)- (6)
Both O and O} will be needed in the defuzzification process
1— (z - 5)7 zebbtd performed by Layer 5. For the triangular output membership
¢ function adopted, the LMOM gives
plx) = (x—b) 3 _
1+ —— ze€b-qal i N0 =b+ 5 (c—a)(1-07) (7
0, otherwise.

which yields the median of the triangular membership function

Different membership grades at the same crisp point can e the X axis.

obtained by adjusting the parameter seti( c). Layer 5: This layer is the output layer, which has as many
Layer 3: This layer is intended for the implementation ohodes as there are output action variables. In Fig. 3, only

the fuzzy rules. Each node in this layer corresponds to a rute node is needed for a single motion commaig. The

which is defined as a fuzzy conditional statement of the fordefuzzification approach adopted is the weighted averaging

Rule: IFX is AandY is BTHEN ZisC  (4) Mmethod [13]

where X and Y are fuzzy sets representing the inpufs, ZO?O?

represents the output, andl, B, and C represent linguistic [ L S — (8)
variables, such as small, medium, and large. The number of ZOE’

rules involved in the input—output relation in our design is i

prespecified. In this layer, each node also outputs the firingBecause the number of rules in Layer 3 is prespecified and
strength of the rul@? by performing a differentiable softmin weights for the input and output layers (Layers 1 and 5) are
operation [4] fixed, the parameters to learn in this FNN are the modifiable
ZO? exp (—kO?) weights present on the input links to Layers 2 and 4, which
7 I I correspond to the input and output membership functions.
= 5 (5)  When the FNN learns the parameters of the input and output
Z €xXp (_kOa’) membership functions for generating the motion command
J corresponding to a sampled motion, an error rate, related to
WhereOf is the output of thgth node in Layer 2, connected tothe motion command’,, and the resultant motion, is first
theith node in Layer 3, anfl is a constant. Wheh approaches specified in the last layer (Layer 5). This error rate is then
infinity, the softmin operator becomes a min operator; fdrackpropagated to adjust the parameters from layer to layer
finite k, O3 is differentiable, which is required in the learningsequentially. Because a concise form of the inverse dynamic
process. model of the robot manipulator is not available, the error rate

o3

T
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cannot be obtained directly by differentiating the error between =
the desired motion and the actual motion relative to the motion o
command. Instead, as indicated in the learning process shown o
in Fig. 5, we use the combined feedback error of position
(e) and velocity €) between the desired and actual motions,
denoted a¥’ = G,e + G4é to derive the error rat@ £/dC,,

(2], [11]

fs)
(%)

oF oF £(s)

ac,, 905
~n(Gpe 4+ Gqé) 9

S,

wherey is a learning rate and’,, andGy are gains that result
in a stable system. The error rat&”/9C,, in (9) is esti- :
mated, but not exact, for describing the differential relationship S A > P
between the motion commarnd,, and the resultant motion.

Nevertheless, the results in [2], [11] (and also ours) show tifag. 6. Basic CMAC mappings.

the use of this error rate is appropriate for the learning. With

the error rate in (9) and some straightforward man'pUIat'OHearby input vectors and no generalization between distant

Y:]etr?sr:r:ii?r:/ge Sutggztiieogtar:zn?:tﬁr:2::50:)':;{;2/?:”(21 "Siggién ﬁut vectors. In order to reduce the memory size of association
' ; s for a practical mapping, Albus [1] proposed a procedure
the CMAC. After the CMAC is set up, b ppIng [1] prop P

the fuzzy parameterg, - pash-codin , Which is basically a uniform random mappin
will b.e supplied from .the CMAC to the FNN.' Details of ther .\ o larger r%emory to a smaIIZr one. The second nggpir?g
learning processes will be discussed in Section lll-D. depends on the values of weights, assigned to every association
) cell, which will be modified during the training stage. These
C. Implementation of the CMAC weights can be adjusted by the difference between the desired
The CMAC-type neural network has been successfully usedtput and the produced output. This mapping then sums up
in learning control functions [1]. It has also been applied tidhe weights attached to the active association cells to produce
learn robot dynamics for controlling robot tasks [16]. Th¢he outputP.
CMAC is a trainable discrete linear network pattern classifier To demonstrate how to store the sets of parameters corre-
that emulates the behavior of human beings in dealing wigiponding to a class of motions into the CMAC, we use a group
stimuli and responses. The CMAC computes control functio$ motions of different movement distances with different
by referring to a table rather than by solving analytic equationglocities and loads as an example. The input vestarill
Function values are stored in a distributed fashion such that ttentain three elementsl, v, m) for indexing these motions:
value of a function at any point in input space is derived by
summing the contents over a number of memory locations. 5= (d, v, m) (12)

A unique feature of the CMAC is a mapping algorithmypere ;s stands for the distance, for the velocity, andn for
which converts the distance between input vectors into the, |ad. Via the mappings of the network, the input vector
degree of overlap between sets of data where the functign, g correspond to an output response consisting of a desired
values are stored. Thus, the CMAC serves our purposgs of parameters. Thus, we need to find appropriate weights
well, because mappings can be provided to generate properaiach to the active association cells An by utilizing
parameters for a whole class of motions based on the finjig, sets of parameters for the sampled motions as training
sets of parameters for the sampled motions used as trainfgterns. However, when the training patterns are stored into
patterns. _ the network, the set of parameters generated by the CMAC
The basic concept behind the CMAC can be represented Ry, pe different from the set of desired parameters because
a pair of mappings (as shown in Fig. 6) [1] of memory overlapping in the association cells in the first
f. S A (10) mapping from .the input vect_or to the associatiqn cells in (.10).
Thus, a learning process is needed to modify the weights
g A—P (1) through an updating function using the difference between the
whereS represents the set of input vectafsrepresents the set Set of desired parameters and that generated by the CMAC for
of association cell vectors, afirepresents the set of respons€ach training pattern. The updating function is as follows:
output vectors. The first mapping maps the input data onto a p—1p
finite set of intermediate states called association cells. The Wiy = Wy, +/3<T) (13)
mapping is generally a fixed relation since it is a process of
indexing the input data. The number of unitsAdfthat become where k£ denotes the stage of the training processis the
excited in response to both of two different inpisand.S; learning ratec is the number of weights contributing to the
decreases monotonically as the similarity betwégrand S;  output,w, andw, . stand for vectors of weights before and
decreases. This arrangement produces generalization betwaftar the kth stage of learning, respectively, apdand p’
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TABLE |
AN ExampLE OF How THE Fuzzy PARAMETERS IN THE FNN ARE GENERALIZED BY THE CMAC

ai b; ci aO bO cO
0.040001 0.059999] 0.050001 | 0.030000| 0.180000! 0.020000

IFIZS E THEN O is F P, 0.040001 | 0.059999{ 0.050001 | 0.030000 | 0.180000] 0.020000
0.040001 | 0.059999 | 0.050001 | 0.030000 | 0.180000] 0.020000 \#133
a b ¢ a b, c, 0073999 0.140000[ 0.119998[ 0.095999 | 0279999 0.059999

0034001 | 0.080001 | 0.070000] 0066000 0,100001 | 0.040001
Py [0.20 030 0.25 0.15 0.90 0.10] P2} Toaao01] acsoor 0,070000] 0.066000] 0.100001 | 0.040001 ||
p, [0.17 0.40 035 0.33 0.50 0.20] 0.063999| 0.259998 | 0.080000 | 0.105996 | 0.140000| 0.099997 |2
.| [2030000] 0 180000] 0.010000 0.040001 [ 0040001 | 0059999

P3 [0.15 0.90 0.05 0.200.20 030 ] Learni 3} [ 0.030000] 0.180000] 0.010000{ 0.040001 | 0.040001 | 0.059999 }
carming. |\ [ o.os0000] 0.180000] 0.010000] 0.040001 | 0.040001 | 0.059999

&
1
1
)
)
:
'
Generalization PRad
‘ 1]
|
t
|
1
\
1]
1

0.040001 | 0.059999 | 0.050001 | 0.030000 | 0.180000| 0.020000
0.040001 | 0.059999 | 0.050001 | 0.030000 | 0.180000 | 0.020000
p, .. 10.188002 0.339999 0.290000 - .

133 0.073999 | 0.140000 | 0.119998 | 0.095999 | 0.279999 0.059999
0.221999 0.740000 0.140000 ] 0034001 0.080001

0.070000 0.066000 0.100001 | 0.040001

Pre7 [0.158000 0.699999 0.170000 0.034001 | 0.080001 [ 0.070000] 0.066000] 0.100001 [ 0.040001

0.251998 0.320003 0.259996 ] 0.063999 0.259998 0.080000 0.105996 | 0.140000 0.099997
0.030000} 0180000 0.010000] 0.040001 | 0.040001 | 0.059999
Output 0.030000 0.180000] 0.010000 | 0.040001 | 0.040001 | 0.059999

stand for desired and actual output vectors, respectively. TineSection III-C. After these two stages of learning, fuzzy
learning process will terminate when the difference betweg@arameters will be manipulated and supplied by the CMAC
the sets of parameters generated by the network and the desivethe FNN for the governing of input desired motions. The
sets of parameters for the sampled motions are within a certiiarning in the FNN and the CMAC is, in fact, interactive.
tolerancese... When the fuzzy parameters generated by the CMAC are not
With the FNN and CMAC implemented, Table I showsippropriate for governing a particular motion, the FNN can
an example of how the fuzzy parameters in the FNN apgovide more training patterns by learning to govern more
generalized by the CMAC. In Table I, there is one fuzzy rulgampled motions around that motion to increase the resolution
in the form:IF I is £ THEN O is F', wherel and O are of the CMAC. In other words, the FNN and the CMAC will
fuzzy sets representing the input and output, respectively, ashperate to yield homogeneous reliable performance for a
E and F' represent linguistic variables. Assume taand O  \yhole class of motions.
correspond to only one membership function with, b;, ci) | the application of the proposed scheme to the control of
and(a,, b, ¢,), described in (3), standing for the parameters,tijoint robot manipulators, input motions may be specified
for the input and output triangular membership function§, cartesian or joint space. If the input motion is specified in
respectively. In Table |, three sets of paramet@?s (%, I3)  cartesian space, the input positiogs and velocitiesq, for

for the fuzzy rule are obtained from three sampled motiong, n-joint robot manipulator will be mapped to corresponding

and sent for generalization by the CMAC. In the CMACjoint positionsg;., - -+, g and joint velocities;y, -« -, Gn

fo_l:rr] memory Iocaltlon:i_ are useld to_ stot:etone fu2d;y partafme\t,% an inverse kinematic transformation; if the input motion
with one memory flocation overiapping between adjacent 1uzgy specified in joint space, this transformation will be unnec-
parameters. After successful learning, the CMAC can gener%tse

o sary. The learning process will be performed only once to
sets of parameters within the range expandedfby 0y, ), deal with classes of robot motions. The algorithm for learning
such as the outputB; 33 and % g7 shown in Table I.

to govern classes of motions is as follows.
Algorithm for Learning to Govern Classes of Motiohgarn
D. Learning to Govern Classes of Motions to govern classes of motions for multijoint robot manipulators

The process of learning to govern classes of motions, shoffR"d Poth th? FNN and CMAC. )
in Fig. 5, can be divided into two stages, one involving the Step 1) Initialize both the FNN and CMAC by choosing

FNN and the other the CMAC. In the first stage of learning, initial values of parameterg, b, c) for the input
sampled motions will be selected from a class of motions and output membership functions in the FNN and
and sent to the FNN. Here, we assume that stability and by setting all the weights in the CMAC to zero.
convergence of the FNN in learning to govern each sampledStep 2) Select sampled motions from a class of motions
motion are guaranteed, and these issues are well dealt with and use the FNN to learn to govern the sam-
in previous research [4], [15]. Proper parameters of the FNN pled motions. Proceed with the learning process
will then be obtained for each of the sampled motions via until errors are within the tolerancey following
the learning process described in Section IlI-B. In the second the procedure described in Section IlI-B. Send the
stage of learning, these parameters will be used as training parameters derived for the input and output mem-

patterns to set up the CMAC following the procedure described bership functions to the CMAC.
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CMAC CMAC
lParameters of the FNN l K po K 4
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" Local Local Controller
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Fig. 7. The block diagram for generalization capability comparison. (a) Fuzzy rule. (b) Controller gain. (c) Torque.

Step 3) Use the parameters derived in Step 2) as trainingt that intuitive to choose proper sets fif, and K for
patterns for the learning in the CMAC. Proceedjeneralization among a number of various combinations of
with the learning process until errors are withink, and Ky sets that perform nicely in governing a group
the tolerance:. following the procedure describedof motions. On the other hand, the qualitative feature of
in Section IlI-C. the fuzzy rule makes it easier to distinguish a linguistic

Step 4) If the parameters generated by the CMAC fail teariable small from large. In the simulations, first a set
provide acceptable performance for an arbitrargf sampled motions were chosen spreading evenly in the
motion in the class of motions, go back to Step 2 faobot workspace, and the system in Fig. 7(a) without the
learning to govern more sampled motions aroun@MAC was then used to govern these sampled motions. After

that motion. successful governing of the sampled motions was achieved
o ._ _ via proper learning, the fuzzy parameters of the FNN and
E. Generalization Capability Comparison the generated torques from the local controller were sent

In this section, the generalization capability based on usif@f fuzzy rule and torque generalization in Fig. 7(a) and
qualitative fuzzy rules and quantitative numerical data will b¢), respectively. Thus, the same accuracy was reached in
investigated. In Fig. 7, we show the block diagram for threg@overning the sampled motions by applying both schemes
kinds of generalization: fuzzy rule, controller gain, and torqué? Fig. 7(@) and (c). The same CMAC neural network is
Intuitively, generalization in the higher level of a controemployed to generalize the fuzzy parameters and torques for
system is less sensitive to system variations. In [9], Juiigese two kinds of generalization and some test motions,
and Hsia demonstrate via simulations that in the applicatigifferent from the sampled motions, were used to evaluate
of the neural network for nonlinearity compensation in robdheir generalization capabilities. The results show that fuzzy
control, significant performance improvements can be obtainéde generalization performed much better than torque general-
when the compensation is performed at the command lei&tion in governing the test motions and torque generalization
instead of at the torque level. Take the block diagram f@ven resulted in quite large tracking errors for some test
torque generalization in Fig. 7(c) for example. In Fig. 7(c)notions. It indicates that the generalization of the qualitative
the CMAC generates torques to govern the robot manipulafozzy rules is more effective than that of the quantitative
directly without the modulation of the local controller. Thuspumerical data.
the CMAC may demand very high network resolution to
provide precise torque commands to deal with variations
in robot dynamics; when a small deviation in torque oc-
curs, the system performance will be seriously affected. ThisTo demonstrate the effectiveness of the proposed approach,
phenomenon, however, is less evident in the higher lev@mulations emulating ball carrying were performed. Fig. 8(a)
generalization, because the system, in some sense, is nbrews the setup for this ball carrying simulation and a two-
robust. joint robot manipulator is used to carry balls of various weights

Simulations were performed for generalization capabilifp Paskets of various heights with various velocities. The
comparison based on using a two-joint robot manipulatdfynamic equations for this two-joint planar manipulator, as
shown in Fig. 8. The performances of the fuzzy rule andhown in Fig. 8(b), are expressed as follows:
torque generalization in Fig. 7(a) and (c) were evaluated. N N . ..

We consider the controller gain generalization in Fig. 7(b) 71 =Hi161 + Hioby — HO3 —2H6,6, + G (14)
is not suitable for the generalization purpose because it is T = Ha10) + Hyobla + HO? 4+ G, (15)

IV. SIMULATION
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The motions needed to perform these different ball carry-
ing tasks are grouped into classes of motions according to
movement distance, velocity, and load. The ranges for these
indexes specifying the motions adéstance € [0.2, 1.2] (m),
velocity € [0.5, 3] (m/s), andload € [0.5, 5] (kg). Because
\ the motions are specified in Cartesian space, they are mapped

Posture i into joint space via an inverse kinematic transformation. There
are four inputs [one positiory{) and one velocityd;.) for each
joint] and two outputs for two motion commands,{,) in the
FNN. For each joint, we assign three linguistic grades for each
of the two input variablesg, and¢,., and the corresponding
fuzzy rules are formulated in the form of fuzzy conditional
statements

2 Posture 1

Initial posture

Posturen

(@
Rule: IF ¢, is A; and g, is B; THEN C,,, is Cy, (26)

Ball (Mass M}
wherei, j =1---3andk =1.--9, and 4;, B;, andC},
represent linguistic variables. Therefore, for each joint in the
FNN, there are two nodes in Layer 1, six nodes in Layer
2, nine nodes in Layers 3 and 4, and one node in Layer
5. Consequently, altogether 90 parameters for two joints are
sent to the CMAC for learning, because three parameters are
needed in each of the six input membership functions and
nine output membership functions. The learning ratand

the tolerancec; were chosen to be 0.005 and 0.001, and
gains in (9) chosen tds, = 10 ntm/rad andGy = 350

(b) nt-m/(rad/s), respectively. In general, several hundred learning
Fig. 8. (a) The setup for ball carrying simulation. (b) The two-joint roboFrIaIS were used for learning to govern one sampled motlon.
manipulator. For each of the 90 parameters sent from the FNN, in the

CMAC the sensory layer for input vectofd, v, m) and the
association layer for association cell vectors include 40 and

where 2000 cells, respectively. The number of weights contributing to
the output vector was chosen tobe- (5, 5, 5) for (d, v, m).
Hyy =myl? 4+ I+ m3If + 155 + 20115 cos (6)] Thus, each output vecto)(,,) in the response layer connects
+15 (16) 125 = 5 x 5 x 5 cells. The hash-coding technique was not
Hyp =m3l2 + I3 (17) used in the mapping. The learning rateand tr_le tolerance _
ok k2 e €. were chosen to be 0.01 and 0.001, respectively. The gains
Hip =myliley cos(02) + male; + 1 (18)  of the local controller in (1) were set t&, = 20 and 2
Hy =Hp (19) ntm/rad andK,; = 8 and 1 ntm/(rad/s) for joints one and
H =m3L 1}, sin (62) (20) two, respectively.
Gy =mylerg cos (61) +mig[ls, cos (6, + 62) _Flg. 9 shovys the S|mula'_[|on results _under: _1) different
distance requirements; 2) different velocity requirements; 3)
+ 11 cos (61)] (21) " gitferent load requirements; and 4) different distance, velocity.
Ga =mjlig cos (61 + 62) (22)  and load requirements. In Fig. 9(a), motions of four different
and movement distances with the same movement velocity and
ms =ms + M (23) load were simulated. The reference motions in the upper-left

box are desired motions used for reference. Those in the upper-
(24) right box are motions generated by using fuzzy parameters

from the CMAC: two of them are sampled motions used for

I3 =L +ma(lsy — L) + M(lo = 1%)° (25) learning, indexed byE,” and the other two are motions using

fuzzy parameters generalized from those learned ones, indexed

with m; = 2.815 kg, me = 1.640 kg, i = 0.30 m, by"“G.” InFig. 9(a), the motions generated using the proposed
lpb =032 m, Iy, = 015 m, I, = 0.16 m, andl; = approach capture the behaviors of the reference motions well.
I, = 0.0234 kgm?. The effect of gravity was ignored for The maximum position error for theL” motions is about
simplicity in the simulation. The inclusion of the gravity term0.4 cm and for the G” motion is about 1 cm. Corresponding
will not affect the simulation results much and its effect isnotion command€’,,,; andC,,,» are shown in the lower two
usually compensated for via feedforward or other means oxes of Fig. 9(a). To note that, the proposed scheme bends
robot control. the motion tracks near the ends, as shown at the upper-right

« _ Mol + Ml

c2 m;
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Fig. 9. Simulation results under (a) different distance requirements, (b) different velocity requirements, (c) different load requiremettifferert
distance, velocity, and load requirements.

box in Fig. 9(a). This phenomenon occurs because the schdow different movement velocities with the same movement
did not fully accomplish a salient braking in the end of thdistance and load were simulated. The velocity traces of the
motion tracking and could be diminished via further learning imotions generated using the proposed approach also emulated
motion governing. Analogously, the human also demonstraté®se of the reference motions well. The maximum velocity

a similar behavior in performing fast movements: an overshoatror for the ‘" motions is about 10 cm/s and for the:"

in the end of the movement [26]. In Fig. 9(b), motions omotion is about 30 cm/s. In Fig. 9(c), motions of four different
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loads with the same movement distance and velocity wedfeom the preliminary simulation results based on this concept,
simulated. As shown in the upper-right box of Fig. 9(c), the vave found that motions with different movement distances,
locity traces of the four motions generated using the proposeelocities, and loads may belong to the same class. On the
approach are very close. And their corresponding positimther hand, motions with the same distances or loads may be
traces almost coincide with the reference motions shown in timedifferent classes. It demonstrates that motion classification
upper-left box of Fig. 9(c). To further demonstrate the effefor learning does not correspond to only the kinematic or
of generalization, we also simulated motions that are differetiynamic features. In future work, it may demand further
from the sampled motions in movement distance, velocitivestigations on the search of proper trajectory descriptor and
and load. As shown in Fig. 9(d), the two generalized motiorm the classification of general motions in the entire learning
approximate the reference motions well in both position argpace.

velocity.
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