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Coverage for Robot Learning Control
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Abstract—In robot learning control, the learning space for
executing general motions of multijoint robot manipulators is
quite large. Consequently, for most learning schemes, the learning
controllers are used as subordinates to conventional controllers
or the learning process needs to be repeated each time a new
trajectory is encountered, although learning controllers are con-
sidered to be capable of generalization. In this paper, we propose
an approach for larger learning space coverage in robot learning
control. In this approach, a new structure for learning control is
proposed to organize information storage via effective memory
management. The proposed structure is motivated by the con-
cept of human motor program and consists mainly of a fuzzy
system and a cerebellar model articulation controller (CMAC)-
type neural network. The fuzzy system is used for governing a
number of sampled motions in a class of motions. The CMAC-
type neural network is used to generalize the parameters of
the fuzzy system, which are appropriate for the governing of
the sampled motions, to deal with the whole class of motions.
Under this design, in some sense the qualitative fuzzy rules in the
fuzzy system are generalized by the CMAC-type neural network
and then a larger learning space can be covered. Therefore, the
learning effort is dramatically reduced in dealing with a wide
range of robot motions, while the learning process is performed
only once. Simulations emulating ball carrying under various
conditions are presented to demonstrate the effectiveness of the
proposed approach.

Index Terms—CMAC-type neural network, fuzzy system, hu-
man motor program, learning space coverage, robot learning
control.

I. INTRODUCTION

T HE dynamics of robot manipulators are, in general,
nonlinear and complex. Therefore, conventional fixed-

gain, linear feedback controllers are not capable of effectively
controlling movements of multijoint robot manipulators un-
der different distance, velocity, and load requirements. The
nonlinear dynamic interaction in multijoint movements can
be compensated for through the use of feedback. To achieve
better compensation for dynamic interaction in approaches
using feedback for conventional robot control (e.g., the com-
puted torque method), a complete, nonlinear dynamic model
describing the robot manipulator is needed [6]. The use
of a complicated nonlinear dynamic model makes real-time
implementation difficult [16]. Moreover, it is by no means an
easy task to identify the model parameters accurately. On the
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other hand, if a learning controller is used, the consequences
of using incomplete models and inaccurate model parameters
may not be very significant. Because they are capable of
tackling highly complex dynamics without explicit model
dependence and identification, learning controllers are an
attractive alternative in robot motion control [10], [24].

Two well-known types of learning controllers for robot
motion control are artificial neural networks and fuzzy sys-
tems. Both are biologically inspired and intended to model
human experience [25], [28]. The structure of artificial neural
networks is modeled after the organization of the brain,
although the similarity between the two is actually slight
[25]. On the other hand, fuzzy systems are meant to encode
pieces of knowledge presented by experts [13], [17], [24].
In some previous research involving the application of these
two types of learning controllers, they are used to assist
in the control of a robot manipulator, while a conventional
control algorithm, e.g., PD or PID control, is responsible
for the major portion of the control [14], [16], [18]. In this
approach, the conventional control algorithm brings the system
close to the desired state and the learning mechanism then
compensates for the remaining error. On the other hand, some
systems use learning algorithms alone to execute the control.
However, although these learning controllers are considered to
be capable of generalization, most of them need to repeat the
learning process each time a new trajectory is encountered
[11]. Otherwise, a neural network will consist of a huge
number of neurons or a fuzzy system will require too many
rules because the learning space needed to handle arbitrary
trajectories is too large.

To sum up, one major problem in using learning controllers
is that the learning space for executing general motions of
multijoint robot manipulators is too large [20], [22]. In this
paper, we propose an approach for larger learning space
coverage in robot learning control. In this approach, a new
structure for learning control is proposed to organize in-
formation storage via effective memory management. The
proposed structure is motivated by the concept of human
motor program and consists mainly of a fuzzy system and a
cerebellor model articulation controller (CMAC)-type neural
network. The fuzzy system is used for governing a number
of sampled motions in a class of motions. To allow for
automatic adjustment of the system’s parameters, the fuzzy
system will be implemented with the structure of a fuzzy-
neural network [4], [15]. The CMAC-type neural network is
used to generalize the parameters of the fuzzy system, which
are appropriate for the governing of the sampled motions,
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Fig. 1. A simplified human motor control block diagram.

to deal with the whole class of motions. One reason for
adopting the CMAC-type neural network rather than another
type of neural network is that its learning for certain motions
will not affect that for other motions too much [1]. Thus,
training patterns can be added or deleted easily according to
the performance. In addition, this type of network has a strong
generalization capability and simple structure. Under this
design, in some sense the qualitative fuzzy rules in the fuzzy
system are generalized by the CMAC-type neural network,
and then a larger learning space can be covered. Therefore,
the learning effort is dramatically reduced in dealing with
a wide range of robot motions, while the learning process
is performed only once. Biological backgrounds of human
motor program are discussed in Section II. The proposed
approach and a robot learning control scheme based on it are
described in Section III. Simulations emulating ball carrying
with various distances, velocities and loads that demonstrate
the effectiveness of the proposed approach are described in
Section IV. Finally, discussions and conclusions are stated in
Section V.

II. HUMAN MOTOR PROGRAM

The proposed approach is motivated by the concept of
human motor program, which is derived from the study
of human movement and has stimulated research in human
control strategies [3], [5], [7], [12], [19], [21], [26]. Fig. 1
shows a simplified human motor control block diagram, which
governs human limb movements. In Fig. 1, we see that human
movement is governed by a hierarchical structure [11], [21].
According to different demands, the central nervous system
(CNS) makes movement plans. Appropriate motor commands
are then generated and sent to the peripheral neuromotor
system, which modifies the motor commands via sensory
feedback. The peripheral neuromotor system behaves as a
local controller that adapts to different movements, loads,
and environments in addition to accepting commands from
the CNS [8]. Finally, the modified commands are sent to the
muscular-skeletal system for movement execution. With this
hierarchical structure, the difficulty of performing complex
movements can be shared by the CNS at the higher level and
the local controller at the lower level.

Because feedback processing in the human motor control
system is slow, long delays are experienced in the transfer of
sensory information to the higher level of the hierarchy. For
slow movement, long delays may cause no serious problems
when feedback control is employed by the higher level of the
hierarchy; however, the effect of delays cannot be ignored

in dealing with fast movement. Therefore, open-loop control
might be more appropriate for governing fast human move-
ment and a concept of motor program was proposed [19], [21].
The basic idea in human motor program is that movement
demands are specified by the CNS in advance and then
executed in an essentially open-loop manner. When activated,
the motor program generates motor commands and sends them
to the peripheral neuromotor system for execution. Where a
class of movements is concerned, the storage of complex motor
programs for each movement may not be appropriate. Instead,
the motor program should be generalized, simple to operate,
and efficient in storage. Thus, a single motor program will
be enough to accommodate a wide variety of movements.
Proper parameters corresponding to a particular movement
can then be supplied to the motor program in execution. In
other words, the motor program should beabstract and the
corresponding control parameters should be efficiently stored
and manipulated [21]. Although there is still doubt concerning
whether the control strategy employed by the CNS is in
fact open-loop and it is not yet clear which parameters of
movement motor programs control [19], the concept of human
motor programs is attractive.

III. PROPOSEDAPPROACH

In the proposed approach, we take advantage of the merits
of a fuzzy system and a CMAC-type neural network to emulate
a motor program with the appealing characteristics described
above. A fuzzy system is used to represent the abstract motor
program and a CMAC-type neural network is used to manage
the parameters. Through fuzzy logic and representation, the
fuzzy system manipulates information in a linguistic way. In
a sense, the fuzzy system encodes knowledge via qualitative
rules rather than via precise quantitative description. This
feature makes the fuzzy system an appealing choice for
emulating a motor program. The parameters specifying the
fuzzy rules for governing sampled motions are stored and
manipulated by the CMAC-type neural network to deal with
a wide range of motions. The combination of a fuzzy system
and a neural network in this way is novel and exploits the
merits of the motor program.

In order to simplify the complexity in learning, we also clas-
sify robot motions according to their features in advance. As an
example, a group of arbitrary robot motions can be categorized
into a class of motions of various movement distances with
the same movement velocity and load or a class of motions of
various movement velocities with the same movement distance
and load, etc. Under this arrangement, a class of motions with
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the same feature are expected to correspond to similar fuzzy
parameters. Consequently, the data with which the CMAC-
type neural network, which executes the generalization, will
have to deal will exhibit less nonlinearity. Further discussions
on motion feature selection will be given in Section V. Pa-
rameters of the fuzzy system for various classes of motions
can also be incorporated into the same neural network at the
expense of greater memory requirements. For instance, the
neural network can store parameters corresponding to a group
of motions which reach different destinations with different
velocities and loads. Naturally, a fuzzy system is not the only
choice for representing a motor program. For instance, the
gains of a conventional PD or PID controller or the torques
to move the robot links can also be generalized by a neural
network to govern various robot motions. However, we believe
that generalization of qualitative fuzzy rules is more effective
than that of quantitative numerical data, because the former in-
volves the generalization of abstract representations and tends
to cover a larger learning space. In Section III-E, discussions
are given for comparing the generalization capability based on
using qualitative fuzzy rules and quantitative numerical data.

A. Robot Learning Control Scheme

At the current stage of the study, we do not intend to
develop a learning control scheme that can govern general
motions of general multijoint robot manipulators. Instead, we
will concentrate on demonstrating the effect of the combination
of the fuzzy system and the CMAC-type neural network
in our proposed approach for learning space coverage. For
this purpose, a robot learning control scheme based on the
proposed approach is proposed and its conceptual organization
shown schematically in Fig. 2. In Fig. 2, the inputs to the
system are motions from classes of motions with the same
features. For each motion from a class of motions, its trajectory
descriptor, e.g., movement distance, velocity, load, or other
features, is used as an index and inputted into the CMAC-
type neural network (CMAC). A set of parameters will then
be solicited from the CMAC and sent forward to the fuzzy
system. With the set of parameters representing the fuzzy
rules, the fuzzy system can govern the motion, along with the
desired position and velocity trajectories of the motion, which
are also inputted to the fuzzy system. The fuzzy system is
implemented in the form of a fuzzy neural network (FNN) and
generates motion commands sent forward to a local controller.
In turn, the local controller, which emulates the peripheral
neuromotor system shown in Fig. 1, modulates the motion
command via sensory feedback and uses the resultant signal to
move the robot manipulator [27]. According to some biological
evidence, human motor program may provide only the desired
position for movement control [19]. Therefore, to simplify the
design of the learning scheme, only the desired position and no
desired velocity is specified in the motion command. A simple
position control law with linear damping is then adopted for
the local controller [23]

(1)

where stands for the motion command vector,and are

Fig. 2. Conceptual organization of a robot learning control scheme.

the actual position and velocity vectors obtained from sensory
feedback, and and are symmetric positive definite gain
matrices for stability considerations [6].

In the proposed scheme, in some sense, the intelligence for
motion governing is mainly attributed to the FNN and CMAC,
and the local controller deals with the sensory feedback
only. Thus, the success of the proposed scheme depends on
designing the FNN and CMAC to generate proper motion
commands for various motions in the classes. Proper learning
processes are also imperative for determining the weights in
the networks. The structures and learning processes for the
FNN and CMAC will be discussed in Sections III-B and C,
respectively. Two stages of learning, the first involving the
FNN and the second the CMAC, are needed for the system to
learn to govern classes of motions. In the first stage, proper
parameters of the FNN will be learned for sampled motions.
These parameters will then be used as training patterns to set
up the CMAC in the second stage of learning. Later, after
learning the CMAC will supply proper parameters to the FNN
for the governing of input desired motions. The interaction
between the FNN and the CMAC in learning classes of
motions is described in Section III-D.

B. Implementation of the FNN

The fuzzy system is implemented in the form of a fuzzy-
neural network, as shown in Fig. 3. An FNN is designed
to realize the process of fuzzy reasoning using the structure
of a neural network. The parameters of fuzzy reasoning are
expressed by the connection weights or node functions of the
neural network [4], [15]. The representation of a fuzzy system
using a fuzzy-neural network enables us to take advantage of
the learning capability of the neural network for automatic
tuning of the parameters in the fuzzy system. In Fig. 3, the
inputs to the FNN are the position and velocity trajectories
of a sampled motion and the output is the motion command.
We chose an FNN with a structure similar to that in [4]. The
reason for this choice is that the numbers of fuzzy rules and
membership functions for input and output are prespecified
in this type of FNN. Thus, for various motions there are the
same number of fuzzy parameters with the same attributes.
Consequently, these fuzzy parameters are appropriate to be
generalized by the neural network to deal with a class of
motions. On the other hand, an FNN with a variable structure
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Fig. 3. The structure of the FNN.

Fig. 4. The fuzzy inference process in the FNN.

(such as that in [15]), is flexible and effective in learning.
However, in this type of FNN, the number of fuzzy parameters
may vary with different robot motions. This feature makes this
type of FNN unsuitable for the present application in which
the fuzzy parameters must be generalized.

The structure of the FNN adopted here consists of five layers
of nodes, which are of the same type within the same layer.

The fuzzy inference process is as shown in Fig. 4. Each of the
five layers performs one stage of the fuzzy inference process,
as described below.

Layer 1: This layer is the input layer, and inputs are
transmitted to the next layer directly without any computation.
In Fig. 3, there are two nodes for two inputs and of
motions of a single degree-of-freedom.
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Fig. 5. Learning processes for the proposed approach.

Layer 2: This layer is intended for the input membership
functions. Each node in this layer has a node function

(2)

where is a membership function and is the
input to node. The triangular membership function is adopted,
as described below.

otherwise.

(3)

Different membership grades at the same crisp point can be
obtained by adjusting the parameter set ( ).

Layer 3: This layer is intended for the implementation of
the fuzzy rules. Each node in this layer corresponds to a rule,
which is defined as a fuzzy conditional statement of the form

Rule: IF is and is THEN is (4)

where and are fuzzy sets representing the inputs,
represents the output, and, , and represent linguistic
variables, such as small, medium, and large. The number of
rules involved in the input–output relation in our design is
prespecified. In this layer, each node also outputs the firing
strength of the rule by performing a differentiable softmin
operation [4]

(5)

where is the output of theth node in Layer 2, connected to
the th node in Layer 3, and is a constant. Whenapproaches
infinity, the softmin operator becomes a min operator; for
finite , is differentiable, which is required in the learning
process.

Layer 4: This layer is intended for the output membership
functions. Each nodein this layer performs an inverse of
to locate the -coordinate of the centroid of the membership
function by using the local mean-of-maximum method
(LMOM) [4]

(6)

Both and will be needed in the defuzzification process
performed by Layer 5. For the triangular output membership
function adopted, the LMOM gives

(7)

which yields the median of the triangular membership function
on the axis.

Layer 5: This layer is the output layer, which has as many
nodes as there are output action variables. In Fig. 3, only
one node is needed for a single motion command. The
defuzzification approach adopted is the weighted averaging
method [13]

(8)

Because the number of rules in Layer 3 is prespecified and
weights for the input and output layers (Layers 1 and 5) are
fixed, the parameters to learn in this FNN are the modifiable
weights present on the input links to Layers 2 and 4, which
correspond to the input and output membership functions.
When the FNN learns the parameters of the input and output
membership functions for generating the motion command
corresponding to a sampled motion, an error rate, related to
the motion command and the resultant motion, is first
specified in the last layer (Layer 5). This error rate is then
backpropagated to adjust the parameters from layer to layer
sequentially. Because a concise form of the inverse dynamic
model of the robot manipulator is not available, the error rate
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cannot be obtained directly by differentiating the error between
the desired motion and the actual motion relative to the motion
command. Instead, as indicated in the learning process shown
in Fig. 5, we use the combined feedback error of position
( ) and velocity ( ) between the desired and actual motions,
denoted as to derive the error rate
[2], [11]

(9)

where is a learning rate and and are gains that result
in a stable system. The error rate in (9) is esti-
mated, but not exact, for describing the differential relationship
between the motion command and the resultant motion.
Nevertheless, the results in [2], [11] (and also ours) show that
the use of this error rate is appropriate for the learning. With
the error rate in (9) and some straightforward manipulation,
we can derive updates of the parameters in Layers 2 and 4.
In the training stage, the parameters are obtained and sent to
the CMAC. After the CMAC is set up, the fuzzy parameters
will be supplied from the CMAC to the FNN. Details of the
learning processes will be discussed in Section III-D.

C. Implementation of the CMAC

The CMAC-type neural network has been successfully used
in learning control functions [1]. It has also been applied to
learn robot dynamics for controlling robot tasks [16]. The
CMAC is a trainable discrete linear network pattern classifier
that emulates the behavior of human beings in dealing with
stimuli and responses. The CMAC computes control functions
by referring to a table rather than by solving analytic equations.
Function values are stored in a distributed fashion such that the
value of a function at any point in input space is derived by
summing the contents over a number of memory locations.
A unique feature of the CMAC is a mapping algorithm
which converts the distance between input vectors into the
degree of overlap between sets of data where the function
values are stored. Thus, the CMAC serves our purposes
well, because mappings can be provided to generate proper
parameters for a whole class of motions based on the finite
sets of parameters for the sampled motions used as training
patterns.

The basic concept behind the CMAC can be represented by
a pair of mappings (as shown in Fig. 6) [1]

(10)

(11)

where represents the set of input vectors,represents the set
of association cell vectors, andrepresents the set of response
output vectors. The first mapping maps the input data onto a
finite set of intermediate states called association cells. The
mapping is generally a fixed relation since it is a process of
indexing the input data. The number of units ofthat become
excited in response to both of two different inputsand
decreases monotonically as the similarity betweenand
decreases. This arrangement produces generalization between

Fig. 6. Basic CMAC mappings.

nearby input vectors and no generalization between distant
input vectors. In order to reduce the memory size of association
cells for a practical mapping, Albus [1] proposed a procedure
for hash-coding, which is basically a uniform random mapping
from a larger memory to a smaller one. The second mapping
depends on the values of weights, assigned to every association
cell, which will be modified during the training stage. These
weights can be adjusted by the difference between the desired
output and the produced output. This mapping then sums up
the weights attached to the active association cells to produce
the output .

To demonstrate how to store the sets of parameters corre-
sponding to a class of motions into the CMAC, we use a group
of motions of different movement distances with different
velocities and loads as an example. The input vectorwill
contain three elements for indexing these motions:

(12)

where stands for the distance,for the velocity, and for
the load. Via the mappings of the network, the input vector
should correspond to an output response consisting of a desired
set of parameters. Thus, we need to find appropriate weights
to attach to the active association cells in by utilizing
the sets of parameters for the sampled motions as training
patterns. However, when the training patterns are stored into
the network, the set of parameters generated by the CMAC
may be different from the set of desired parameters because
of memory overlapping in the association cells in the first
mapping from the input vector to the association cells in (10).
Thus, a learning process is needed to modify the weights
through an updating function using the difference between the
set of desired parameters and that generated by the CMAC for
each training pattern. The updating function is as follows:

(13)

where denotes the stage of the training process,is the
learning rate, is the number of weights contributing to the
output, and stand for vectors of weights before and
after the th stage of learning, respectively, andand
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TABLE I
AN EXAMPLE OF HOW THE FUZZY PARAMETERS IN THE FNN ARE GENERALIZED BY THE CMAC

stand for desired and actual output vectors, respectively. The
learning process will terminate when the difference between
the sets of parameters generated by the network and the desired
sets of parameters for the sampled motions are within a certain
tolerance .

With the FNN and CMAC implemented, Table I shows
an example of how the fuzzy parameters in the FNN are
generalized by the CMAC. In Table I, there is one fuzzy rule
in the form: IF is THEN is , where and are
fuzzy sets representing the input and output, respectively, and

and represent linguistic variables. Assume thatand
correspond to only one membership function with
and , described in (3), standing for the parameters
for the input and output triangular membership functions,
respectively. In Table I, three sets of parameters ( )
for the fuzzy rule are obtained from three sampled motions,
and sent for generalization by the CMAC. In the CMAC,
four memory locations are used to store one fuzzy parameter
with one memory location overlapping between adjacent fuzzy
parameters. After successful learning, the CMAC can generate
sets of parameters within the range expanded by ( ),
such as the outputs and shown in Table I.

D. Learning to Govern Classes of Motions

The process of learning to govern classes of motions, shown
in Fig. 5, can be divided into two stages, one involving the
FNN and the other the CMAC. In the first stage of learning,
sampled motions will be selected from a class of motions
and sent to the FNN. Here, we assume that stability and
convergence of the FNN in learning to govern each sampled
motion are guaranteed, and these issues are well dealt with
in previous research [4], [15]. Proper parameters of the FNN
will then be obtained for each of the sampled motions via
the learning process described in Section III-B. In the second
stage of learning, these parameters will be used as training
patterns to set up the CMAC following the procedure described

in Section III-C. After these two stages of learning, fuzzy
parameters will be manipulated and supplied by the CMAC
to the FNN for the governing of input desired motions. The
learning in the FNN and the CMAC is, in fact, interactive.
When the fuzzy parameters generated by the CMAC are not
appropriate for governing a particular motion, the FNN can
provide more training patterns by learning to govern more
sampled motions around that motion to increase the resolution
of the CMAC. In other words, the FNN and the CMAC will
cooperate to yield homogeneous reliable performance for a
whole class of motions.

In the application of the proposed scheme to the control of
multijoint robot manipulators, input motions may be specified
in Cartesian or joint space. If the input motion is specified in
Cartesian space, the input positions and velocities for
an -joint robot manipulator will be mapped to corresponding
joint positions and joint velocities
via an inverse kinematic transformation; if the input motion
is specified in joint space, this transformation will be unnec-
essary. The learning process will be performed only once to
deal with classes of robot motions. The algorithm for learning
to govern classes of motions is as follows.

Algorithm for Learning to Govern Classes of Motions:Learn
to govern classes of motions for multijoint robot manipulators
using both the FNN and CMAC.

Step 1) Initialize both the FNN and CMAC by choosing
initial values of parameters for the input
and output membership functions in the FNN and
by setting all the weights in the CMAC to zero.

Step 2) Select sampled motions from a class of motions
and use the FNN to learn to govern the sam-
pled motions. Proceed with the learning process
until errors are within the tolerance following
the procedure described in Section III-B. Send the
parameters derived for the input and output mem-
bership functions to the CMAC.
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(a) (b)

(c)

Fig. 7. The block diagram for generalization capability comparison. (a) Fuzzy rule. (b) Controller gain. (c) Torque.

Step 3) Use the parameters derived in Step 2) as training
patterns for the learning in the CMAC. Proceed
with the learning process until errors are within
the tolerance following the procedure described
in Section III-C.

Step 4) If the parameters generated by the CMAC fail to
provide acceptable performance for an arbitrary
motion in the class of motions, go back to Step 2 for
learning to govern more sampled motions around
that motion.

E. Generalization Capability Comparison

In this section, the generalization capability based on using
qualitative fuzzy rules and quantitative numerical data will be
investigated. In Fig. 7, we show the block diagram for three
kinds of generalization: fuzzy rule, controller gain, and torque.
Intuitively, generalization in the higher level of a control
system is less sensitive to system variations. In [9], Jung
and Hsia demonstrate via simulations that in the application
of the neural network for nonlinearity compensation in robot
control, significant performance improvements can be obtained
when the compensation is performed at the command level
instead of at the torque level. Take the block diagram for
torque generalization in Fig. 7(c) for example. In Fig. 7(c),
the CMAC generates torques to govern the robot manipulator
directly without the modulation of the local controller. Thus,
the CMAC may demand very high network resolution to
provide precise torque commands to deal with variations
in robot dynamics; when a small deviation in torque oc-
curs, the system performance will be seriously affected. This
phenomenon, however, is less evident in the higher level
generalization, because the system, in some sense, is more
robust.

Simulations were performed for generalization capability
comparison based on using a two-joint robot manipulator,
shown in Fig. 8. The performances of the fuzzy rule and
torque generalization in Fig. 7(a) and (c) were evaluated.
We consider the controller gain generalization in Fig. 7(b)
is not suitable for the generalization purpose because it is

not that intuitive to choose proper sets of and for
generalization among a number of various combinations of

and sets that perform nicely in governing a group
of motions. On the other hand, the qualitative feature of
the fuzzy rule makes it easier to distinguish a linguistic
variable small from large. In the simulations, first a set
of sampled motions were chosen spreading evenly in the
robot workspace, and the system in Fig. 7(a) without the
CMAC was then used to govern these sampled motions. After
successful governing of the sampled motions was achieved
via proper learning, the fuzzy parameters of the FNN and
the generated torques from the local controller were sent
for fuzzy rule and torque generalization in Fig. 7(a) and
(c), respectively. Thus, the same accuracy was reached in
governing the sampled motions by applying both schemes
in Fig. 7(a) and (c). The same CMAC neural network is
employed to generalize the fuzzy parameters and torques for
these two kinds of generalization and some test motions,
different from the sampled motions, were used to evaluate
their generalization capabilities. The results show that fuzzy
rule generalization performed much better than torque general-
ization in governing the test motions and torque generalization
even resulted in quite large tracking errors for some test
motions. It indicates that the generalization of the qualitative
fuzzy rules is more effective than that of the quantitative
numerical data.

IV. SIMULATION

To demonstrate the effectiveness of the proposed approach,
simulations emulating ball carrying were performed. Fig. 8(a)
shows the setup for this ball carrying simulation and a two-
joint robot manipulator is used to carry balls of various weights
to baskets of various heights with various velocities. The
dynamic equations for this two-joint planar manipulator, as
shown in Fig. 8(b), are expressed as follows:

(14)

(15)
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(a)

(b)

Fig. 8. (a) The setup for ball carrying simulation. (b) The two-joint robot
manipulator.

where

(16)

(17)

(18)

(19)

(20)

(21)

(22)

and

(23)

(24)

(25)

with kg, kg, m,
m, m, m, and

kgm . The effect of gravity was ignored for
simplicity in the simulation. The inclusion of the gravity term
will not affect the simulation results much and its effect is
usually compensated for via feedforward or other means in
robot control.

The motions needed to perform these different ball carry-
ing tasks are grouped into classes of motions according to
movement distance, velocity, and load. The ranges for these
indexes specifying the motions are (m),

(m/s), and (kg). Because
the motions are specified in Cartesian space, they are mapped
into joint space via an inverse kinematic transformation. There
are four inputs [one position () and one velocity ( ) for each
joint] and two outputs for two motion commands ( ) in the
FNN. For each joint, we assign three linguistic grades for each
of the two input variables, and , and the corresponding
fuzzy rules are formulated in the form of fuzzy conditional
statements

Rule: IF is and is THEN is (26)

where and , and , , and
represent linguistic variables. Therefore, for each joint in the
FNN, there are two nodes in Layer 1, six nodes in Layer
2, nine nodes in Layers 3 and 4, and one node in Layer
5. Consequently, altogether 90 parameters for two joints are
sent to the CMAC for learning, because three parameters are
needed in each of the six input membership functions and
nine output membership functions. The learning rateand
the tolerance were chosen to be 0.005 and 0.001, and
gains in (9) chosen to nt m/rad and
nt m/(rad/s), respectively. In general, several hundred learning
trials were used for learning to govern one sampled motion.
For each of the 90 parameters sent from the FNN, in the
CMAC the sensory layer for input vectors and the
association layer for association cell vectors include 40 and
2000 cells, respectively. The number of weights contributing to
the output vector was chosen to be for .
Thus, each output vector ( ) in the response layer connects

cells. The hash-coding technique was not
used in the mapping. The learning rateand the tolerance

were chosen to be 0.01 and 0.001, respectively. The gains
of the local controller in (1) were set to and 2
nt m/rad and and 1 ntm/(rad/s) for joints one and
two, respectively.

Fig. 9 shows the simulation results under: 1) different
distance requirements; 2) different velocity requirements; 3)
different load requirements; and 4) different distance, velocity,
and load requirements. In Fig. 9(a), motions of four different
movement distances with the same movement velocity and
load were simulated. The reference motions in the upper-left
box are desired motions used for reference. Those in the upper-
right box are motions generated by using fuzzy parameters
from the CMAC: two of them are sampled motions used for
learning, indexed by “,” and the other two are motions using
fuzzy parameters generalized from those learned ones, indexed
by “ .” In Fig. 9(a), the motions generated using the proposed
approach capture the behaviors of the reference motions well.
The maximum position error for the “” motions is about
0.4 cm and for the “ ” motion is about 1 cm. Corresponding
motion commands and are shown in the lower two
boxes of Fig. 9(a). To note that, the proposed scheme bends
the motion tracks near the ends, as shown at the upper-right
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(a) (b)

(c) (d)

Fig. 9. Simulation results under (a) different distance requirements, (b) different velocity requirements, (c) different load requirements, and (d) different
distance, velocity, and load requirements.

box in Fig. 9(a). This phenomenon occurs because the scheme
did not fully accomplish a salient braking in the end of the
motion tracking and could be diminished via further learning in
motion governing. Analogously, the human also demonstrates
a similar behavior in performing fast movements: an overshoot
in the end of the movement [26]. In Fig. 9(b), motions of

four different movement velocities with the same movement
distance and load were simulated. The velocity traces of the
motions generated using the proposed approach also emulated
those of the reference motions well. The maximum velocity
error for the “ ” motions is about 10 cm/s and for the “”
motion is about 30 cm/s. In Fig. 9(c), motions of four different
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loads with the same movement distance and velocity were
simulated. As shown in the upper-right box of Fig. 9(c), the ve-
locity traces of the four motions generated using the proposed
approach are very close. And their corresponding position
traces almost coincide with the reference motions shown in the
upper-left box of Fig. 9(c). To further demonstrate the effect
of generalization, we also simulated motions that are different
from the sampled motions in movement distance, velocity,
and load. As shown in Fig. 9(d), the two generalized motions
approximate the reference motions well in both position and
velocity.

V. DISCUSSION AND CONCLUSION

One major problem in applying learning controllers to
govern general motions of multijoint robot manipulators is
that the learning space is quite large. To tackle this, we
propose an approach to enlarge learning space coverage by
taking advantage of the merits of a fuzzy system and a
CMAC-type neural network. The combination of the fuzzy
system and the neural network in our design allows fuzzy
rules to be generalized by a CMAC-type neural network.
This means that abstract representations are generalized, and
they tend to cover a larger learning space. Thus, the fuzzy
parameters appropriate for a set of sampled motions can be
generalized to deal with a whole class of motions. As the
proposed scheme can be used to govern a class of motions
with the same feature, possible industrial applications can
be tasks that involve a number of workpieces with different
loads, movement distances, etc. In addition, the scheme also
provides the flexibility that workpieces in the same class can
be added during task execution without repeating the learning
process. Simulations performed verify the effectiveness of
the proposed approach. At the current stage of the study, a
robot learning control scheme based on the proposed approach
is not available for application on general industrial robot
manipulators. Nevertheless, with an appealing capability in
learning space coverage, the proposed approach is with a
potential to achieve the governing of general industrial robot
manipulators by using the learning mechanism as the main
control module.

One point concerning the proposed scheme that deserves
discussion is the feature selection for motion classification. In
the proposed scheme, the choices of distance, velocity, and
load as trajectory descriptors are quite intuitive, although they
are straightforward to serve as descriptors for motion indexing.
Motion classification using these features cannot guarantee that
motions in the same class will correspond to similar fuzzy
parameters. We consider that motions may be classified from
the viewpoint of learning. One possible strategy is to group
into the same class those motions with the same number of
fuzzy rules and similar shapes of membership functions when
governed by using the FNN. Consequently, motions in the
same class are guaranteed to correspond to very similar fuzzy
parameters. Thus, the fuzzy parameters that the CMAC-type
neural network needs to generalize will exhibit much less non-
linearity and then more classes of motions can be incorporated
into the network with a reasonable size of network memory.

From the preliminary simulation results based on this concept,
we found that motions with different movement distances,
velocities, and loads may belong to the same class. On the
other hand, motions with the same distances or loads may be
in different classes. It demonstrates that motion classification
for learning does not correspond to only the kinematic or
dynamic features. In future work, it may demand further
investigations on the search of proper trajectory descriptor and
on the classification of general motions in the entire learning
space.
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