
Thus, the circuit realises a noninverting notch signal at V a l ,  a non- 
inverting lowpass signal at V,, and an inverting bandpass signal at 
Vo3. Component matching conditions are not required in the 
design. 

R3 
Fig. 1 Proposed voltage-mode notch. lowpass and bandpass filter using 
three current-feedbnck amplifiers 

Taking into account the nonidealities of a CFA, namely, i, = 
ai,, v, = pv,  and v, = yvz where a = l+?I and e@l) denotes the 
current tracking error, p = lLey and e,(>l) denotes the input volt- 
age tracking error and y = 1-e’“ and e,(>l)  denotes the output 
voltage tracking error. The resonance angular frequency w, and 
quality factor Q are given by 

= (GzG3/C,C2)”2((y2(y3a~22)1’2 (4) 

Q = G i ( C ~ / C z G 2 G 3 ) ” 2 ( 1 / ~ i ~ i ) ( ~ 3 ~ 2 / ( y ~ ~ * ) 1 ’ 2  ( 5 )  

and 

Note that w, and Q are orthogonally adjustable. The sensitivities 
of w, and Q to active and passive components are 

s:;%e3,8,,/32 = 112 = S,Q& = -s,Q2s?, S L ,  = -1 

= - S&, = 1/2 S g G &  = -SX = -112 

and Sc&, = 1 

all of which are small. 
Finally, to verify the theoretical prediction of the proposed net- 

work, a lowpass filter prototype has been realised with discrete 
components. The experimental network in Fig. 1 was built with R I  
= R, = R3 = lOkR, and C, = C, = InF. Three commercial CFAs 
(AD844s) were used. The measured frequency response of the low- 
pass filter shown in Fig. 2 agrees well with theory. 

b frequercy.Hz 

Fig. 2 Amplitude-fequency response and phase-jrequency response 

a Amplitude-frequency 
b Phase-frequency 

~ ideal response 
0 measured response 

Conclusions; In this Letter, three current-feedback amplifiers, two 
grounded capacitors and three floating resistors are employed to 
construct a voltage-mode notch, lowpass and bandpass filter in 

which the CFA-based notch filter is proposed for the first time. 
The new filter offers the following advantageous features: 

(i) realisation of notch, lowpass and bandpass signals from the 
same configuration 

(ii) no requirements for critical component matching conditions 

(iii) orthogonal adjustment of 61, and Q 

(iv) use of only two grounded capacitors which makes the circuit 
suitable for integrated-circuit implementation 

(v) small active and passive sensitivities 

(vi) very low output impedance which makes the voltage-mode 
circuit cascadable. 
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Construction of dynamic threshold schemes 

H.-M. Sun and S.-P. Shieh 

Indexing term: Cryptography 

An (m, n) threshold scheme is to decompose a shared secret into n 
shares in such a way that the shared secret cannot be reclaimed 
unless any m shares are collected. A new dynamic threshold 
scheme that allows the shared secret to be updated without 
changing the shares is proposed. 

Introduction: In 1979, Blakley and Shamir [l,  21 introduced the 
concept of threshold schemes which are mainly used to protect the 
master key of a secure system from beiig lost, destroyed and mod- 
ified. The main idea underlying an (m, n) threshold scheme is to 
divide the shared secret (master key) K into n shares S,s (1 5 i 5 n) 
in such a way that the shared secret K cannot be reclaimed unless 
m shares are collected. The security of a threshold scheme is classi- 
fied into two levels: information theoretic security (perfect secu- 
rity) and computational security [3]. A threshold scheme is 
perfectly secure if any m-l or less shares provide no information 
about the shared secret K [4], and it is computationally secure if 
for any m-l or less shares it is computationally infeasible to deter- 
mine the shared secret K in  polynomial time [SI. 

In conventional threshold schemes, the corresponding shares 
must be updated accordingly when the shared secret is renewed. It 
is time-consuming and inconvenient if the shares need be changed 
frequently, especially when the number n of the shares is large. In 
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1989 [6], Laih et al. proposed the concept of dynamic threshold 
schemes in which the shared secret can be renewed while the origi- 
nally issued shares remain intact. In their paper, they proposed a 
relatively dynamic threshold scheme in which the secrecy decreases 
as the number of changes to the shared secret increases. However, 
a perfectly secure dynamic threshold scheme has not been pro- 
posed. In 1994, Sun and Shieh [7] showed that the necessary con- 
dition for the existence of a perfectly secure dynamic threshold 
scheme is that the length of the share should be T+l times longer 
than that of the shared secret, where T ( T  2 0) denotes the times 
that the shared secret can be renewed. Thus, the length of the 
share and the length of the shared secret determine the times that 
the shared secret can be renewed. This suggests that perfectly 
secure dynamic threshold schemes are infeasible because the length 
of a share is proportional to T. Recently, Zheng et al. [3] proposed 
a computationally secure (m, n) dynamic threshold scheme based 
on the use of the pseudorandom function family and the universal 
hash function family. Their dynamic threshold scheme has the 
advantages that the length of the share is constant, and the times 
that the shared secret can be renewed are unlimited. However, 
their (m, n)  dynamic threshold scheme is somewhat limited 
because 

(i) the number n is constrained to n = O(0, where I denotes the 
length of the shared secret 

(ii) it needs to maintain a large public function with the size of 
O(2”), where n denotes the number of shareholders. 

In this Letter, we construct a computationally secure (m, n )  
dynamic threshold scheme which provides the same funct~ons but 
better strength. Our scheme not only resolves the two problems 
described above, but also detects and identifies any cheater who 
attempts to deceive other shareholders by presenting a forged 
share in the threshold scheme. Our scheme is based on the diffi- 
culty of solving the discrete logarithm [8] and can be described in 
terms of the following three phases. 

(a) Initial phase: Let p be a large prime (e.g. the length of p is 512 
bit) such that the discrete logarithm problem (mod p) is inaccessi- 
ble [XI, and g be a primitive element over GF@). Each shareholder 
U, has a public share y, (= gs’ mod p)  and a secret share S,, where 
S, is randomly chosen between 0 and p-1. 

(b) Dispersion phase: We assume that the shared secret is K ,  where 
0 5 K 5 p-1. If K is larger than p l ,  it is divided into blocks, each 
of which is smaller than p. Each block is protected by the dynamic 
threshold scheme. The dealer takes the following steps to set up 
the relationship between the shared secret K and the shares S,s. 
Note that this phase needs to be repeated only when the shared 
secret K needs to be renewed. 

(i) The dealer selects a polynomial of degree m-l.f ’ (x)  = U, ,Y ’ 
+..-+ a,.x + K (mod p),  where U,, ... , a,,-, are randomly chosen 
between 0 andp-I. 

(ii) The dealer selects a random number r and publishes the value 
of d (= g‘ mod p). 

(iii) The dealer computes b, = f(i).@,)’ (mod p) and c, = gf‘”(mod 
p) for 1 5 i < n, and then publishes b, and c, to all shareholders. 

(c) Recovery phase: Without loss of generality, we assume that U,, 
U*, ..., and U, are m shareholders who want to restructure the 
shared secret K. Each shareholder U, who owns S,  first obtains the 
value of @,)‘ by computing (d)”, = (gr)s, = (g”,)‘ = @J‘ (mod p). 
and then computes Az] = b;[@,)‘]-’ (mod p). for 1 5 i 5 m. To 
detect the cheater, we need only to verify the validity offii) by gf(” 
=* c,, for 1 5 i 5 m. If all these f(i)s are valid, f l x )  can be recon- 
structed from the Lagrange interpolating polynomial as follows: 

Therefore, the shared secret K can be obtained byA0). 

In the three phases above, the public information of our scheme 
is p, g, d, y,, b,, c, for 1 5 i 5 n. It is clear that the size of the public 
information of our scheme is O(n), where n denotes the number of 
the shareholders. 

Security unulysis: 

(i) Without loss of generality, we assume that U,. U,, ..., and U, , 
are m-l shareholders who attempt to restructure the shared secret 
K. In this case, they can obtain only m-1 valuesfii) for 1 5 i 5 m- 
I .  Thus Ax) cannot be determined uniquely because Ax) has m 
unknown variables. 

(ii) We assume that an intruder (who may or may not be a share- 
holder) who does not know S, attempts to obtain the value offii). 
He knows only the public information d (= g’), y, (= gs,). c, (= 
gffC’), and b, (= f(i),(y,)’ orf(i).(d)s,). To derive r or S, orfli) from 
d, y,, and c,, the intruder has to cope with the difficulty of solving 
the discrete logarithm problem [8]. Hence, it is infeasible for the 
intruder to obtain any one of r, S,, andfii). In addition, he cannot 
derivefii) from b, because r and S, are unknown. 

(iii) Consider the case when the shared secret is renewed in the 
threshold scheme. Assume that K‘ is the new shared secret and 
h(x) is the new polynomial in the dispersion phase. Because h(x) is 
independent offlx), the only possibility of finding K‘ (= h(0)) is to 
find S, from f lx )  first and then derive h(x)  from S, .  We also 
assume that the polynomialflx) is public after the shared secret is 
renewed. Thus, fli) ( I  < i 5 n) can be computed by any intruder. 
This implies that the value of (d)s, (= f(i) I-b, mod p )  can be com- 
puted by any intruder. However, it is infeasible for the intruder to 
compute S, from the value of (d)s, because the intruder faces the 
difficulty of solving the discrete logarithm problem again [8]. 

(iv) We assume that there exists a cheater, the shareholder U,, who 
presents a forged share S,* in the recovery phase. The forged share 
S,* gives the forged valuefli)*. The forged valueflr)* will not sat- 
isfy the equation: $‘’)* = r, because g and c, are public. Therefore, 
the behaviour of the cheater can be detected. 

Conclusions: In this Letter, we propose a new (m, n) dynamic 
threshold scheme which allows the shared secret to be renewed 
without changing the shares. The scheme has the advantages that 
the length of the share is constant, and the times that the shared 
secret can be renewed are unlimited. The public information of 
our dynamic threshold scheme is O(n) which is better than O(P) 
of the existing scheme, where n denotes the number of sharehold- 
ers. In addition, our dynamic threshold scheme has the capability 
of detecting cheaters who attempt to deceive other shareholders. 
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Design of generalised ElGamal type digital 
signature schemes based on discrete 
logarithm 

L. Harn and Y. Xu 

IndPxrna term: CrYDtoaraDhv 

The ElGamal type digital signature schemes have received wide 
attention recently. ElGamal type signature schemes can provide 
'subliminal' channel, message recovery, multisignature, etc. The 
authors investigate the design criteria of ElGamal type signature 
scheme and develop a complete list of all variations. 

Inrroduction: A digital signature is analogous to an ordinary writ- 
ten signature used for signing messages. It must be unique and pri- 
vate to the user. At this time, there are two most popular public- 
key algorithms which can provide a digital signature: the RSA 
scheme [I]; and the ElGamal scheme 121. 

A modification of the ElGamal signature was proposed by 
Agnew, Mullin and Vanstone (AMV) [3] in 1990. Instead of solv- 
ing m = xr + ks mod p-I ,  the signer solves the congruence m = xs 
+ kr mod p-1. The advantage of this modified scheme over the 
ElGamal scheme is that, in order to compute the signature by 
solving the congruence for s, the signer only needs to compute x' 
in Zp,* once, instead of computing k' in 2,; for every signature, 
where x is the secret key for the signer and k is an integer ran- 
domly selected by the signer for signing every message. Yen and 
Laih [4] also proposed a variation of the ElGamal type signature 
scheme. In 1994, Harn [5,6] proposed two other variations of 
ElGamal type schemes. 

In 1989, Schnorr [7] proposed an ElGamal type signature 
scheme to shorten the signature. Later, the digital signature algo- 
rithm (DSA) was proposed [S] by NIST, also based on a very sim- 
ilar approach. These two schemes have also been developed based 
on the original EIGamal signature scheme. 

A recent paper, Nyberg and Rueppel [9], pointed out that all 
ElGamal type signature schemes have variants giving message 
recovery and also analysed six of the simplest ElGamal type varia- 
tions in GF@). Being motivated by their paper, we have developed 
a complete list of 18 ElGamal type signature schemes in this Letter. 

Generalised ElGumal r.vp signature schemes: Let p be a large 
prime and a be a primitive number in Gm). Each user selects a 
secret key I E [l,  p - 1 ]  and computes a public key y = ax mod p. 
For each message m E [I ,  p l ]  to be signed a new random integer 
k E [l,  p l ]  is privately selected. Instead of signing the message m 
directly, all ElGamal type signature schemes should sign the one- 
way hash result of m. For simplicity, we will ignore the one-way 
hash function in the following discussion. 

In all ElGamal type signature schemes [3-91 the commitment 
part r of the signature is computed as 

The other part s of the signature is computed differently. In the 
original ElGamal scheme, s is solved with the knowledge of the 
signer's secrets, x and k, as 

1. = ak m o d p  

rn = ks  + TX mod Q ( p )  

where k should be selected such that G C D ( k ,  0@)) = 1. The tri- 
plet (m; ( r j ) )  constitutes the signed message and is sent to the verifier. 

The signature (r, s) is accepted by evaluating whether the equality 
am = Fy' mod p 

holds true. 

equation for all ElGamal type signature schemes as 
Without loss of generality, we can represent the generalised 

~ 

ax = bk + c mod Q(p) 

where (a ,  b, c) are three parameters from the set of values (m.  r, s). 
More specifically, each parameter can be a mathematical combina- 
tion of (m. r, s). For example, the parameter U can be rm, or r, etc. 
The verification equation is determined accordingly as 

y" = rbaC mod p 

In the following we will discuss the form of the above general- 
ised signature equation and some restrictions applied on parame- 
ters (a, b, e)  based on the security considerations. 

(a) Because x and k are two secret numbers and the verifier does 
not know these two values, x and k should be treated as two dif- 
ferent terms in the above equation. Otherwise, if we combine these 
two Secret parameters together (i.e. for example, if xk = rm + s 
mod 0@), then y" = a'"'+l mod p or F = a'"'*r mod p), the verifier 
cannot verify the signature. 

(6)  To claim that (r ,  s) is a signature for the message, the message 
m itself should be included in the signature equation and can be in 
any of parameters (U, 6, e).  

(e)  To provide proper security of algorithms, r and s should also 
be included in parameters (a ,  b, e). Thus, there are five parameters 
in the equation. If r is contained in parameter b, the verification 
equation is very similar to the scheme proposed by Agnew, Mullin 
and Vanstone [3], in which r will appear in both the base and the 
exponent of the same base (i.e. am = y r '  mod p ) .  Otherwise, r will 
appear in both the base and the exponent of a different base (i.e. 
a" = r " y  mod p )  as in the original ElGamal scheme 121. 

(4 For security reasons, s and m cannot be combined together in 
any of parameter (a ,  b, e). For example, if x = rk + sm mod e)@). 

Then only by modifying the partial signature s of a legitimate sig- 
nature (r ,  s) corresponding to the message m, can it forge a signa- 
ture (r ,  s') of another message m', where m' = pm mod 0@) and 
s' = p-'s mod 0@). 

(e) For security reasons, s and r cannot be combined together. For 
example, if mx = k + rs mod 0@) and the corresponding verifica- 
tion equation is p = ra" mod p. The attacker can first randomly 
select an integer R and computes r' to satisfy p = f a R  mod p .  The 
forged signature is (r', s3, where r's' = R mod 0@). 

v) r can be combined with m. For example, if x = rmk + s mod 
0@). This is due to the fact that the partial signature r is locked 
by the secret number k and it is impossible to forge a signature by 
changing r only. 

(g) There must be three separate terms as specified in the equa- 
tion. For example, if (m+r)x = sk mod 0@), then it can forge sig- 
nature (r, SI)  for another message m', where m-m' = $ mod 0@) 
and s' = (1 - p(m+r)-')s mod 0@). 

(h)  The generalised signature equation contains five parameters: 
three parameters, (m.  r, s), are public information, x is the fixed 
secret key of the signer and k is a random secret value for each 
message. Because the number of secret parameters is always one 
larger than the number of linear equations available to the 
attacker, the signature scheme is secure based on the discussion in 
the original ElGamal paper [2]. 

If we neglect the ditrerence between +d and 4, and the differ- 
ence between d and &, where d E (x, k,  m, r ,  s), we can list all 
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