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PACS 74.20.Rp – Pairing symmetries (other than s-wave)

Abstract – The spectrum of excitations of the chiral superconducting ring with internal and
external radii Ri, Re (comparable with coherence length ξ) trapping a unit flux Φ0 is calculated.
We find within the Bogoliubov-de Gennes approach that there exists a pair of precisely zero-energy
states when 2k⊥(Re−Ri)/π is integer (here k⊥ is the momentum component in the disk plane
while k⊥ξ > 1). They are not protected by topology, but are stable under certain deformations of
the system. We discuss the ways to tune the system so that it grows into such a “Majorana disk”.
This condition has a character of a resonance phenomenon.

Copyright c© EPLA, 2013

Introduction. – Spin-triplet p-wave superfluids, both
neutral, such as liquid He3, Li6 or K40 and charged, such
as the superconducting material Sr2RuO4 and possibly the
heavy fermion UPt3 have resulted in very rich physics [1].
The condensate is described by a generally tensorial
complex order parameter ∆ exhibiting a great variety
of broken symmetries ground states. The broken symme-
try and boundary conditions give rise to the continuous
configuration of the order parameter as nontrivial topo-
logical excitations [2]. Especially interesting is the case
of the so-called topological superconductors, characterized
by the presence of electron-hole symmetry and the absence
of both time-reversal and spin-rotation symmetry. Real-
izations of topological p-wave superfluids are the chiral
superconductors like Sr2RuO4, with order parameter of
the px± ipy symmetry type [3] and the ABM-phase [1] of
superfluid He3 and other fermionic cold atoms, as well as
the topological superconductor CuxBi2Se3 that produces
an equivalent pseudospin system on its surface [4].
Generally a magnetic field in type-II superconducting

films easily creates a stable set of topological defects
—Abrikosov vortices [5]. In the simplest vortex the phase
of the order parameter rotates by 2π around the vortex
and each vortex carries a unit of magnetic flux Φ0 with
superfluid density depleted in the core of the size of the
coherence length ξ. Quasiparticles near the vortex core
“feel” the phase wind by creating a set of discrete low-
energy Andreev bound states. An unpinned vortex in
an infinite p-wave superconductors exhibits a remark-
able topological feature, i.e. appearance of the zero-energy

mode in the vortex core [6] (for each value of momen-
tum k⊥ perpendicular to the field direction). The zero
mode represents a condensed-matter analog of the Majo-
rana fermion [7]. Its topological nature ensures robustness
against perturbations from deformations of order parame-
ters and nonmagnetic impurities. Due to possible appli-
cations of the Majorana states in quantum computing
it is important to ensure a relatively large minigap Emg
separating the Majorana states from charged excitations.
It was proposed to enlarge the minigap from [8] ∆2/EF
to order ∆ by pinning vortices on inclusions of small
radius [9,10] Ri ∼ ξ.
In this letter we study the influence of size effects on the

appearance of the Majorana states in a ring made of the
chiral superconductor. It was noted that finite samples of
size L� ξ presented a pair of “nearly” Majorana states
which constitute one charged fermion degree of freedom
like in the 1D Kitaev model [11,12]. However these states
are no longer topologically protected and naively one
would expect that the degeneracy is removed with small
splitting energy δE ∝ e−L/ξ [13,14] due to tunneling from
the core to the surface of the sample. For systems of small
size L∼ ξ the situation might be different. In particular it
is not clear whether the splitting always occurs at all and
how it depends on the sample geometry.
To investigate the survival of Majorana states we

calculate exactly the spectrum of excitations in the chiral
superconducting ring with internal and external radii Ri,
Re of order ξ trapping a unit flux Φ0 (see fig. 1) within
the Bogoliubov-de Gennes approach.
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Fig. 1: (Colour on-line) A p-wave superconducting mesoscopic
disk with internal and external radii Ri and Re subject to a
magnetic field perpendicular to the disk.

A surprising finding is that although the splitting is
generally of order of the bulk energy gap ∆, there exists a
pair of precisely zero-energy states for the special relation
Re−Ri ≈ πn/2k⊥ for any integer n. Then, using the
perturbation theory, we generalize the consideration to
other geometries.

Basic equations. – We start with the Bogoliubov-de
Gennes (BdG) equations for the px+ ipy superconductor
in the presence of a single pinned vortex. The vector
potentialA in polar coordinates r, ϕ has only an azimuthal
component Aϕ(r) and in the London gauge consists of
the singular part Asϕ = hc/2er and the regular part of
the vector potential that can be neglected for a type-II
superconductor [15]. In the operator matrix form for a
two-component amplitude the BdG equations read

(
Ĥ0 L

L+ −Ĥ∗0

)(
u
v

)
=E

(
u
v

)
, (1)

where for the anisotropic dispersion

H0 = − �
2

2m⊥
∇2⊥−

�
2

2m�
∇2
�
−EF ;

L = − ∆
kF

{
s (r) eiϕ (i∇x−∇y)

+
1

2

[
(i∇x−∇y)

(
s (r) eiϕ

)]}
, (2)

with ∆ being the “bulk gap” of order Tc (neglecting the
small inhomogeneity of the superfluid density within the
ring). The dimensionless profile of the order parameter
s(r) is defined to represent the gap function ∆(r) =∆s(r).
In principle it should be determined self-consistently,
however, for a sufficiently thin homogeneous disk we
initially take s(r) = 1. This is justified in the bulk since
the sample size is of order ξ. Although Andreev’s bound
states are typically inhomogeneous, the effect of their
inhomogeneity on the order parameter is still smaller than

that of the continuum states even for small sizes [9]. We
will later investigate the stability of the solutions with
respect to variations to s(r).
The equations possess the rotational and the electron-

hole symmetries and eigenstates can be found in the form

u=
1+ i√
2
f(r)eilϕeik�z

v=
1− i√
2
g(r)ei(l−2)ϕeik�z.

(3)

For any angular momentum l and momentum along the
field k�, there are radial excitation levels. In a dimension-
less form eq. (1) is written as
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(4)

with the dimensionless energy εlk� =Elk�/γ∆. Here
distances are in units of ξ. In the clean limit BCS
(applicable to SrRu2O4) ξ = �k⊥/m⊥∆, where

k2⊥/2m⊥ =EF /�
2− k2

�
/2m�, (5)

and for given k� there is just one dimensionless parameter

γ = 1/2k⊥ξ =m⊥∆/2�2k2⊥� 1. (6)

The Ansatz, eq. (3), was chosen in such a way that
the equations become real. In the microscopic theory
of the superconductor-insulator interface, (see [16]), the
order parameter rises abruptly from zero in a dielectric,
where amplitudes of normal excitations f(Re) = g(Ri) = 0,
to a finite value inside the superconductor within an
atomic distance a from the interface, namely with a slope
∝ 1/a. This means that the boundary condition on the
amplitudes is consistent with a zero-order parameter at
the boundary point in the self-consistency equation (see
details in ref. [9] and references therein).

Majorana vs. non-Majorana rings. – Let us first
determine under what conditions zero-energy (Majorana)
states appear. It was shown [14,15] that they appear only
for l= 1 and might contain two possible states g+ = f+
or/and g− =−f−. The corresponding equations simplify
and differ just by the transformation r→−r:(

∂2

∂r2
+

(
1

r
+2

)
∂

∂r
+
1

r
− 1
r2
+
1

4γ2

)
f+ = 0,

(
∂2

∂r2
+

(
1

r
− 2
)
∂

∂r
− 1
r
− 1
r2
+
1

4γ2

)
f− = 0. (7)

The solutions are

f±=e∓r
[
c±J1

(
−r
√
1

4γ2
− 1
)
+d±Y1

(
r

√
1

4γ2
− 1
)]

,

(8)
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Fig. 2: (Colour on-line) The resonance condition for the
Majorana disk. The function χ(r) for two values of the
parameter γ = 1/2ξk⊥, γ = 1/30 (blue line), and γ = 1/15 (red
line). To obey the resonance condition the internal and external
radii Ri and Re should satisfy χ(Ri) = χ(Re).

where J1 and Y1 are the Bessel functions.

Defining the ratio χ(r) =
J1(r
√
1/4γ2−1)

Y1(−r
√
1/4γ2−1) plotted in

fig. 2, the boundary conditions for both f+ and f− read

χ(Ri) = χ(Re) =−d±/c± = χ. (9)

Therefore eq. (9) gives a relation between Ri, Re and γ of
the ring when two Majorana states exist simultaneously,
see the blue line in fig. 2 and table 1 for γ = 1/30 and
Ri = 0.1.
The superfluid density

ρ(r) = r|f±(r)|2 (10)

of the two Majorana states for γ = 1/30 and Ri = 0.1,
Re = 0.953 is presented in fig. 3.
One observes that due to the exponential dependence

in eq. (8) f± is located mostly near the internal (external)
surface —the red and green lines, respectively.
Using the approximate periodicity of the Bessel func-

tions in eq. (8) with period π one obtains for small γ� 1:
Re−Ri = 2πnγξ = πn/2k⊥, (11)

where n is an integer. A finite system that conforms to
these conditions will be denoted as “Majorana ring” in
what follows.
If the condition eq. (9) is violated (hence the rings

will be termed “non-Majorana”) the would-be Majorana
fermion (l= 1) states acquire a nonzero energy that
oscillates around zero as a function of Re for fixed Ri
and γ. This is exemplified in fig. 4 where energies of
the l= 1 states calculated numerically are given for γ =
1/30 and Ri = 0.1 and a range of 0.76ξ <Re < 1.2ξ. The
calculation utilizes the NAG Fortran Library Routine
Document F02EBF. It computes all the eigenvalues, and

Table 1: External radius Re of the Majorana Ring with
parameters Ri = 0.1ξ and two values of γ. The radii are
identified by the integer n.

n 1 2 3 4
γ = 1/30 0.256 0.531 0.742 0.9526
γ = 1/15 0.559 0.987 1.411 1.835

Fig. 3: (Colour on-line) Superfluid density (defined in eq. (10))
of low-energy states in the Majorana ring with internal and
external radii Ri = 0.1ξ and Re = 0.953ξ, respectively and γ =
1/30. The two Majorana l= 1 states are the internal or core
state (red line) and the external surface state (green line) while
the lowest-energy excited charged state is with l= 4 (blue line).
The excited state clearly resembles the surface states of p-wave
superconductors.

optionally all the eigenvectors, of a real general matrix.
One observes that at the “Majorana geometry” the energy
of the electron branch (red line) changes sign. Similarly the
hole branch has the opposite sign and the same absolute
value of energy. This exhibits a phenomenon of “level
crossing” in the BdG equation. Note that for a small
sample and Re−Ri = π(n+1/2)/2k⊥ the energy of the
l= 1 states might even exceed the gap magnitude ∆, see
the green lines in fig. 4.

Excited states in Majorana ring. – For a vortex
in an infinite s-wave superconductor, when the vortices
are unpinned (freely moving) the low-lying spectrum of
quasiparticle and hole excitations is equidistant, El = lω,
where the angular momentum l takes half-integer values.
The “minigap” Emg in the s-wave superfluids is of order of
ω=∆2/EF �∆, where ∆ is the energy gap and EF is the
Fermi energy. In the bulk chiral p-wave the spectrum of the
low-energy excitations remains equidistant, El = (l− 1)ω,
but now l is integer [15].
For a Majorana ring there are excited states well below

the continuum at l 	= 1 typically close to the surface.
The origin of their small energy is the vanishing of
the superconducting gap on the nodes of the p-wave
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Fig. 4: (Colour on-lilne) Violation of the resonance condition.
The Majorana states are split into positive and negative
charged branches. The splitting energy in mesoscopic samples
(like the one presented with Ri = 0.1ξ and Re in the range
0.7ξ–1.3ξ) can be as large as the superconducting gap (green
line) at Re = 0.8. One observes that for geometries far from
the Majorana ring condition, Re = 0.742, 0.953 (for γ = 1/30).
Note the oscillation of the splitting energy of the quasiparticle
and the hole.

superconductor. Such a state with minimal energy defines
the “minigap” that protects the Majorana states from
interferences due to the excitations. The excitation ener-
gies below the threshold (namely Andreev states) were
calculated numerically for γ = 1/30, Ri = 0.1 and Re =
0.98, see table 2.
Only the lowest (highest) energy E+ (E−) for quasi-

particles (holes) for each angular momentum is given
(typically other excitations are beyond the threshold). At
certain l there are no Andreev states.
In the case of the small ring considered here one observes

that the minigap Emg = 0.0135 appears at l= 4.
The energy is just a fraction of ∆, still an order of

magnitude larger than ∆2/EF for Sr2RuO4. The super-
fluid density ρ defined in eq. (10) corresponding to its wave
function is presented in fig. 3 (blue line). The wave func-
tion even for such a small ring is peaked near the outer
surface. To understand the relatively small value of the
minigap compared to the one that protects the core Majo-
rana states in the infinite system considered [17], Emg =
0.25∆, we have simulated finite large rings with Re =
10, 20. Of course the order parameter is no longer constant
over such sizes and we have used ∆(r) =∆ tanh (r/ξ)
for the order parameter distribution. One observes that
there are surface modes with energies E(20ξ) = 0.01∆,
E(10ξ) = 0.01∆. Therefore the energy of these modes is
almost independent of Re.

Stability with respect to change of the order
parameter rotation symmetry. – We conjecture that
by varying the parameters of the system, like the order
parameter that depends on the local temperature etc.,
one can still tune the system into a Majorana ring.
To support this conjecture we calculate in perturbation

Table 2: Energy of excited states in the Majorana ring with
parameters Ri = 0.1ξ, Re = 0.953ξ, γ = 1/30. Energies of both
the quasiparticles (E+) and holes (E−) are given in units of ∆.

l 1 2 3 4 5 6
E+ 2.6297 · 10−4 0.1552 – 0.0135 0.5903 –
E− −2.6297 · 10−4 – −0.0437 – – −0.1967

theory the correction to the Majorana solution of the
simple model eq. (8) in which the order parameter was
approximated by a constant. Now we assume that the
order parameter, in addition to a homogeneous rotation
of the phase, depends on the location, s(r) = s(r, ϕ) =
1+ψ(r, ϕ), with the inhomogeneous part assumed to be
small and

∫
ψ(r, ϕ) dϕ= 0. The only component of the

BdG operator in eq. (1) that is corrected is the off-diagonal
one, see eq. (2):

L[s (r, ϕ)]=− ∆
2kF

{
2seiϕ(i∇x−∇y)+

[
(i∇x−∇y)seiϕ

]}
(12)

=− i∆

2kF
e2iϕ
{
2s

(
∂

∂r
+
i

r

∂

∂ϕ

)
+
1

r

(
i
∂s

∂ϕ
− s
)
+
∂s

∂r

}
.

(13)

The energy correction to the l= 1 Majorana states given
in eq. (8) to leading order in ψ is

EabM = 〈fa|H[s]−H[1]|fb〉=
∫ (

u∗a v∗a
)

×
(

0 L [s]−L [1]
L [s]

+−L [1]+ 0

)(
ub
vb

)
, (14)

where a, b=± (for the internal or external surface Majo-
rana states of the unperturbed system). Using

L[s]−L[1] = − i∆
kF

e2iϕ
{
ψ

(
∂

∂r
+
i

r

∂

∂ϕ

)

+
1

2r

[
i
∂ψ

∂ϕ
−ψ
]
+
1

2

∂ψ

∂r

}
, (15)

the diagonal elements are

E++M = E−−M = i

∫
ϕ,r

rf+ (r) e
−iϕ (L [s]−L [1]) [f+ (r) eiϕ]

+cc= 0. (16)

The off-diagonal terms read

E−+M =E+−M =− ∆
πkF

∫
r

rf− (r) f+ (r)
∫
ϕ

ψ (r, ϕ) = 0.

(17)
So there is no splitting of the Majorana states.

Discussion and conclusions. – To summarize, the
spectrum of excitations of a single vortex in a chiral
superconducting ring with internal and external radii Ri,
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Re comparable with the coherence length ξ was calcu-
lated. There is a pair of precisely zero-energy states for
Re−Ri = πn/2k⊥ for any integer n for k⊥ξ > 1 where
k⊥ =

√
2m⊥EF /�2−m⊥/m�k2� is the momentum in direc-

tion perpendicular to the magnetic field. Therefore a
certain combination of geometrical factors, order parame-
ter (dependent on temperature and material parameters)
and magnetic-field distribution make a “Majorana ring”.
They are not protected by topology, but are stable under
certain deformations of the system. This condition has the
character of a resonance phenomenon.
The quantized geometry of the Majorana ring is not

evidently expected to be robust against perturbations
like disorder, shape change, magnetic-field distribution.
However, we guess that the pair of exact Majorana states
is separated by a minigap of order ∆/70 from charged
Andreev surface states, still an order of magnitude larger
than the Caroli, Matricon, deGennes minigap [8] ∆2/EF
for the superconductor Sr2RuO4 with ∆= 2K, EF =
103K. An analogous situation arises in the multivor-
tex system comprehensively studied by Mizushima and
Machida [18] under the assumption that the distance
between the vortices L is much larger than ξ, so that
tunneling between them can be treated as a perturbation.
In this case the pair of Majorana states belong to two
different vortices and they found, using a variational state
made of the core Majorana states of each of the vortices,
that the splitting energy of the two nearly Majorana states
oscillates as E± ∼∆

√
kFL cos(kFL+π/4)e

−L/ξ. There-
fore at L= π(n+1/4)/kF one would get a degeneracy.
This is reminiscent of our formula with two important
differences. First, our splitting is generally of order ∆, not
∆
√
kFLe

−L/ξ and second, more importantly, the Majo-
rana states highly overlap, so that n is small, while for
two vortices n>LkF � 1.
Practical proposals will depend on the thickness of the

film. In the 2D limit k⊥ = kF (the condition is determined
below) and the Majorana condition is Re−Ri = πn/2kF .
For Sr2RuO4 with [3], ξ = 65nm and the ring width should
be quantized in π/2kF = 4nm≈ ξ/30 with minigap of
order 1K. Moreover deviations from the Majorana condi-
tion lead to a very sharp splitting of order ∆, see fig. 3.
When the thickness of the film is D new channels open for
the Andreev bound states: k� = 2πn�/D, where n� is inte-
ger. The new condition on the width becomes Re−Ri =
π
2k∗ [1−α(2πn�/Dk∗)2]−1/2, where α=m⊥/m� = 0.03 is
the anisotropy and k∗ =

√
2m⊥EF /�. The second channel

n� = 1 will enter forRe−Ri ∼ ξ at widthD= 2πα1/2/k∗ =
5nm. Therefore the film is 2D only when it is thinner than

that, while for thicker films, when several new channels are
open, one of them can harbor Majorana states.

∗ ∗ ∗
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Bulaevsky, M. Meidan, B. Y. Zhu, and M.
Lewkowicz.
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