
Eurographics Symposium on Rendering 2013

Nicolas Holzschuch and Szymon Rusinkiewicz

(Guest Editors)

Volume 32 (2013), Number 4

Interactive Lighting Design with Hierarchical Light
Representation

Wen-Chieh Lin1, Tsung-Shian Huang1, Tan-Chi Ho2, Yueh-Tse Chen1, and Jung-Hong Chuang1

1Department of Computer Science, National Chiao Tung University, Taiwan
2Shing-Tung Yau Center, National Chiao Tung University, Taiwan

Abstract
Lighting design plays a crucial role in indoor lighting design, computer cinematograph and many other applica-
tions. Computer-assisted lighting design aims to find a lighting configuration that best approximates the illumi-
nation effect specified by designers. In this paper, we present an automatic approach for lighting design, in which
discrete and continuous optimization of the lighting configuration, including the number, intensity, and position of
lights, are achieved. Our lighting design algorithm consists of two major steps. The first step estimates an initial
lighting configuration by light sampling and clustering. The initial light clusters are then recursively merged to
form a light hierarchy. The second step optimizes the lighting configuration by alternatively selecting a light cut
on the light hierarchy to determine the number of representative lights and optimizing the lighting parameters
using the simplex method. To speed up the optimization computation, only illumination at scene vertices that are
important to rendering are sampled and taken into account in the optimization. Using the proposed approach, we
develop a lighting design system that can compute appropriate lighting configurations to generate the illumination
effects iteratively painted and modified by a designer interactively.

Categories and Subject Descriptors (according to ACM

CCS): I.3.4 [Computer Graphics]: Computer Graphics—

Graphics Utilities

1. Introduction

Lighting design is a crucial task in computer animation

production where it helps to establish the mood of a shot

and enhance storytelling. It can be considered as an inverse

problem of global illumination [JPP02]. From the theory of

global illumination, it is apparent that the relationship be-

tween light parameters and the the resulting lighting effect

is so complicated and counter-intuitive even for well-trained

designers. To meet a lighting effect specified by an artist, a

lot of lights are often needed and a lighting designer needs to

carefully and repeatedly adjust the parameters of each light

until the desired effect is achieved. Such a process is very

labor-intensive, time consuming, and often counter-intuitive.

Lighting design based on user-painted illumination effects

is thus a more favorable and intuitive way for lighting de-

signers. This problem is conventionally formulated as an in-

verse lighting problem and solved through an optimization

process, which is involved with discrete and continuous op-

timization since both the number and parameters of lights

need to be optimized [PBMF07]. To reduce the difficulty

of optimization, most of the existing approaches focus on

continuous optimization over lighting parameters and do not

deal with the discrete optimization problem of determining

the number of lights [PBMF07, KP93, SDS∗93, PRJ97].

In this paper, we proposed an approach to achieve dis-

crete and continuous optimization of lighting configurations

by integrating a hierarchical lighting representation into a

continuous optimization process. Our approach is flexible as

a designer can decide whether s/he wants to set the num-

ber of lights or not. The designer can either gradually add

more illumination effects or sketch all illumination effects

at a time. The proposed approach can automatically com-

pute a complete lighting configuration that best matches the

desired illumination effect. Furthermore, the illumination ef-

fects are painted in the 3D object space, rather than on a 2D

image plane. Although specifying illumination effects on an

2D image is easier, painting desired illumination in 3D space

makes the computed lighting configuration consistent under

different views. This consistency cannot be guaranteed if the

illumination effects are given separately on 2D image planes

under different views. The consistency of lighting configura-

c© 2013 The Author(s)

Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-

ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,

UK and 350 Main Street, Malden, MA 02148, USA.

�������	����
��
	�����



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

tion under different views is especially important for interior

lighting design and theatrical lighting design applications.

In these applications, it is actually more intuitive to specify

illumination effects in 3D space.

Our approach consists of two major steps. First, an ini-

tial light configuration is estimated by iteratively spreading

unit-intensity lights in the scene and then adjusting their in-

tensities and removing the lights with low contribution. In

this step, a coarse-to-fine strategy is used for spreading lights

and a constrained linear least square solver is used to com-

pute the light intensities. The computed initial lights are then

grouped into clusters and from which a light hierarchy is

built by repeatedly merging two light clusters that are suit-

able for combining. In the second step, we derive the optimal

lighting configuration by alternatively finding a light cut on

the light hierarchy, aiming to obtain as smaller number of

lights as possible, and optimizing the positions and intensi-

ties of the lights associated with the light cut by using the

simplex method.

The contributions of this paper are proposing:

• An automatic lighting design approach that achieves dis-

crete and continuous optimization of lighting configura-

tion given a scene description and desired illumination ef-

fect specified by the user.

• An efficient coarse-to-fine sampling method to obtain a

good initial guess that makes an optimization process con-

verge fast.

• A scheme based on a light hierarchy to obtain the small-

est set of optimal lights by changing the combination of

lights and optimizing their parameters using the simplex

method.

2. Related Work

Lighting Design Using a Sketch System: Schoeneman et

al. [SDS∗93] first described a method where a user paints on

a scene to be lit with global illumination, and their system

solves for the intensities of a set of lights at known posi-

tions. As they assume the number and the position of lights

are given, the intensities of the lights can be obtained by

simply solving a constrained least square problem. Marks

et al. [MAB∗97] presented a design galleries system, which

uses a user interface to assist a designer to explore a very

large parameter space to achieve a desired lighting effect.

Their system utilized computers as tools for estimating light-

ing configuration rather than solvers.

Poulin et al. [PRJ97] proposed a sketching interface in

which users can specify the constraints of highlights and

shadows, including penumbra and umbra, for ellipsoid ob-

jects. Their system can automatically compute the positions

of point light sources and area light sources. Pellacini et

al. [PTG02] developed an effective user interface that al-

lows a user to drag, rotate and scale shadows on screen

and their system can move lights or objects as required to

generate corresponding change of shadows. Recently, Ok-

abe et al. [OMSI07] presented an interactive illumination

brush system that can handle environment light. To produce

a realistic image, they represent all-frequency lighting using

spherical radial basis function and apply precomputed radi-

ance transfer to render the scene in interactive rate. Although

their system performs well on computing environment light,

it does not compute local lights, which are important in a

lighting design system.

Pellacini et al. [PBMF07] presented a great lighting de-

sign system in which a lighting designer paints desired illu-

mination effects on a 2D image plane and their system solves

for lighting parameters to achieve the desired illumination.

A lighting designer can paint color, light shape, shadows,

highlights and reflections using a suite of tools designed for

painting light; however, their system only allows a designer

to add or delete one light at a time. This feature may not

be intuitive to designers as they may paint the illumination

effect of multiple lights simultaneously. In some situations,

lighting designers may just know how to set up the atmo-

sphere as a whole but are not certainly aware of contribution

of individual lights.

Kuo et al. [Kuo08] proposed a lighting-by-guides system

whose goal is very similar to ours. Given a scene descrip-

tion and an image as the lighting guide, their system au-

tomatically finds a lighting configuration so that the result-

ing illumination best matches the lighting guide. They pro-

posed an efficient and effective algorithm for guessing initial

lighting parameters, and then adjust the lighting configura-

tion using an optimization method. There are two major dif-

ferences between our and their approach. First, we achieve

discrete and continuous optimization by alternatively choos-

ing representative lights and optimizing the parameters of

all lights while they do not change the number of lights once

the optimization starts, i.e., the discrete optimization is not

executed in their system. Second, our approach computes a

lighting configuration that is consistent under different views

while theirs computes a lighting configuration under a spe-

cific view.

Lighting Design with High-level Description: In addition

to painting desired lighting effects into the scene, some re-

searchers used the high-level description to guide the inverse

lighting problem. Kawai et al. [KP93] proposed the Radiop-

timization system that allows a user to describe high-level

constraints, and then automatically computes lighting inten-

sities and scene reflectance. However, it is not very intuitive

for a user to converting high-level descriptions to an objec-

tive function. Therefore, it is hard to control the resulting

lighting effects in Radioptimization. In addition, to reduce

the dimensionality of lighting parameters, Kawai et al. as-

sume that the positions of light sources are given, and only

light source intensities need to be estimated.

Costa et al. [CSF99] let users to describe their design

goals, which may include different types of constraints or

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

134



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

objectives. The lighting parameters are estimated through

optimization by representing users’ goals as an objective

function. Jolivet et al. [JPP02] use a simple Monte-Carlo

method to find the positions of the lights in the direct lighting

situation. Their system allows users to specify their desired

lighting effects using language description. In general, light-

ing design using high-level description is not accurate and

cannot be controlled by a user easily.

3. Framework

Our approach for solving the lighting design problem is

based on the formulation of the inverse lighting problem

(section 3.1). Figure 1 shows an overview of our approach.

First, we build light cache in preprocessing. After the user in-

puts the desired illumination using the painting system (sec-

tion 4), we choose important surface samples from the scene

to reduce the computation of our approach. We compute and

minimize the illumination difference at these important sur-

face samples since they have greater influence to the render-

ing results.

We estimate the initial light configuration by iteratively

spreading unit-intensity lights in the scene, then adjusting

their intensities and deleting lights with low contribution. A

coarse-to-fine strategy is used to spread lights and a con-

strained linear least square solver is used to compute the light

intensities. Based on the computed positions and intensities

of lights, we further build a light hierarchy by repeatedly

merging two light clusters with the lowest illumination dif-

ference to the desired illumination.

Finally, we optimize the lighting configuration by repeat-

edly finding a light cut in the light hierarchy and using the

simplex method to compute the optimal lighting positions

and intensities in the lighting configuration retrieved from

the light cut. The optimization converges quickly as the ini-

tial configuration given by the light cut is usually close to the

optimal lighting configuration. The details of our approach

are described in the following sections.

3.1. Inverse Lighting Problem

We first define the notations used in this paper. Let S be a

scene description including material properties and 3D ge-

ometry and p be a lighting configuration specifying the po-

sitions X and intensities L of all lights in the scene, where

X = (x1,x2, ...,xn) and L = (l1, l2, ..., ln) for a lighting con-

figuration contains totally n lights. We then define I(p,S) as

the illumination of the scene S produced by a rendering sys-

tem R using the lighting configuration p. In most situations

when the scene is fixed, we will skip S and use I(p) to de-

note the illumination of the scene. We will also use I(p,si)
to denote the illumination value at a specific surface sample

si.

With the above notations, an inverse lighting problem can

be defined as follows: given a scene S and the desired illu-

mination Ψ (usually specified by a user), find the optimal

Painting System

Estimating initial 
lighting configuration

Computing optimal
lighting configuration

Rendering
System R

Preprocessing
Parameter p

Illumination I(p)

Desired Illumination Ψ

Parameter p0

Parameter p*

Scene S

User
Control

Figure 1: Our approach consists of four stages, preprocess-

ing, painting, estimating initial lighting configuration, com-

puting optimal lighting configuration. The inputs are the de-

scription of a scene S, including geometry and material prop-

erties, and desired illumination Ψ given by a user. Our sys-

tem finds an optimal lighting configuration p∗ to generate

the desired illumination.

lighting configuration p∗ so that the differences between the

resulting illumination I(p∗) and the desired illumination Ψ
is minimized,

p∗ = argmin
p

D(I(p,S),Ψ), (1)

where D(I(p,S),Ψ) measures the illumination difference

between Ψ and I(p,S).

The definition of D(I(p,S),Ψ) depends on the domain

where the desired illumination is defined. For instance,

Schoeneman et al. [SDS∗93] use L2 norm and Pellacini et

al. [PBMF07] use importance-weighted L2 norm to mea-

sure the illumination difference on a 2D image plane since

their system attempted to match illumination from a specific

viewpoint. In our case, we need to define this error metric in

3D space since the goal of our system is matching the illumi-

nation in a 3D scene. Therefore, the illumination difference

is defined as

D(I(p,S),Ψ) = ‖(I(p,S)−Ψ)‖2

=
√

∑m
i=1(I(p,si)−Ψ(si))T (I(p,si)−Ψ(si)), (2)

where ‖ · ‖2 is the L2 norm and Ψ(si) is the illumination

value at the surface sample si. m is the number of surface

samples at which the illumination differences are measured.

Note that the dimensionality of these variables are I(p,S) ∈
�3m×1, Ψ ∈ �3m×1, I(p,si) ∈ �3×1, and Ψ(si) ∈ �3×1 as

illumination is represented by RGB values. Similarly, the il-

lumination difference of a scene under two lighting configu-

rations p1 and p2 is defined as

D(I(p1), I(p2)) = ‖I(p1)− I(p2)‖2. (3)

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

135



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

3.2. Estimating Initial Lighting Configuration

(a) (b) (c)

(d) (e) (f)

Figure 2: Estimating initial lighting configuration: (a) Spread

lights coarsely; (b) Solve a least square problem to determine

light intensities; (c) Delete weak lights; (d) Spread lights

finely and uniformly around remaining lights; (e) Solve the

linear least square problem again; (f) Delete weak lights; The

contribution threshold is 5% in (c) and (f).

There are usually tens of thousands of vertices in a scene,

in which each vertex’s influence to the rendering result is

different. Hence, it is time consuming and unnecessary to

minimize the illumination difference over all vertices. This

computational issue becomes more critical in the optimiza-

tion stage as we need to render a scene every time for evalu-

ating the objective function. Therefore, we choose important

surface samples from a scene and focus on minimizing the

illumination differences at these important surface samples.

Our system uniformly samples the surface in a scene in pre-

processing. Those samples that are in shadows or colored

by painting system would get higher weighting. Our system

then performs the importance sampling to represent the illu-

mination effect of the scene.

To estimate the initial lighting positions for later optimiza-

tion process, we develop an approach similar to Kuo et al.’s

[Kuo08], which is an iterative framework to find an initial

lighting configuration. They spread unit-intensity lights in

the space and find the contribution from each light by solv-

ing a least square problem that minimizes the difference be-

tween the desired illumination and resulting illumination on

the image plane. Lights with similar contribution are merged

while lights with low intensity are removed. This framework

is computationally expensive as it usually needs to repeat the

above processes for many iterations.

To reduce the computational time, we apply a coarse to

fine sampling scheme to spread lights and only run few it-

erations of Kuo’s framework. At the first iteration, we sub-

divide the bounding volume of the scene into uniform cells

coarsely. We then place a unit-intensity light at the center of

each cell as shown in Figure 2(a). The intensities of lights

are computed using a least-square solver [LH74] and lights

of low contribution are deleted as shown in Figure 2(b)(c).

At the second iteration, any cell containing a remaining light

is subdivided into 8 subcells uniformly and a light is placed

at the center of each sub-cell (Figure 2(d)). The spreading-

solving-deleting process is repeated for few times until an

initial lighting configuration is obtained. Note that we only

use this process to obtain an initial lighting configuration,

so few iterations are enough for our purpose. In our experi-

ments, we found that two iterations are usually enough to get

a reasonable initial guess. In addition, our method does not

perform the merging in each iteration. We extract the merg-

ing from the initial guess for later usage (subsection 3.3),

which provides the better control over the number of lights.

Once the position of lights are determined, the intensities

of lights can be computed by solving a constrained linear

least square problem [SDS∗93]. Using the same notations

in section 3.1, we can express the illumination of the scene

rendered with n lights at positions X as a linear combination

of n column vectors,

I(p) = I(X ,L) =
n

∑
j=1

φ j l j, (4)

where light intensity l j ∈ �3×1, represents a color

light. φ j ∈ �3m×3, which collects the RGB val-

ues at m important surface samples, is called

the contribution matrix of the jth light. φ j =[
I(x j,(1,0,0),S) I(x j,(0,1,0),S) I(x j,(0,0,1),S)

]
,

in which each column is the illumination of scene ren-

dered with only a red, green or blue unit-intensity light

placed at x j, respectively. Thus, the lighting intensities

L∗ = (l∗1 , l
∗
2 , ..., l

∗
n ) for rendering a scene that best matches

the desired illumination Ψ in the lest-square sense can be

found by solving the constrained least squares problem:

min
L
‖(I(X ,L)−Ψ)‖2

2, L > 0. (5)

The nonnegative constraint is enforced as the intensities of

physical lights should never be negative. We use a con-

strained least square solver lsqnonneg provided by Matlab,

which adopts the algorithm described in [LH74], to solve

Equation (5). Figure 2(b)(e) show the light configuration ob-

tained from least-square solutions.

The computed light configuration is usually not accurate

and may contain many weak (or noisy) lights with low in-

tensities. This is because the least-square solver generates

some additional lights to diminish illumination differences

causing by inaccurate fixed light positions during the solv-

ing process. We delete weak lights by removing lights with

low contribution ratio,

‖φ j l j‖2

‖Ψ‖2
< εw, (6)

where εw is a threshold. After deleting weak lights, the

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

136



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

brightness of the scene may slightly decrease when there are

many weak lights. To prevent this effect, we run the least

square with the remaining lights once more, so the number

of lights is reduced while the brightness is maintained. Fig-

ure 2(c)(f) are results after deleting weak lights.

3.3. Computing Optimal Lighting Configuration

The initial estimating usually produces more lights than the

user desires, although we already delete weak lights. Find-

ing an optimal lighting configuration is indeed involved with

discrete and continuous optimization since we need to know

the number of lights as well as the position and intensity of

each light in the optimization process [PBMF07]. Instead of

formulating the problem as discrete optimization, we inte-

grate a hierarchical representation of lighting configuration

into a continuous optimization algorithm to compute the op-

timal lighting configuration. Therefore, the proposed opti-

mization framework can achieve discrete and continuous op-

timization simultaneously.

Our optimizing framework contains three steps: building

light hierarchy, computing optimal lighting on chosen cuts,

and determining the number of lights. First, we build a light

hierarchy by progressively combining pairs of light clusters,

which are obtained from estimated initial light configuration.

Then we choose some cuts, which represent light configura-

tions, to attend the optimization. Finally, we determine the

number of lights by measuring the improvement of adding

lights.

Building light hierarchy: The light hierarchy is built by a

bottom-up approach. To maximize the quality of the clus-

ters that a light hierarchy creates, we merge two point light

clusters that produce least illumination difference to desired

illumination. When two light clusters Ca and Cb are merged,

there are three possible positions of the new light cluster: the

original position of Ca, the original position of Cb and the

weighted average of the position of the two merged clusters:

xnew =
xa‖φala‖2 + xb‖φblb‖2

‖φala‖2 +‖φblb‖2
, (7)

Our system always chooses the one with the minimal illu-

mination difference to the desired illumination, and the in-

tensity of the new cluster is lnew = la + lb. Our system re-

peatedly merges two light clusters that are best for merging

until there is only one cluster. Then the light hierarchy is

built. Figure 3(a) shows light clusters of initial light config-

uration. Figure 3(b) illustrates the corresponding light hier-

archy, where leaf nodes represent lights in the initial light

configuration.

Once a light hierarchy is constructed, we can represent

different lighting configurations as cuts on the light hierar-

chy. The green line in Figure 3(c) shows a light cut, which

means there are three representative lights as shown in Fig-

ure 3(d). A light configuration thus can be retrieved accord-

ingly. Our system computes the illumination difference be-

tween the desired illumination and the rendering result of a

light configuration represented by each cut. The normalized

illumination difference D is the illumination difference nor-

malized by the L2-norm of the desired illumination Ψ.

D(I(cuti)) =
‖Ψ− I(cuti)‖2

‖Ψ‖2

(8)

If the computational time is not an issue, we could run opti-

mization for all light cuts; however, it is usually not needed

to optimize for cuts with high D since these cuts can not

achieve acceptable results in most cases. Therefore, we only

choose the first Ncut cuts with illumination difference lower

than a threshold εopt in the optimization process. In our ex-

perience, setting Ncut = 4 and εopt = 15% works well for

most situations.

Computing optimal lighting: For each chosen cut we com-

pute the optimal lighting parameters p∗ = (X∗,L∗) by min-

imizing D(I(p),Ψ), where the initial guess p0 = (X0,L0)
is given by the light cut. There are several factors that

make our continuous optimization problem difficult to solve

[PBMF07]. First, the objective function is nonlinear in the

lighting parameters. Second, to evaluate the objective func-

tion D(I(p),Ψ), we need to render the scene under p and

compute the illumination difference between I(p) and Ψ,

which can be computationally expensive. Third, the search

takes place in high dimension if we attempts to optimize

many parameters or many lights. Fourth, there is no general

strategy (other than sampling) to determine the local gradi-

ents of the objective function. Based on our experiments and

the suggestion in [PBMF07], we found that the nonlinear

simplex method [NM65, PaATV92] works well if the opti-

mization starts from a good initial guess and the search space

is well parameterized. Figure 3(e) shows the optimal lighting

configuration generated by our system. The light positions in

our result and the desired illuminated scene (Figure 3(f)) are

very close, and the overall atmosphere of lighting effects is

similar.

Determining the number of lights: To choose a suitable

number of lights, we measure the illumination improvement

between a light cut cuti and its next cut cuti+1.

Impro(i) =
D(I(cuti))

D(I(cuti+1))
(9)

For example, if we consider the red cut in Figure 3(c) as

cut1, then the next cut under red cut is the blue cut, which

is cut2. The normalized illumination improvement between

cut1 and cut2 is 22.4%/1.83% = 12.24. Given an improve-

ment threshold, we start from the root of the tree and then

progressively refine the light cut until the improvement is

lower than the threshold εimpro. We choose 1.6 as the εimpro
for our system. For instance, in Figure 3(c), the system will

choose the blue cut as our light configuration since its next

improvement is 1.83%/1.63% = 1.12 which is smaller than

1.6. The order of light cuts for optimization is chosen in a re-

versed order of light tree construction. When the light tree is

being constructed, the system repeatedly merges two clusters

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

137



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

(a) Initial cofiguration (b) Light hierarchy (c) Cuts and D (d) Green cut in (c) (e) Result (f) Desired

Figure 3: Illustration of computing optimal lighting configuration. (a) Initial Lighting Configuration. (b) Light hierarchy built

on (a). (c) Three light cuts and their error value after optimization. (d) The lighting configuration corresponds to the third cut

(green) in (c). (e) Resulting illumination after simplex optimization. (f) Original input: the desired illumination.

that produce the smallest illumination difference to the de-

sired illumination. Therefore, when determining the order of

light cut, choosing the next light cut by breaking a light clus-

ter formed later in the construction process often achieves

maximal improvement. For example, in Figure3(c), the sys-

tem breaks cluster 10 of blue cut into clusters 9 and 6 instead

of breaking cluster 7 into clusters 1 and 2 because cluster 10

is formed later. This simple approach works well in our ex-

periments. There are other ways to determine the order of

cut, e.g., breaking and testing all possible light clusters to

find the next light cut. This may produce better results, but

would take much more computational time.

Please note that the Impro function is not always greater

than one. For some cases, the merged cluster could be better

than original two clusters. After the number of lights is de-

termined, our system still keeps the hierarchy. If the number

of lights does not satisfy the user’s requirement, the user can

manually change the number of lights by choosing the upper

cut or the lower cut.

Our system supports not only point lights but also spot-

lights. In the initial estimating stage, we neither create a huge

light cache nor spend a long time for precomputing spot-

lights due to their higher dimensional parameters. Parts of

information, which include the position and direction, are

acquired in painting stage (Section 4.1). Our system then

creates additional contribution matrix for each spotlight. The

intensities of point lights and spotlights are computed by the

nonnegative least square solver at the same time. In the op-

timal stage, our system does not merge the spotlighs in the

step of building light hierarchy. The spotlights only partici-

pate in the computing optimal lighting on chosen cuts. The

parameters of spotlights such as position, direction, inten-

sity, and cut of angle are optimized with the parameters of

point lights. This ensures point light and spotlight are both

considered.

3.4. Rendering System

Our rendering system generates the illumination of the scene

S for a given lighting configuration p. It would be invoked

hundreds of times during the preprocessing and the opti-

mization process. Thus, it is essential to be able to eval-

uate the rendering function R(p,S) quickly. To reduce the

computational time, we adopt the imperfect shadow map

[RGK∗08] as our rendering system to render the scene with

the first bounce of diffuse lighting since it can interac-

tively compute global illumination in large and fully dy-

namic scenes based on approximate visibility queries. As the

illumination of lights can be stacked, our system can be ex-

tended to render higher-order diffuse reflection; this would

increase the rendering cost and slow down the interactive

light design process.

We precompute and cache the illumination results in the

preprocessing. We first uniformly place many unit-intensity

lights in the bounding volume of the scene. We then evalu-

ate the illumination of the scene for each unit-intensity light

I(x j,(1,1,1),S) and store these illumination. Since we al-

ready have those light cache data, we can obtain the illumi-

nation of the scene for a light placed arbitrarily in the scene

by interpolating nearby cached lights. The cache data is also

used in the optimization. For the direct lighting, accessing

the cache data may be slower than rendering the scene di-

rectly; however, for the indirect lighting, retrieving the cache

data is often faster. Since the interpolation works well on in-

direct illumination but not well on direct illumination such as

shadows or highlights due to rapid changes, we place a lot of

lights finely in the space to alleviate the artifact on direct il-

lumination. On the other hand, the illumination of spotlights

must be computed during the optimization process, because

light cache does not contain the information about spotlight.

4. Interactive Lighting Design System

4.1. Painting System

According to the user study in [KP09], it is harder for a

novice user to draw a desired illumination effect that is

physically correct. There are usually many conflicts between

the user painting and the physically correct illumination. To

overcome this issue, we provide a guiding system for the

user to specify the desired illumination with ease. Our sys-

tem helps user to create an inaccurate but feasible desired

illumination as input.

The painting system contains three stages: light candi-

dates estimation, brightness adjustment, and detail modifica-

tion. Figure 4 demonstrates the process. For light candidate

estimation, the user can first select an object in the scene as

an occluder, and then specify its shadow as the position of

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

138



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

(a) (b) (c)

(d) (e) (f)

Figure 4: Painting system work flow: (a) Selecting occluder

(green line) and assigning shadow (gray strokes); (b) Com-

puting associated point lights (dots); (c) Erasing unwanted

shadows (in red circle); (d) Adjusting the brightness and

color; (e) Modifying details (such as shadow boundary in-

side red circle); (f) Assigning spotlight; Please also see the

accompanying video.

(a) (b) (c) (d)

Figure 5: Point lights estimation in Painting System. Green:

The center position of an occluder. Red: The position of re-

ceivers. Yellow: Rejected point lights. Blue: light candidates.

(a) Estimating light candidates from an occluder-receiver

pair; (b) Light candidates of two occluder-reciever pairs be-

fore reducing; (c) Determining the intersection set; (d) Av-

erage position of the set;

the receiver as shown in Figure 4(a). We treat each occluder-

receiver pair as a shadow request information. Figure 5 illus-

trates our idea. Each request contains the position data of the

center of the occluder and the center of shadow area. We use

a cone to select the point light candidates for each request

as shown in Figure 5(a). The apex of cone is the position

of occluder center, and the direction of cone’s axis is from

the shadow center to the occluder center. The initial span an-

gle of cone is 15 degrees. If the cone does not cover enough

point light samples, the system will gradually increase the

angle of the cone by 5 degrees until it covers enough light

samples. In practice, we use 8 as the number of enough point

light samples. To reduce the redundant point light candidates

estimated from all occluder-receiver pairs, our painting sys-

tem tries to find the intersection set among those candidate

sets. If the intersection set is not empty, we use only the can-

didate lights in the intersection set as shown in Figure 5(c);

otherwise, the system just keeps all candidate lights in each

set. After that, each remaining set is reduced to a single light

by taking the average of the position of lights as shown in

Figure 5(d).

For brightness adjustment, our system can erase the

shadow or change the color of lights. When user wants to

erase a shadow, he/she can simply click the shadow area as

shown in 4(c). Our system casts a ray from a clicked posi-

tion to the location of each remained point light, then the

ray-caster can detect the possible occluder and light source.

If there is only one possible pair of occluder and light source

casting the shadow on the clicked position, the system di-

rectly erases the shadow by setting the occluder to be invisi-

ble. If there are multiple possible pairs of occluder and light

source, our system allows the user to pick the shadow to be

erased. When user wants to change the color of lights, user

has no need to paint the entire scene. User can use brush

to modify the illumination of a small area, and our system

changes the lights which are able to light the area as shown

in 4(d). If the area is under shadows, the light sources which

cast the shadow do not change. Thus user can modify only

part of lights.

For detail modification, our system allows the user to edit

the illumination by brush. The user can also select and paint

a specified color on the scene to modify the desired illumi-

nation as shown in Figure 4(e). Moreover, the user can spec-

ify an area to be lit by a spotlight as shown in Figure 4(f).

Our system sets the position and direction of the spotlight as

those of the current camera, then it finds the minimal cut-off

angle that is large enough to cover all the lit area requested

by the user.

4.2. Iteratively Adjusting

The proposed approach can be effectively integrated into an

interactive lighting design system. A user can create the de-

sired illumination once and our system can automatically

compute an optimal lighting configuration. Or the user can

iteratively add or modify the desired illumination and our

system can adjust the lighting configuration with respect to

the latest modification. In this way, the user can better con-

trol the lighting design process. Figure 6 demonstrates an

iterative editing process.

We develop two adjustment schemes in our system: fine-

tune and adding-light. To illustrate these two schemes, we

use Ψr and I(p∗r ) to denote the desired illumination and the

resulting optimal illumination at the current state, respec-

tively. When a user modifies the current illumination I(p∗r )
to a new desired illumination Ψr+1, our adjustment schemes

need to find a new lighting configuration p∗r+1, so that the

Ψr+1 is best satisfied.

In the fine-tune scheme, the user can use a brush to edit

I(p∗r ). Our system does not add any new light to the scene

and only adjusts the intensity and position of the existing

lights by re-running the importance sampling and the sim-

plex optimization. The initial guess p0
r+1 = p∗r and the de-

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

139



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

sired illumination Ψr+1 modified from I(p∗r ) are used in the

optimization process.

In the adding-light scheme, our system runs the full pro-

cess in Figure 1. We use ΔΨ = Ψr+1− I(p∗r ) as the desired

illumination to get the initial lighting configuration p0
new. As

the illumination should be non-negative, all the negative val-

ues of ΔΨ are set to zero. Next, a brand-new light hierarchy

is built for lights of p0
new. We run the simplex optimization

for each chosen cut with the desired illumination ΔΨ, and

determine the number of lights as same as Section 3.3. After

obtaining the p∗new, our system uses the light configuration

pr+1 = {pr, p∗new} to render the scene. The lights of old con-

figuration pr do not change. This allows user to add lighting

effects step by step.

Although our system can determine the number of lights

automatically, the user can also opt to control the number of

lights in the scene. This can be easily done by choosing a

light cut on a light hierarchy.

(a) Input to Pass 1 (b) Result of Pass 1 (c) Input to Pass 2

(d) Result of Pass 2 (e) Input to Pass 3 (f) Result of Pass 3

Figure 6: Lighting design in the two toys scene. User can

adjust or add light source into the scene iteratively.

5. Experimental Results

We first validate the robustness of our system using physi-

cally infeasible illumination as input. We then evaluate the

accuracy of our system by finding the optimal lighting con-

figuration in 3D scenes rendered with known lighting config-

urations. We can quantitatively measure the error of the com-

puted lighting configuration as the ground truth is known.

We also test our system on generating desired illumination

specified by user. Finally, we analyze the performance of our

approach and discuss limitations of our approach.

Validation Experiments: We first use a physically infeasi-

ble illumination as input to test the robustness of our system.

Figure 7(a) shows the two toy scene with two known lights.

Two of the toys’ shadows are intentionally removed, and the

scene is treated as the desired illumination of our system. In

this case, our system can still achieve a good result with two

lights as shown in Figure 7(b). The position and intensity of

lights are similar to those of the known lights.

Next, we compare our result with the desired illumination

(a) Physically infeasible input (b) Resulting illumination

Figure 7: (a) The physically infeasible input illumination,

two of the shadows is removed. (b) The result of our system,

the solution is still two lights and similar to the input.

(a) Ground truth (b) Resulting illumination

Figure 8: (a) Interior scene illuminated with 4 artificial

lights. (b)The scene rendered using the light configuration

computed by our approach.

rendered with a known lighting configuration. Figure 8(a)

and (b) show the desired illumination and the computed illu-

mination of an interior scene rendered with 4 artificial lights.

The normalized illumination difference D is 1.49%, and the

difference between two light configurations is shown in Ta-

ble 1.

In a complex lighting environment, even though we can

produce illumination that is very close to the desired illumi-

nation, it can be hard to estimate the light positions and the

total number of lights accurately. For example, in Figure 8,

Table 1: Comparison of the positions and intensities of the

artificial lights and the computed optimal lights in Figure 8.

The mean position difference is 6.42, and the mean intensity

difference is 0.011.

Artificial Light

Light position (x,y,z) intensity (r,g,b)

1 (-21.95, 110.54, 132.27) (0.225 0.225 0.225)

2 (-81.95, 100.54, -47.73) (0.225 0.225 0.225)

3 (8.05, 70.54, -7.73) (0.225 0.225 0.225)

4 (-111.95, 70.54, 132.27) (0.225 0.225 0.225)

Optimal Light

Light position (x,y,z) intensity (r, g, b)

1 (-21.95, 99.26, 133.09) (0.28, 0.31, 0.30)

2 (-82.70, 101.73, -43.34) (0.21, 0.17, 0.21)

3 (9.35, 74.57, -6.64) (0.32, 0.33, 0.31)

4 (-113.48, 74.29, 128.71) (0.20, 0.21, 0.20)

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

140



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

our system outputs correct number of lights, but the light-

ing positions are slightly different from those of the artificial

lights (ground truth). Even so, the resulting illumination is

very close to the desired illumination visually. Table 1 com-

pares the position and intensities of the artificial lights and

optimal lights. The average distance of position difference is

6.42 or 1.87% of the diagonal length of the scene (342.41)

and the average intensity difference is 0.011.

(a) Assigning shadow (b) Drawing highlighted re-

gions

(c) Final Result

Figure 9: Lighting design in the interior scene. (a) User as-

signed shadow area. (b) Drawing two highlighted regions for

spotlight. (c) Final result with indirect lighting.

Lighting Design Using Painting System: We tested our

system on 3D scenes in which the desired illumination is

specified using our painting system. Figure 9(a) shows a user

painting some shadows under the chair. Then the user draws

two highlighted regions to the vase and the painting on the

wall as shown in Figure 9(b). Finally, our system finds the

optimal lighting configuration that minimizes the illumina-

tion difference to the desired illumination. Figure 9(c) shows

the resulting illumination of our system. One can find out

that our system produces shadows, point lights, and spot

lights that closely match user’s desired illumination effects.

Figure 10 shows another lighting design example. User

selects the Mao-Gong Ding in the center as a shadow oc-

(a) Assigning Shadows (b) Assigning other Shad-

ows

(c) Estimated Result (d) Drawing highlighted re-

gion

(e) Final Result

Figure 10: Lighting design in the museum.

cluder and then specifies the positions of the shadows as

shown in Figure 10(a)(b)(c). After that, the user draws a

highlighted region on the Mao-Gong Ding. Figure 10(d) and

Figure 10(e) shows the assigned painting and displays the

final result, respectively.

It is worth to notice that the user does not need to paint

the entire scene as our system can automatically guess the

lights and create a desired illumination. This ability provides

a more convenient way for inverse lighting design, thus it can

help the user to reduce the time for editing.

Discussion: We analyzed the computational performance of

our approach in all examples. All experiments are run on In-

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

141



Lin et al. / Interactive Lighting Design with Hierarchical Light Representation

tel Core I5 760 2.8GHz CPU with NVIDIA GeFore GTX460

graphics hardware. Our program only uses single thread

without taking advantage of multi-core CPU. The compu-

tational time of our approach is about 10 to 40 seconds, and

the normalized illumination difference D is lower than 1.5%.

The process time mainly depends on the number of lights.

There are some parameters which affect the speed or qual-

ity of our system, such as εw, Ncut , εopt , and εimpro. These

parameters are manually set, and the same parameters are

used for all experiments. εw is the threshold to delete weak

lights for estimating the initial lightings. Because the number

of estimated lights affects the computational time of build-

ing light hierarchy, it is necessary to set a large enough εw;

The first Ncut cuts with illumination difference lower than a

threshold εopt are chosen to enter the optimization. To pre-

vent local minimum, choosing more cuts is better. However,

the computational time of optimization is the bottleneck of

our method. It is important to limit the chosen cuts. Setting

values of Ncut and εopt is a trade-off between the accuracy

and speed; εimpro is the threshold for determining the num-

ber of lights. If εimpro is large, the system tends to choose the

cut with fewer lights. On the other hand, the system tends to

choose the cut with more lights if εimpro is small.

As our optimization process involves discrete and contin-

uous optimization, it is not easy to prove the convergence

of the optimization theoretically. In practice, our optimiza-

tion algorithm converges in all of our experiments since the

coarse-to-fine least square solver usually provides a good

initial guess, which effectively prevents the simplex opti-

mization from diverging.

6. Conclusion and Future Work

In this paper, we propose an efficient approach for 3D light-

ing design by solving an inverse lighting problem. We ap-

plied our approach to develop an interactive lighting design

system where a user can paint desired illumination on a 3D

object surface from any view, and our system automatically

finds the best lighting configuration to achieve the desired

lighting effect. The painted illumination effects can be it-

eratively modified by the user. In this way, the user has a

better control to the lighting design process. The validation

experiments show that our approach can correctly compute

the lighting configuration for rendering a 3D scene to match

the desired illumination. As our system takes only about half

minute to process, it provides an efficient way for interactive

lighting design.

Currently, our system only considers point light and spot

light sources in diffuse environment. In order to make our

system more powerful, it is necessary to support environ-

mental light and area lights; however, these types of light

sources will greatly increase the search difficulty as the di-

mensionality of our lighting optimization problem increases

significantly. Also, we simply use L2 norm to measure dif-

ference between desired illumination and resulting illumina-

tion currently. We would like to adopt perceptual difference

as it is a more appropriate metric for human eye. Finally, we

will make the user interface more intuitive and improve our

system by conducting a user study in the future.

7. Acknowledgement

This work was supported in part by the UST-UCSD In-

ternational Center of Excellence in Advanced Bioengineer-

ing sponsored by the Taiwan National Science Council I-

RiCE Program under Grant Number: NSC-101-2911-I-009-

101.We also thank Digimax, Inc. for providing test scenes.

References
[CSF99] COSTA A. C., SOUSA A. A., FERREIRA F. N.: Light-

ing design: A goal based approach using optimization. Springer
Verlag, Englewood Cliffs, NJ., 1999. 2

[JPP02] JOLIVET V., PLEMENOS D., POULINGEAS P.: Inverse
direct lighting with a monte carlo method and declarative mod-
elling. In Lecture Notes in Computer Science (2002). 1, 3

[KP93] KAWAI J. K., PAINTER J. S.: Radioptimization: goal
based rendering. In ACM SIGGRAPH (1993), pp. 147–154. 1, 2

[KP09] KERR W. B., PELLACINI F.: Toward evaluating lighting
design interface paradigms for novice users. ACM Transactions
on Graphics (2009). 6

[Kuo08] KUO H.-T.: Lighting by Guides: Lighting Parameters
Inference from Lighting Guides. Master’s thesis, Dept. of CSIE,
National Taiwan University, 2008. 2, 4

[LH74] LAWSON C. L., HANSON R. J.: Solving Least Squares
Problems. Prentice-Hall, Englewood Cliffs, NJ., 1974. 4

[MAB∗97] MARKS J., ANDALMAN B., BEARDSLEY P., FREE-
MAN W., GIBSON S., HODGINS J., KANG T.: Design galleries:
a general approach to setting parameters for computer graphics
and animation. In ACM SIGGRAPH (1997), pp. 389–400. 2

[NM65] NELDER J. A., MEAD R.: A simplex method for func-
tion minimization. The Computer Journal 7, 4 (1965), 308–313.
5

[OMSI07] OKABE M., MATSUSHITA Y., SHEN L., IGARASHI

T.: Illumination brush: Interactive design of all-frequency light-
ing. In Pacific Graphics (2007), pp. 171–180. 2

[PaATV92] PRESS W. H., ANDSAUL A. TEUKOLSKY B. P. F.,
VETTERLING W. T.: Numerical Recipes, 3nd ed. Cambridge
University Press, 1992. 5

[PBMF07] PELLACINI F., BATTAGLIA F., MORLEY R. K.,
FINKELSTEIN A.: Lighting with paint. ACM Transactions on
Graphics 26, 2 (Jun 2007), 9:1–9:13. 1, 2, 3, 5

[PRJ97] POULIN P., RATIB K., JACQUES M.: Sketching shadows
and highlights to position lights. In Computer Graphics Interna-
tional (1997), pp. 56–63. 1, 2

[PTG02] PELLACINI F., TOLE P., GREENBERG D. P.: A user
interface for interactive cinematic shadow design. In ACM SIG-
GRAPH (2002), pp. 563–566. 2

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps
for efficient computation of indirect illumination. ACM Trans.
Graph. 27, 5 (2008), 1–8. 6

[SDS∗93] SCHOENEMAN C., DORSEY J., SMITS B., ARVO J.,
GREENBERG D.: Painting with light. In ACM SIGGRAPH
(1993), pp. 143–146. 1, 2, 3, 4

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

142


