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This paper analyzes the dynamics in an overlapping generations model with the provision of child

allowances. Fertility is an increasing function of child allowances and there exists a threshold

effect of the marginal effect of child allowances on fertility. We show that if the effectiveness of

child allowances is sufficiently high, an intermediate-sized tax rate will be enough to generate

chaotic dynamics. Besides, a decrease in the inter-temporal elasticity of substitution will prevent

the occurrence of irregular cycles. VC 2013 AIP Publishing LLC
[http://dx.doi.org/10.1063/1.4802034]

In the past century fertility has steadily decreased in

many countries over the course of economic growth.

This phenomenon has led economists to worry about the

future tax burden. In order to solve this problem, some

countries start implementing public policies such as child

allowances to raise the fertility rate to increase popula-

tion growth. We follow this policy trend by assuming that

government levies income tax in order to provide child

allowances. With child subsidies, parents will have stron-

ger incentives to have more children since the cost of rais-

ing children becomes lower. Fertility is an increasing

function of child allowances and there exists a threshold

effect of the marginal effect of child allowances on fertil-

ity. We show that if the effectiveness of child allowances

is sufficiently high, an intermediate-sized tax rate will be

enough to generate chaotic dynamics.

I. INTRODUCTION

The phenomenon of the decreased fertility rate in the

past century has led many people to worry about the future

tax burden. As the increased child rearing cost is one of the

major reasons for decline in fertility, many countries started

providing child subsidies (child allowances) to raise the

incentive of having children. Based on an individual-level

panel dataset for all married Israeli women from 1999-2005,

the empirical study of Ref. 1 shows that child subsidies can

cause a significant positive effect on fertility. Other empiri-

cal studies examine the relationship between child allowan-

ces and fertility can be found in Refs. 8 and 6.

In this paper, we develop an overlapping generations

(OLGs) model with population growth and child allowances.

Government levies income tax in order to provide child allow-

ances. Based on the previous empirical studies, we adopt a

fertility function which exhibits a positive relationship

between child allowances and fertility. Theoretical studies

generating a positive relationship between child allowances

and fertility can be found in Refs. 10–12. In particular, there

is a threshold effect of the marginal effect of child allowances

on fertility. If the amount of child allowances is higher (lower)

than the threshold, there will be a diminishing (increasing)

marginal effect of child allowances on fertility.

We find that the effectiveness and the amount of child

allowances are two important determinants to the monotonicity

of the dynamics of the economy and the stability property of

the non-trivial steady state. The provision of child allowances

will cause two negative effects on capital accumulation. First,

the tax rate reduces the after-tax income for the young and this

will reduce savings and capital accumulation. Second, fertility

is raised by the provision of child allowances and this will in

turn raise population growth rate and reduce capital per worker

in the future. The second effect is reinforced if child allowances

have strong effects on fertility. We show that if the effective-

ness of child allowances is large enough, an intermediate-sized

tax rate will be enough to generate chaotic dynamics.

Because the formation of expectation is an important issue

in an OLG model with capital accumulation, we then extend

our model by considering a constant inter-temporal elasticity of

substitution (CES) utility function to examine how expectation

affects inter-temporal decisions and dynamics of capital accu-

mulation. Under a CES utility function, the saving function

depends on the future interest rate and we find that besides the

effectiveness and amount of the child allowances, the inter-

temporal elasticity of substitution in consumption is also an im-

portant factor in determining the dynamic behavior of the econ-

omy. A decrease in the inter-temporal elasticity of substitution

in consumption provides for the stability of the economy. If the

positive effect on stability caused by a lower inter-temporal

elasticity of substitution is smaller than the negative effect on

stability caused by the provision of child allowances, the dy-

namics of capital per worker will become non-monotonic and

the complex dynamics may emerge. In both settings of the util-

ity function, besides illustrating the dynamic property by numer-

ical examples, we also prove the existence and uniqueness of

the non-trivial equilibrium and give conditions for the (non-)

monotonicity of dynamics of capital per worker. Furthermore,

we also provide conditions for the occurrence of Li-Yorke chaos

and the bubbling phenomenon. Therefore, this paper contributes

to the existing literature of fertility by showing that the provision

of child allowances may cause chaotic dynamic behavior.
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The remainder of this paper is organized as follows.

Section II develops an OLG model with child allowances. A

logarithmic utility function is considered in this section. The

stability property of the equilibrium and the monotonicity prop-

erty of the dynamics are examined in Sec. III. A model with a

CES utility function is developed and its dynamic behavior is

analyzed in Sec. IV. Concluding remarks are given in Sec. V.

II. THE MODEL

We consider an infinite-horizon, discrete time OLG model.

Agents live for three periods, corresponding to children, young

agents, and old agents. Each period equals 30 years. Each agent

is endowed with one unit of time in each period. Young agents

use all the time for work to earn the real wage rates (wt) for

consumptions (c1;t) and savings (st). When young agents

become old, they spend all the time for leisure and consume

(c2;tþ1) their savings from the previous period. We consider a

separable utility function as follows:

Uðc1t; c2;tþ1Þ ¼ uðc1;tÞ þ buðc2;tþ1Þ; (1)

where b 2 ð0; 1Þ is the discount factor.

Government levies income tax with the rate of s 2 ð0; 1Þ.
The budget constraints for young and old agents are

c1;t þ st � ð1� sÞwt; (2)

c2;tþ1 � Rtþ1st; (3)

where Rtþ1 represents the gross real return of capital in pe-

riod t þ 1.

We first consider a logarithmic utility function:

uðciÞ ¼ log ci, i¼ 1, 2. Young agents maximize Eq. (1) sub-

ject to Eqs. (2) and (3), together with

c1;t � 0 and c2;tþ1 � 0:

Under the specification of the logarithmic utility function,

the optimal saving decision given by the young agents is in-

dependent of the real interest rate; that is,

st ¼
bð1� sÞwt

1þ b
: (4)

Young agents give birth to children. Government uses

the tax revenue to provide child allowances and runs a bal-

anced budget. Since the child allowance scheme reduces the

cost of raising children, it raises fertility (and therefore popu-

lation growth). Thus, we assume that fertility depends on the

total amount of child allowances ðTtÞ received by each

young individual. A fertility function which is positive de-

pendent of child allowances is also adopted by Ref. 13. With

a balanced government budget constraint, that means

Tt ¼ swt. In particular, we assume that the relationship

between fertility and child allowances is characterized by a

non-decreasing and bounded function,

nðTtÞ ¼
a0 þ a1dT/

t

1þ dT/
t

; (5)

where d; /> 0; 0� a0 < a1; nð0Þ ¼ a0; limw!1 nðwtÞ ¼ a1;

n0ðTtÞ ¼ d/T/�1
t ða1�a0Þ
½1þdT/

t �
2 > 0. Furthermore, n00ðTtÞ< 0 if /� 1

and for any TtS
�T ¼ /�1

dð1þ/Þ

h i1=/
; n00ðTtÞT0 if /> 1. The

parameter a0 represents the fertility rate when there is no

child allowance scheme and a1 is the saturating value of fertil-

ity. Hence, ða1� a0Þ is the maximum increase in fertility with

the implementation of the child allowance scheme. When s¼ 0

(no child allowance scheme), our model is reduced to the tradi-

tional growth OLG model with an exogenous population

growth factor of a0. Parameters d and / measure the effective-

ness of child allowances. If /� 1, there will be a diminishing

marginal effect of child allowances on fertility and nðTtÞ is con-

cave. However, if /> 1, there will exist a threshold of the

amount of child allowances, �T , on the marginal effect of child

allowances on fertility. When child allowances are smaller than
�T , similar to results obtained in the studies which endogenize

fertility choice, the marginal effect of child allowances is

increasing with an increase in the child allowances. But when

the child allowances are higher than �T , there is diminishing

marginal effect of child allowances. That is, the function nðTtÞ
is S-shaped when /> 1. Eq. (5) formation is used by Ref. 14

to represent the relationship between the survival probability to

old age and the level of human capital to study the impact of

longevity on economic growth. Eq. (5) formation is also used

by Ref. 5 to represent the relationship between the efficient

labor of old age and public health spending to examine the pos-

sibility of complex dynamics in an OLG model. It examines

the effect of the dramatic increase in child allowances of the

Israel Defense Forces for the third and higher birth-order chil-

dren on fertility and finds that the fertility of Bedouin and

Muslims is not affected by the increase of child allowances in

Ref. 15. In the following, we will examine the impact of / and

focus our analysis on the case of /> 1.

Let Lt denote the number of young agents in period t.
The dynamics of population of generations is therefore gov-

erned by Ltþ1 ¼ Ltnt. Output ðYtÞ is produced by using capi-

tal ðKtÞ and labor through a Cobb-Douglas function:

Yt ¼ AKa
t L1�a

t , where A > 0 and a 2 ð0; 1Þ, respectively,

represent the total factor productivity and capital share.

Thus, the output per worker ðytÞ can be written as

yt ¼
Yt

Lt
¼ Aka

t ;

where kt is capital per worker in period t. It follows that the

factor prices are

wt ¼ wðktÞ ¼ Að1� aÞka
t ; (6)

Rt ¼ RðktÞ ¼ Aaka�1
t : (7)

III. EQUILIBRIUM

Combining Eqs. (5) and (6) and government budget con-

straint, the fertility can be represented as a function of capital

per worker,

nðktÞ ¼
a0 þ a1d½sAð1� aÞka

t �
/

1þ d½sAð1� aÞka
t �

/ : (8)

The capital market clearing condition implies that Ktþ1 ¼ Ltst.

Using Eqs. (4), (6), and (8), the capital market clearing condi-

tion can be represented by

nðktÞktþ1 ¼ sðktÞ:

023106-2 H.-J. Chen and M.-C. Li Chaos 23, 023106 (2013)
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Therefore, given the initial condition k0, the equilibrium

is composed by the sequence fktgt�0 that satisfies

ktþ1 ¼
bAð1� sÞð1� aÞka

t

ð1þ bÞnðktÞ
; (9)

where nðktÞ is given by Eq. (8).

Substituting Eq. (8) into Eq. (9), the dynamics of capital

per worker can be represented as the following difference

equation:

ktþ1 ¼ g1ðktÞ ¼
ð1� sÞFka

t ½1þ dðsBka
t Þ

/�
Dþ dEðsBka

t Þ
/ ; (10)

where B¼Að1�aÞ;F¼bB;D¼a0ð1þbÞ and E¼a1ð1þbÞ
are all positive. Note that D<E since a0<a1.

A. Dynamics

Steady states of dynamics Eq. (10) are determined by

ktþ1 ¼ kt. There exists a zero (trivial) equilibrium of dynam-

ics Eq. (10) and this zero equilibrium is unstable since

limk!0þ g01ðkÞ ¼ 1 (see Eq. (11) below). In the following

theorem, we show that there exists a unique positive (non-

trivial) steady state ðk�Þ of dynamics Eq. (10). In addition,

we also give the interval of the appearance of k�.
Proposition 1. The dynamics kt 7!ktþ1 in Eq. (10) has a

unique positive steady state ðk�Þ, which lies between

ð1�sÞF
E

h i 1
1�a

and ð1�sÞF
D

h i 1
1�a

.

Proof. For k > 0, define hðkÞ ¼ k1�a and

f ðkÞ ¼ ð1� sÞF
E

1þ E� D

Dþ dEðsBkÞ/

" #
:

Then the steady states are solutions of f(k) ¼ h(k). It is clear

that f is strictly decreasing in k and has values from the

supremum
ð1�sÞF

D to the infimum
ð1�sÞF

E , and h is strictly

increasing and has values from the infimum 0 to the

supremum 1. Since 0 < s < 1, one gets 0 < ð1�sÞF
E < ð1�sÞF

D

<1, and hence there is exactly one positive solution

for f(k) ¼ h(k), and the solution lies in the interval

ð1�sÞF
E

h i 1
1�a
; ð1�sÞF

D

h i 1
1�a

� �
. �

In the first part of the following theorem, we provide

three sufficient conditions so that g1ðktÞ is monotonically

increasing in kt. In addition, although we are not able to get

the closed-form solution of k�, we show that under these three

conditions, the non-trivial steady state k� is a global attractor.

In the second part of the Theorem 1, we give a sufficient con-

dition in which g1ðktÞ is not monotonically increasing in kt.

We are more interested in the second case because the non-

monotonicity of g1ðktÞ may generate endogenous cycles.

Theorem 1. For the dynamics kt 7!ktþ1 in Eq. (10), we
have the following properties.

1. The unique positive steady state ðk�Þ is globally attract-
ing and g1ðktÞ is monotonically increasing in kt if one of
the followings holds:
(a) 0 < / � �/ ¼ EþDþ2

ffiffiffiffiffi
ED
p

E�D ;

(b) / > �/ and s is close to 0 or 1;

(c) 1
sB

� �1
a does not lie in the interval ð1�sÞF

E

h i 1
1�a
;

�
ð1�sÞF

D

h i 1
1�a

�
, and / is sufficiently large.

2. The law of the motion of kt is non-monotonic if ð1�sÞF
E

h i 1
1�a

� 1
sB

� �1
a � ð1�sÞF

D

h i 1
1�a

and / is sufficiently large.

Proof. Let k� denote the unique positive fixed point of

g1ðkÞ. Differentiating g1ðkÞ with respect to k gives us,

g01ðkÞ ¼
að1� sÞFfd2EðsBkaÞ2/ þ d½Eþ D� /ðE� DÞ�ðsBkaÞ/ þ Dg

k1�a½Dþ dEðsBkaÞ/�2
: (11)

Since limk!0 g01ðkÞ ¼ 1 and limk!1 g01ðkÞ ¼ 0, we get that

g1ðkÞ > k (resp. g1ðkÞ < k) for all 0 < k < k� (resp. k > k�).

By considering a new variable x ¼ dðsBkaÞ/, the numerator

of g01 in Eq. (11) becomes a quadratic polynomial in x. If

0 < / � EþD
E�D, then Eþ D� /ðE� DÞ � 0 and hence

g01ðkÞ > 0 for all k > 0: Let

D ¼ /2ðE� DÞ2 � 2/ðE� DÞðEþ DÞ þ ðE� DÞ2:

Then ½að1� sÞF�2D is the determinant for the existence of

critical points of g1. Solving the equation D ¼ 0 for / gives

the roots / ¼ EþD62
ffiffiffiffiffi
ED
p

E�D and hence D < 0 for EþD�2
ffiffiffiffiffi
ED
p

E�D

< / < EþDþ2
ffiffiffiffiffi
ED
p

E�D . Since EþD�2
ffiffiffiffiffi
ED
p

E�D < EþD
E�D <

EþDþ2
ffiffiffiffiffi
ED
p

E�D , for

EþD
E�D < / � EþDþ2

ffiffiffiffiffi
ED
p

E�D , we have that g01ðkÞ � 0 for all k > 0.

Therefore, for 0 < / � EþDþ2
ffiffiffiffiffi
ED
p

E�D , we get that g01ðkÞ � 0 for

all k > 0. Then, g01ðk�Þ � 0. Moreover, if 0 < k < k�, then

fgt
1ðkÞgt�0 is an increasing sequence in the real line bounded

above by k�. By the completeness of the real numbers,

limt!1 gt
1ðkÞ exists and is positive. By the continuity of

g1ðkÞ, we get that g1ðlimt!1 gt
1ðkÞÞ ¼ limt!1 gtþ1

1 ðkÞ
¼ limt!1 gt

1ðkÞ and limt!1 gt
1ðkÞ is a positive fixed point

for g1ðkÞ. By Proposition 1, limt!1 gt
1ðkÞ ¼ k�. Similarly, if

k > k�, then limt!1 gt
1ðkÞ ¼ k�. This completes the proof of

(1a).

From the hypothesis of (1b), we have / > EþDþ2
ffiffiffiffiffi
ED
p

E�D .

Thus 0 <
ffiffiffiffi
D
p

< �ðEþ DÞ þ /ðE� DÞ. Since the numera-

tor of g01 in Eq. (11) is a quadratic polynomial in

x ¼ dðsBkaÞ/ with the determinant ½að1� sÞF�2D > 0, the

critical points of g1 are the following two positive points:
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k�c ¼
�ðEþ DÞ þ /ðE� DÞ �

ffiffiffiffi
D
p

2dEðsBÞ/

" # 1
a/

;

kþc ¼
�ðEþ DÞ þ /ðE� DÞ þ

ffiffiffiffi
D
p

2dEðsBÞ/

" # 1
a/

:

Moreover, g01 is negative on the interval ðk�c ; kþc Þ and is posi-

tive on the intervals ð0; k�c Þ and ðkþc ;1Þ. By Proposition 1,

we get that k� < ð1�sÞF
D

h i 1
1�a

. Taking s close enough to 0 or 1

such that

ð1� sÞF
D

� � 1
1�a

< k�c :

Then k� < k�c < kþc and g01ðkÞ > 0 for all 0 < k � k�. Hence,

if 0 < k < k�, by the same argument as above, fgt
1ðkÞgt�0 is

an increasing sequence converging to k�. If k > k�, then either

gt
1ðkÞ > k� for all t > 0 or gt0

1 ðkÞ � k� for some t0 > 0. For

the former case, fgt
1ðkÞgt�0 is a decreasing sequence converg-

ing to k�, and for the latter case, fgt
1ðkÞgt�t0

is an increasing

sequence converging to k�. This completes the proof of (1b).

For (1c), let / � EþDþ2
ffiffiffiffiffi
ED
p

E�D > 1. This implies that D � 0

and hence the critical points k�c and kþc of g1ðkÞ are positive

real numbers. As / goes to 1, we get that both k�c and kþc
converge to 1

sB

� �1
a; indeed,

lim
/!1

�ðEþ DÞ þ /ðE� DÞ6
ffiffiffiffi
D
p

2dEðsBÞ/

" # 1

a/

¼ 1

sB

� �1

a
lim

/!1

/
2dE

� � 1

a/ �ðEþ DÞ þ /ðE� DÞ6
ffiffiffiffi
D
p

/

" # 1

a/

¼ 1

sB

� �1

a
exp lim

/!1

ln
/

2dE

� �
a/

lim
/!1

ln
�ðEþ DÞ þ /ðE� DÞ6

ffiffiffiffi
D
p

/

" #

a/

0
BBBB@

1
CCCCA

¼ 1

sB

� �1

a
exp lim

/!1

1

a/

� �
lim

/!1

ln
�ðEþ DÞ þ /ðE� DÞ6

ffiffiffiffi
D
p

/

" #

a/

0
BBBB@

1
CCCCA; by L’Hôspital’s rule

¼ 1

sB

� �1

a
expð0Þ; since

ln
�ðEþ DÞ þ /ðE� DÞ6

ffiffiffiffi
D
p

/

" #

a/

										

										
� ln½2ðE� DÞ�

a

¼ 1

sB

� �1

a:

Since 1
sB

� �1
a is not in the interval

�
ð1�sÞF

E

h i 1
1�a
; ð1�sÞF

D

h i 1
1�a

�
, for

all sufficiently large /, neither k�c nor kþc is in the interval

ð1�sÞF
E

h i 1
1�a
; ð1�sÞF

D

h i 1
1�a

� �
. From Proposition 1, we have either

k� < k�c � kþc or k�c � kþc < k�, and hence g01ðk�Þ > 0. By

the same argument as above, we get that k� is globally

attracting and the law of the motion is monotonic.

To prove (2), let k̂ ¼ 1
sB

� �1
a and / � EþDþ2

ffiffiffiffiffi
ED
p

E�D > 1.

Then,
k6

c

k̂


 �a/
¼ 1

2dE ½�ðEþ DÞ þ /ðE� DÞ6
ffiffiffiffi
D
p
�. As /

goes to1, we have that

lim
/!1

�ðEþ DÞ þ /ðE� DÞ þ
ffiffiffiffi
D
p
¼ 1

and

lim
/!1

�ðEþ DÞ þ /ðE� DÞ �
ffiffiffiffi
D
p

¼ lim
/!1

½�ðEþ DÞ þ /ðE� DÞ�2 � D

�ðEþ DÞ þ /ðE� DÞ þ
ffiffiffiffi
D
p

¼ lim
/!1

4DE

�ðEþ DÞ þ /ðE� DÞ þ
ffiffiffiffi
D
p ¼ 0:
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Thus, if / is sufficiently large, then k�c k̂
� �a/

< 1 <
kþc
k̂


 �a/

and hence k�c < k̂ < kþc . Let � ¼ minðk̂ � k�c ; k
þ
c � k̂Þ=2.

Then � > 0. By the definitions of k̂ and g1ðkÞ, we get that

g1ðk̂Þ is a constant for all /. Moreover, if / is sufficiently

large, then g1ðkÞ will be close to
ð1�sÞFka

D for all 0 < k

< k̂ � � and g1ðkÞ will be close to
ð1�sÞFka

E for all k̂ þ � < k.

Since
ð1�sÞF

E

h i 1
1�a � k̂ � ð1�sÞF

D

h i 1
1�a

, we get that
ð1�sÞFka

E � k

< ð1�sÞFka

D for all k̂ � k � k̂ þ �; ð1�sÞFka

E < k � ð1�sÞFka

D for all

k̂ � � � k � k̂, or both. By the intermediate value theorem

applied to the function g1ðkÞ � k, there is a fixed point of

g1ðkÞ in ½k̂ � �; k̂ þ ��, which must be k� due to Proposition

1. Hence, k�c < k� < kþc and g0ðk�Þ < 0. Therefore, g1ðkÞ is

not monotonically increasing in k. �

Theorem 1 indicates that the monotonicity of g1ðktÞ and

the stability of the non-trivial steady state ðk�Þ depend on

the effectiveness of child allowances ð/Þ and the amount of

child allowances, measured by the tax rate ðsÞ. Note that

Eq. (11) indicates that g1ðktÞ will be monotonically increas-

ing in kt if / � 1. Because �/ > 1, the three conditions given

in the first part of Theorem 1 which guarantee the monoto-

nicity of g1ðktÞ include the case of / � 1. Based on

Theorem 1, if the effectiveness of child allowances is lower

than the critical value, ð�/Þ; g1ðktÞ will be monotonic and k�

will be a global attractor. When the effectiveness of child

allowances is higher than �/; g1ðktÞ is monotonic, provided

that the tax rate is sufficiently low or high. If the effective-

ness of child allowances is sufficiently high, we can relax

the strict requirement of tax rate for the monotonicity of

g1ðktÞ and only require the tax rate to not lie in a certain

range.

The second part of Theorem 1 indicates that g1ðktÞ will

become non-monotonic if the effectiveness of child allowan-

ces is sufficiently high and the tax rate is within a certain

range. We illustrate the impact of the tax rate on the shape of

the dynamics Eq. (10) by figures. The following parameter

settings are used: a ¼ 0:34, A¼ 5, and b ¼ ð0:995Þ30. For

parameters used in the fertility function, we assign a0 ¼ 1 to

represent an extreme case that there is no population growth

and a1 ¼ 25 to represent the maximal women’s reproductive

period. We set d ¼ 1 and / ¼ 25, a sufficiently high value to

generate the non-monotonicity of the dynamics Eq. (10). We

refer this parameterization as our baseline model. The graphs

of g1ðktÞ with s ¼ 0:1; 0:25, and 0.35 are presented in Figure

1. It shows that an increase in the tax rate depresses the locus

of g1ðktÞ toward the origin and lowers the non-trivial steady

state k�. This is because the tax rate will cause two negative

effects on the accumulation of capital. First, the higher tax

rate reduces savings since the after-tax income for the young

becomes lower. The lower saving will decrease the accumu-

lation of capital (the saving effect). Second, the provision of

child allowances raises fertility and this will in turn, ceteris

paribus, reduces the capital per worker in the future (the

capital-dilution effect). The effectiveness of child allowances

ð/Þ strengthens the second effect. As shown in Figure 1,

g1ðktÞ is monotonically increasing in kt when s is small

ðs ¼ 0:1Þ; however, g1ðktÞ becomes non-monotonic when s
becomes larger (s ¼ 0:25 and 0.35).

B. Chaotic motion

The non-monotonicity of the dynamics of kt may behave

in a way that the dynamics Eq. (10) becomes downward-

sloping before the non-trivial steady state is achieved. This

will cause some interesting dynamics behavior, such as regu-

lar cycles and chaos. Figure 1 also shows that as the tax rate

changes from 0.25 to 0.35, the slope of the tangent line at k�

becomes steeper. Using the parameterization used in Figure

1, Figure 2 presents a bifurcation diagram of which s lies

between 0 and 1. As shown in Figure 2, when the tax rate is

low, there is simple dynamics, such as a unique steady state

or regular cycles. For a sufficiently low s ðs < 0:26Þ, there is

a unique limit point which is a stable steady state. As the tax

rate continues rising, a period-doubling bifurcation starts

emerging and the economy gets into the region of chaotic

FIG. 2. The bifurcation diagram on s.

FIG. 1. The evolution of capital accumulation with s ¼ 0:1; 0:25, and 0.35.
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dynamics when the tax rate is at the intermediate size

(0:31 < s < 0:43). After that, a period-doubling bifurcation

occurs again, followed by period-two cycles for a wide range

of the tax rate (0:515 < s < 0:79). That is, the economy

undergoes from simple dynamics to chaotic dynamics and

then returns to simple dynamics. Note that the similar quali-

tative dynamic property will appear again as the tax rate con-

tinues rising. The chaotic dynamics will emerge when the

tax rate is between 0.85 and 0.94 and the economy will get

into the region of simple dynamics when the tax rate is

higher than 0.94. Figure 2 numerically illustrates the occur-

rence of chaotic dynamics in our model.

We are now in the position to prove the occurrence of

chaotic motion. Before doing this, we define the Li-Yorke

chaos which is based on the definition given by Ref. 2. The

Li-York chaos is the mostly often used definition of chaos in

the one-dimensional dynamical system due to its easy verifi-

cation. Also refer to Refs. 3 and 6 for more applications of

the Li-Yorke chaos in economic issues.

Definition 1. Let H : I ! I be a function, where I is an
interval. We say that H has Li-Yorke chaos on I if

1. H has periodic points of all periods; here by a periodic
point p of period t, we mean that HtðpÞ ¼ p and HiðpÞ
6¼ p for 0 < i < t;

2. there exists an uncountable set S � I such that

(i) if x; y 2 S with x 6¼ y then

lim sup
t!1

jHtðxÞ � HtðyÞj > 0

and

lim inf
t!1

jHtðxÞ � HtðyÞj ¼ 0;

(ii) if x 2 S and y 2 I is periodic then,

lim sup
t!1

jHtðxÞ � HtðyÞj > 0:

The Li-Yorke Theorem (Theorem 1, [Ref. 2, Theorem

1]) states that for a continuous function H from an interval

into itself, if there is a point p such that

H3ðpÞ < p < HðpÞ < H2ðpÞ;

then H exhibits Li-Yorke chaos. By using this condition, the

following theorem shows that the law of motion in Eq. (10)

will exhibit Li-Yorke chaos under certain parameterization.

Theorem 2. If a0 and a1 satisfy

a0 <
bs

1�a
a ð1� sÞ½Að1� aÞ�

1
a

1þ b
(12)

and

a1 > d�1 b
aþ1
a A

aþ1

a2 s
1�a2

a2 ð1� sÞ
aþ1
a ð1þdÞð1�aÞ

aþ1

a2

a
1
a
0ð1þbÞ

aþ1
a

�a0

" #
; (13)

then for all sufficiently large /, the dynamics Eq. (10) will
exhibit Li-Yorke chaos.

Notice that the right hand side of Eq. (12) (resp. (13))

dose not involve a0 (resp. a1).

Proof. In order to emphasize changes of the parameter

/, let us re-denote the function g1 in Eq. (10) by g1;/, that is,

g1;/ðkÞ ¼
ð1� sÞFka

E
1þ E� D

Dþ dEðsBkaÞ/

" #
:

Define g1;1 to be a function given by the following: for

k > 0,

g1;1ðkÞ ¼
ð1� sÞFka

D
:

Let

kco ¼
1

sB

� �1
a

:

Then, restricted to the interval ð0; kcoÞ, the limit function

of g1;/ is g1;1 as / goes to 1. Moreover, g1;/ðkcoÞ
¼ ð1þdÞð1�sÞF

sBðDþdEÞ ; g1;1ðkcoÞ ¼ ð1�sÞF
sBD , and g1;1ðg1;/ðkcoÞÞ ¼ ð1�sÞF

D

ð1þdÞð1�sÞF
sBðDþdEÞ


 �a
, which are all independent of /. By plugging

B, D, E, and F, the inequality Eq. (12) implies

kco < g1;1ðkcoÞ, while the inequality Eq. (13) implies that

g1;1ðg1;/ðkcoÞÞ< kco. From the definitions of g1;/ and g1;1,

for all /> 0, we have that 0< g1;/ðkÞ< g1;1ðkÞ for all

k> 0; in particular, we get that 0< g1;/ðg1;/ðkcoÞÞ
< g1;1ðg1;/ðkcoÞÞ. Since g1;1 is strictly increasing, g1;/ðkcoÞ
< kco; indeed, otherwise, g1;1ðg1;/ðkcoÞÞ � g1;1ðkcoÞ, which

leads a contradiction to the fact that g1;1ðg1;/ðkcoÞÞ
< kco < g1;1ðkcoÞ. Since g1;/ðkcoÞ is independent of /, so is

the interval I� ðg1;1ðg1;/ðkcoÞÞ;kcoÞ. Since g1;/ðkcoÞ< kco

< g1;1ðkcoÞ and lim/!1;1 g1;/ðkÞ ¼ g1;1ðkÞ for all k in I,
there will exist q in I such that g1;/ðqÞ ¼ kco if / is suffi-

ciently large. Let J denote the interval ðg1;/ðkcoÞÞ;qÞ, then J
is independent of /. Since g1;/ðg1;/ðkcoÞÞ< g1;1ðg1;/ðkcoÞÞ,
we get that g1;/ðJÞ 	 I, and hence there exists p in J such

that g1;/ðpÞ ¼ q. Therefore,

g3
1;/ðpÞ ¼ g1;/ðkcoÞÞ < p < g1;/ðpÞ ¼ q < g2

1;/ðpÞ ¼ kco:

By applying the Li-Yorke theorem, the dynamics of Eq. (10)

exhibits chaos in the sense of Li and Yorke. �

Theorem 2 provides a sufficient condition for the

Li-Yorke chaos under our model setting. Figure 2 shows that

the economy makes the transition from simple dynamics to

chaotic dynamics, then returns to simple dynamics (bubbling
phenomenon) as the tax rate increases. Combining the result

of 1(b) in Theorem 1 and the above theorem implies the fol-

lowing result regarding the bubbling phenomenon.

Corollary 1. Let a0 and a1 satisfy Eqs. (12) and (13).

Then for each large /, the dynamics Eq. (10) exhibits the
bubbling phenomenon as s increases from 0 to 1.

Note that with the specification of the logarithmic utility

function, the dynamic behavior of the economy does not

depend on the agents’ expectation since the saving function (4)
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is independent of the future interest rate. Therefore, in Sec. IV,

we allow the expectation to affect the current saving decision

by considering a CES utility function and examine how this

change affects the dynamic behavior of the economy.

IV. A CES UTILITY FUNCTION

In this section, we consider a CES utility function as

uðciÞ ¼ c1�r
i �1

1�r , where r > 0 and r 6¼ 1 is the inverse of the

inter-temporal elasticity of substitution of consumptions.

When r ¼ 1, the utility function is defined as the logarithmic

utility function in Eq. (1). Under a CES utility function, the

optimal saving decision becomes

st ¼ sðwt;Rtþ1Þ ¼
ð1� sÞwt

1þ b
�1
r R

1�1
r

tþ1

: (14)

Note that with r 6¼ 1, the saving function in period t depends

on the real interest rate in period t þ 1 (Rtþ1).

The law of motion of capital per worker becomes

ktþ1 ¼
sðwðktÞ;Rðktþ1ÞÞ

nðktÞ
: (15)

Substituting Eqs. (6)–(8) into Eq. (15), the dynamics of capi-

tal per worker can be written as

ktþ1 ¼
½ð1� sÞBka

t �½1þ dðsBka
t Þ

/�
1þ b

�1
r ðAaka�1

tþ1 Þ
1�1

r

h i
½a0 þ a1dðsBka

t Þ
/�
: (16)

Although we cannot explicitly express ktþ1 in terms of kt

from Eq. (16), we can express their relationship by an

implicit function gr. First, for each r > 0, we define Fr :
ð0;1Þ 
 ð0;1Þ ! R by

Frðkt; ktþ1Þ ¼ ktþ1 þ b
�1
r ðAaÞ1�

1
rk

1þða�1Þð1�1
rÞ

tþ1

h i

 ½a0 þ a1dðsBka

t Þ
/� � ½ð1� sÞBka

t �

 ½1þ dðsBka

t Þ
/�:

Then for all 0 < kt; ktþ1 <1, we have Fr that is continu-

ously differentiable and

@Frðkt; ktþ1Þ
@ktþ1

¼ 1þ aþ 1� a
r

� �
b
�1
r ðAaÞ1�

1
rk
ða�1Þð1�1

rÞ
tþ1

� �

 ½a0 þ a1dðsBka

t Þ
/� � a0 > 0:

Thus, for each kt > 0, the function ktþ1 7!Frðkt; ktþ1Þ is con-

tinuous on ð0;1Þ and attains values between �½ð1� sÞBka
t �

½1þ dðsBka
t Þ

/� and 1 exactly once for ktþ1 in ð0;1Þ.
Hence, by the intermediate value theorem, there exists a

unique point in ð0;1Þ, namely ktþ1 ¼ grðktÞ, such that

Frðkt; grðktÞÞ ¼ 0. So far, we have obtained that gr forms a

function from ð0;1Þ into itself such that

Frðkt; grðktÞÞ ¼ 0; (17)

that is, ktþ1 ¼ grðktÞ represents the dynamics kt 7!ktþ1 in Eq.

(16). Note that when r ¼ 1, the function ktþ1 ¼ grðktÞ

coincides with the dynamics g1 in Eq. (10) in Sec. II, therein,

the utility function is logarithmic.

Furthermore, we show that gr is continuously differen-

tiable. Fix kt > 0, the implicit function theorem implies that

there exists a continuously differentiable function ~grðkÞ for k
around kt since

@Frðkt;ktþ1Þ
@ktþ1

6¼ 0. Because
@Frðkt;ktþ1Þ

@ktþ1
> 0, we get

that ~grðkÞ ¼ grðkÞ for k around kt and hence gr is continu-

ously differentiable around kt. Since kt > 0 is arbitrary, gr is

continuously differentiable on ð0;1Þ.
Although we are not able to get an analytical solution

for the positive steady state ðk�rÞ of the dynamics Eq. (16),

the following proposition demonstrates the existence and

uniqueness of k�r. Furthermore, it also provides conditions

regarding the stability of k�r and the monotonicity of the dy-

namics Eq. (16).

Proposition 2. For all r sufficiently close to 1, the dy-
namics kt 7!ktþ1 in Eq. (16) has a unique positive steady state
ðk�rÞ, and, as stated in the Theorem 1, has similar results of
the stability property of k�r and the monotonicity property of
dynamics.

Proof. Let k� denote the unique positive fixed point of

g1 in Proposition 1. First, we show that g01ðk�Þ 6¼ 1. Indeed,

let x ¼ dðsBkaÞ/. Suppose that g1ðkÞ ¼ k. Then the relation

k1�a ¼ ð1�sÞFð1þxÞ
DþEx holds. Plugging such a relation into g01ðkÞ,

we get that g01ðkÞ ¼
aEx2þa½EþD�/ðE�DÞ�xþaD

ð1þxÞðDþExÞ . Furthermore,

suppose that g01ðkÞ ¼ 1, we obtain that

ð1�aÞEx2þ½ð1�aÞðEþDÞþ/aðE�DÞ�xþð1�aÞD¼ 0:

Since the left side of the above equation is a quadratic poly-

nomial in x which coefficients are all positive, there are no

positive roots for the equations. This shows that g01ðk�Þ 6¼ 1.

Let

Gðr; kÞ ¼ grðkÞ � k;

where gr is given by Eq. (17). Then G is smooth jointly as a

function of r > 0 and k > 0; Gð1; k�Þ ¼ 0 and
@Gð1;k�Þ

@k 6¼ 0.

By the implicit function theorem, for each r sufficiently

close to 1, gr has a unique fixed point k�r near k�. Thus, k�r is

the unique positive steady state of the dynamics Eq. (16). It

remains to show the stability and monotonicity properties

holds. Since the function ðr; kÞ7!grðkÞ is smooth, so is the

derivative g0rðkÞ with respect to k. Hence, replacing g1 by gr

and considering r sufficiently close to 1, the same argument

as in the proof of Theorem 1 proves the desired result. �

Proposition 2 indicates that the effectiveness of child

allowances and the tax rate are still important factors in

determining the monotonicity property of grðktÞ and the sta-

bility property of k�r. When r is close to 1, the dynamic

behavior of grðktÞ is similar to that of Eq. (10). To study the

impact of r, we use the parameterization in the baseline

model and present the evolution of grðktÞ with s ¼ 0:1 and

r ¼ 1, 3, and 8 in Figure 3. It shows that a rise in r com-

presses the locus of grðktÞ downward and reduces k�r. This is

because when r increases, households tend to save less (see

Eq. (14)) and it causes another negative effect on the capital

accumulation, leading to a lower k�r. Figure 3 also indicates
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that the slope of the tangent line at k�r becomes less steeper

as r increases from 1 to 8. Therefore, besides the amount

and the effectiveness of child allowances, the dynamic prop-

erty of the function grðktÞ also depends on the inter-temporal

elasticity of substitution. If the negative effects on the stabil-

ity caused by an increase in s outweigh the positive effect on

the stability induced by an increase in r, cycles and complex

dynamics will emerge.

Figure 4 displays a bifurcation diagram with varying

values of s between 0 and 1 and r ¼ 3. Following Ref. 5, we

use the parametric interval of the tax rate for which there

exists a unique stable positive steady state to evaluate the

stability of the economy. It is clear that a rise in r increases

the stability of the economy by comparing Figure 4 with

Figure 2. When r ¼ 3, the economy is unstable (not con-

verging to the unique stable positive steady state) for 0:3
< s < 0:69 while under r ¼ 1, the economy is unstable for

0:26 < s < 0:94. Although a higher value of r will work for

stability, period-doubling bifurcation, and chaotic motion

will still occur if the tax rate is high enough, as shown by

Figure 4.

In the following theorem, we provide the condition for

the occurrence of Li-Yorke chaos.

Theorem 3. Let a0 and a1 satisfy Eq. (12) and (13). If /
is sufficiently large and r is sufficiently close to 1, the law of
motion in Eq. (16) exhibits Li-Yorke chaos.

Proof. From the proof of Theorem 3, let / be suffi-

ciently large so that there exists p such that g3
1ðpÞ < p

< g1ðpÞ < g2
1ðpÞ. Since grðkÞ is continuous as a function of

jointly r and k, for all r close enough to 1 and all q close

enough to p, one has g3
rðqÞ < q < grðqÞ < g2

rðqÞ. By the Li-

Yorke theorem, the dynamics of Eq. (16) exhibits Li-Yorke

chaos. �

Theorem 3 provides a sufficient condition for the emer-

gence of Li-Yorke chaos in the economy with a CES utility

function. In fact, it shows that chaotic motion of the dynami-

cal system under a CES utility function is inherited from the

chaotic behavior of the dynamical system under a logarith-

mic utility function. Similar to the case of r ¼ 1, Figure 4

also indicates that the dynamics of Eq. (16) exhibits the bub-

bling phenomenon. Together with Proposition 2, the above

theorem implies the following corollary.

Corollary 2. Let a0 and a1 satisfy Eqs. (12) and (13). If
/ is sufficiently large and r is close enough to 1, the dynam-
ics of Eq. (16) exhibits the bubbling phenomenon when s
increases from 0 to 1.

Finally, in Figure 5, we present a bifurcation diagram

for varying values of r between 1 and 5 and s ¼ 0:35. It

shows that chaotic dynamics will appear when r is suffi-

ciently low. Studies of Refs. 6 and 7 have shown that under

perfect foresight, a standard OLG model with a CES utility

function will only generate simple dynamics and the non-

trivial steady state is stable. Therefore, our results indicate

that a fiscal policy like the child allowances scheme can gen-

erate chaotic dynamics and bubbling phenomenon in a model

where it is generally prohibited. When r is high enough, cha-

otic motion will disappear and the period-doubling phenom-

enon will occur. An increase in r prevents the occurrence of

chaotic dynamics because of its positive effect on stability.

FIG. 5. The bifurcation diagram on r when s ¼ 0:35.

FIG. 3. The evolution of capital accumulation with r ¼ 1; 3, and 8.

FIG. 4. The bifurcation diagram on s when r ¼ 3.
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Chaotic motion will disappear if the positive effect on stabil-

ity caused by an increase in r overrides the negative effects

on stability caused by the implementation of the child allow-

ance scheme.

V. CONCLUSION

In this paper, we develop an OLG model with population

growth to study the impact of child allowances on the economic

dynamics. Our analysis shows that the amount and the effec-

tiveness of child allowances as well as the inter-temporal elas-

ticity of substitution are crucial factors in determining the

dynamic property. The dynamics of capital per worker is sim-

ple if the effectiveness of child allowances on fertility is fairly

small. However, cycles and even chaotic dynamics will occur if

the effectiveness of child allowances is large enough and the

tax rate is intermediate-sized. A decrease in the inter-temporal

elasticity of substitution will prevent the economy from expos-

ing to irregular fluctuations. Since our analysis indicates that

the dynamic property depends on how child allowances affect

fertility, a more precise empirical estimation of the effective-

ness of child allowances is worthy of future study.
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