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Simulation

Using self-aware agents to analyze public
self-consciousness in the iterated
prisoner’s dilemma

Chung-Yuan Huang1,2, Sheng-Wen Wang3 and Chuen-Tsai Sun3

Abstract

Self-aware individuals are more likely to consider whether their actions are appropriate in terms of public self-

consciousness, and to use that information to execute behaviors that match external standards and/or expectations.

The learning concepts through which individuals monitor themselves have generally been overlooked by artificial intel-

ligence researchers. Here we report on our attempt to integrate a self-awareness mechanism into an agent’s learning

architecture. Specifically, we describe (a) our proposal for a self-aware agent model that includes an external learning

mechanism and internal cognitive capacity with super-ego and ego characteristics; and (b) our application of a version of

the iterated prisoner’s dilemma representing conflicts between the public good and private interests to analyze the

effects of self-awareness on an agent’s individual performance and cooperative behavior. Our results indicate that self-

aware agents who consider public self-consciousness utilize rational analysis in a manner that promotes cooperative

behavior and supports faster societal movement toward stability. We found that a small number of self-aware agents are

sufficient for improving social benefits and resolving problems associated with collective irrational behaviors.

Keywords

self-aware agents, public self-consciousness, cellular automata, small-world networks, tit-for-tat strategy, win-stay,

lose-shift strategy

1. Introduction

Self-awareness is a psychological process through
which individuals focus their attention on themselves.1

According to self-awareness theory,2 persons in high
states of self-awareness contemplate the suitability of
their own traits and behaviors, including aspects of
their personalities, abilities, desires, needs, values, and
other qualities.3,4 Individuals use private and public
self-consciousness to enact behaviors that meet stan-
dards that are internal, established by important
others, or representative of societal and/or cultural
values.5 In other words, having an accurate sense of
self-awareness supports a more complete understanding
of the rightness/wrongness, goodness/badness, or supe-
riority/inferiority of one’s behavior according to social
standards.6 This is helpful for learning skills, managing
personal interactions, and conducting one’s affairs.
Self-awareness can also support internal knowledge of
emotions, motivations, interests, and desires so as to

achieve self-identification and self-realization. In con-
trast, lack of self-awareness often leads to situations
where personal behaviors are driven by strong emo-
tions that are disadvantageous to one’s well-being.2

Further, a lack of understanding of others’ emotions
and ideas often leads to exaggerations of one’s own
merits and lack of restraint in social situations.
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Since self-awareness plays an important role in
human emotional development, some social psycholo-
gists are employing agent-based modeling and simula-
tion techniques to explore the topic.7–9 Descriptions of
specific efforts can be found in the physics, biology,
ecology, economics, management, computer science, and
artificial intelligence (AI) literature.10,11 Combined,
these tools represent a novel approach to analyzing
behavioral patterns at all levels of complexity in
domains ranging from social development12,13 to
Internet commerce.14,15 In the field of social psychol-
ogy, which addresses complex human phenomena and
societal processes, a growing number of researchers are
using agent-based modeling and simulation tools to
create multi-agent systems for exploring human behav-
ioral patterns on a large scale.16–18

However, to date most forms of agent learning
models have been restricted to what are essentially min-
iatures of external environments.7 The emphasis has
mostly been on mechanisms that connect stimulation
signals and behavioral reactions.19 Depending on the
form of signals to which agents are exposed (primarily
from physical environments or other agents), they use
learning methods such as artificial neural networks,
genetic algorithms, and fuzzy rule-based systems to
adjust their knowledge bases or rule sets.20,21 In some
scenarios, agents are programmed to learn professional
skills or to search for problem-solving strategies in
response to pre-assigned demands or tasks.22,23

There are at least five advantages to using self-
aware agents in artificial societies and social simula-
tions.11, 23,24 First, they are compatible with established
AI learning frameworks in that they support extensions
of those frameworks, increased agent learning perfor-
mance, and faster arrival at optimal problem-solving
strategies. Second, the introduction of a public self-
consciousness concept lets agents take into account
shared needs and feedback from other agents when
building connecting mechanisms between behavioral
reactions and stimuli – in other words, standards and
values can be shared. Third, the presence of both pri-
vate interests and public self-consciousness helps agents
detect discrepancies between behavioral reactions and
internal or external standards. They can therefore
search for ways to decrease these discrepancies, increase
learning performance, and satisfy internal or external
standards. Fourth, an agent’s ongoing and evolving dis-
crepancies between the self and public self-conscious-
ness can support researchers’ attempts to understand
external dynamics, resulting in timely revisions or
adjustments in the agent’s self-consciousness. Finally,
self-aware agents support the construction of artificial
societies and simulation models that more closely
resemble those of real-world societies.

AI researchers have generally overlooked the
learning concepts through which individuals enact
self-awareness mechanisms.8,9,23,24 We believe that inte-
grating a self-awareness mechanism into an agent
model will bring the behaviors and interaction patterns
of agents into closer agreement with those of real
people. Furthermore, self-aware agents will help
agent-based social simulations more accurately reflect
actual societal operations. Accordingly, we have devel-
oped a self-aware agent model aimed at improving
learning capacity and performance. We will use the
conflict between the public good and private interests
to explore the influences of self-awareness on agent
behaviors, degree of group cooperation, and larger
societal interests.

2. Related theories and models

2.1. Self-awareness and social interactions

According to ethologist Desmond Morris,25 self-
concept represents the sum of self-beliefs. He suggests
that self-concept affects all aspects of human personal-
ity formation, development, and change, and notes that
in addition to their ability to think, humans have the
power to self-analyze and to reflect upon and correct
their ideas. Furthermore, humans are capable of under-
standing their feelings (i.e., to incorporate rationality
into their feelings) and have the power of self-cognition,
with which they can comprehend their positions in
the world. Once established, human self-concept
helps guide ideas, feelings, and behaviors26 – for exam-
ple, observing and making self-inferences via choices
driven by internal motives, or doing what one wants
instead of has to do. However, some researchers (e.g.,
Smith and Mackie27) disagree with claims that individ-
uals can achieve self-understanding by observing their
own behaviors. They argue that ways of forming self-
images and ways of knowing others are very similar,
but that humans have greater potential for deviance
and for making mistakes in terms of self-perceptions.

In other words, it is easier to objectively observe
one’s neighbors than oneself – a power that can con-
tribute to a cycle in which self-understanding helps one
understand others and vice versa.2 In addition, one’s
self-views are strongly influenced by the perceptions
of others who are considered important or whose opin-
ions are considered valid. Those perceptions help in
the acknowledgment, interpretation, and correction of
mistaken self-perceptions. This type of ‘looking-glass
self’28 is very important for establishing appropri-
ate attitudes and concepts, since it supports an under-
standing of how the world perspectives of others differ
from our own. Self-recognition becomes blurred
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without this ability to use the eyes of others for self-
reflection.29,30

2.2. Agent model

Agent architectures and knowledge (rules) are major
factors affecting problem-solving speed and solution
quality (performance). The two most commonly used
intelligent agent-based models emphasize knowledge
acquisition and adaptation.7–9,19 The first is rule-
based, with domain experts determining knowledge
and rules required for agent problem-solving, which
are integrated into the model in question so that
agents can infer appropriate behaviors based on infor-
mation from the external environment. The second is
learning-based, with agents solving problems and col-
lecting information from a combination of past experi-
ences and present needs to construct new strategies or
adapt old ones, and to transform strategies into knowl-
edge bases and rule sets. Although rule-based agent
architectures are easy to implement, they require large
knowledge and experience data sets for use by agents,
raising issues regarding revising, updating, customizing,
and learning flexibility.

Current intelligent agent models combine these
architecture types, resulting in adaptive models with
built-in knowledge bases or rule sets that follow three
steps: sensing, planning, and acting.7 In Figure 1 we use
the extended classifier system (XCS)31 to illustrate the
interaction process between sense-plan-act agents and
their environments. Interactions between XCS (which is
associated with genetic algorithms and reinforcement
learning22) and a problem environment occur as fol-
lows: at discrete time t, an agent senses the current
state st and compares it with individual rule or classifier
conditions within an agent’s internal knowledge base
½P�. All rule sets that fulfill state st are stored in a tem-
porary buffer ½M�. Methods such as cost estimation and
experience accumulation are used to select the most
suitable rules in terms of fitness values, through which
actions at are executed. Optimum learning is achieved
through a system of rewards, punishments, and trial-
and-error. Although scholars have proposed various
learning algorithms for use with core intelligent agent
architectures (e.g., artificial neural networks, genetic
algorithms, Q-learning), sense-plan-act still serves as
the foundation for most agent models.7–9

Stuart Russell7 used a compilation of agent architec-
tures to establish a general learning-based agent model.
As shown in Figure 2, his model contains four compo-
nents in addition to detectors and effectors that interact
with the external environment: a learning component, a
performance component that monitors the external
environment and determines responses, an assessment

component that evaluates learning performance, and a
problem generator for determining optimal directions
for additional learning. In addition to containing a
detailed architecture for interactions between an
agent’s learning mechanism and external environment,
Russell’s model clearly addresses all critical compo-
nents and connections in agent model design. We used
his work as our self-aware agent model foundation.

2.3. Iterated prisoner’s dilemma

Over the past decade, ecologists, anthropologists, polit-
ical scientists, sociologists, economists, and computer
scientists have used agent-based simulations with the
non-zero-sum prisoner’s dilemma to explore conflicts
between the public good and private interests.12,13

Researchers have also used the same combination to
study the reciprocal effects, emergence phenomena,
and evolutionary dynamics of rational strategies con-
sisting of mutually beneficial cooperation and selfish
defection.32,33

The payoff matrix for the prisoner’s dilemma (PD)
is shown in Table 1. R ¼ 3 represents the reward
for mutual cooperation, T ¼ 5 one party’s temptation
to defect, S ¼ 0 the ‘sucker’s payoff,’ and P ¼ 1 the
punishment for mutual defection. Two key condi-
tions for generating a PD are T4R4P4S and
2� R4Tþ S.12 The first condition guarantees that
two rational agents will simultaneously betray each
other after understanding that T4R and P4S, and
therefore follow the second best choice: mutual defec-
tion ðP,PÞ. According to the second condition, pris-
oners cannot escape such a predicament by taking
turns betraying each other – in other words, benefits
for mutual betrayal are not as good as for mutual coop-
eration. In addition to these conditions, five PD criteria
are thought to prevent all forms of cheating: (a) agents
cannot communicate or negotiate with each other,
(b) agents cannot threaten or make promises to each
other, (c) agents cannot determine their opponents’
future behaviors, (d) agents do not have the power to
terminate play at any time, and (e) agents cannot
change each other’s payoff values. Accordingly, each
agent can only rely on past behaviors to formulate
strategies that optimize long-term benefits.

In each PD round, both individuals are free to
choose cooperation or defection, with defection
always holding greater potential for benefits.
However, if both parties choose defection, their total
compensation will be less than that generated if both
choose cooperation. There are many real life scenarios
in which participants encounter each other more than
once. When those individuals recognize each other and
remember past choices, then the prisoner’s dilemma
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Figure 1. Extended classifier system (XCS) architecture, adapted from Huang and Sun.22 XCS is a problem-independent and

adaptive learning-based agent model with four components: finite classifier, performance, reinforcement, and rule discovery. Stored

classifiers control the system via a horizontal competition mechanism, and perform tasks by means of vertical cooperation. The

performance component governs interactions with the target problem. The input interface is used to transmit the state of the target

problem to the performance component, and to determine dominant classifiers according to an exploration/exploitation criterion. All

actions advocated by dominant classifiers are executed and receive feedback via the output interface. The reinforcement (credit

assignment) component uses an algorithm similar to Q-learning to update the reinforcement parameters of classifiers that advocate

the output action. The rule discovery component uses a genetic algorithm to search for better or more general classifiers, as well as to

discard incorrect or more specific classifiers.

Figure 2. Russell’s general learning-based agent model, adapted from Russell and Norvig.7
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becomes an iterated prisoner’s dilemma (IPD). Interest
in long-term survival encourages cooperation, since
individual private interests do not generate the same
benefits as group-oriented public concerns. In other
words, both public good and individual fitness are
best supported by long-term collaboration.

In addition to all-cooperation (ALL-C) and all-
defection (ALL-D), two of the most analyzed IPD
strategies are Nowak and Sigmund’s ‘win-stay, lose-
shift’34 and Rapport’s ‘tit-for-tat’.12 The first is based
on Pavlov’s theory regarding the maintenance of one’s
current cooperation or defection strategy until benefits
fall below a threshold value, at which point the oppo-
site strategy is followed. In the second, agents always
cooperate in the first round, and imitate their oppo-
nents’ behaviors thereafter. According to Axelrod,12

the four main characteristics of the tit-for-tat strategy
are (a) friendliness, meaning that one does not defect
before an opponent defects; (b) vengefulness, so that
once an opponent defects, it is possible to immediately
‘get even’; (c) tolerance, in that one stops defecting as
soon as an opponent stops; and (d) transparency,
making it easy for opponents to predict the results of
a tit-for-tat strategy. By analyzing the evolutionary
dynamics of various strategies and their predominance
at different times during simulations, IPD researchers
have found that reciprocal cooperation is an advanta-
geous strategy that satisfies the condition of evolution-
ary stability.

As shown in Table 2, many IPD agents adopt a
memory-1 deterministic strategy.35 In other words,
they use short-term memory to store the strategies
and behaviors of opponents in the preceding round.
There are only four possible combinations of behaviors
for two agents: both cooperate (expressed as CC), the
first cooperates and the other defects (CD), the first
defects and the other cooperates (DC), and both
defect (DD). This memory-1 deterministic strategy can
be expressed as ðscc, scd, sdc, sddÞ. For example, if an
agent’s memory of the preceding round is CC, then
the agent will choose Scc when responding to an oppo-
nent. Since each response is limited to either coopera-
tion or defection, the memory-1 deterministic strategy
has a total of 16 (24) possible moves, including
S0 ¼ ðC,C,C,CÞ, S1 ¼ ðC,C,C,DÞ, . . . , S15 ¼ ðD,D,

D,CÞ, S15 ¼ ðD,D,D,DÞ. Among these, S0 ¼

ðC,C,C,CÞ is known as the ‘yes-man’ (ALL-C) strat-
egy, S5 ¼ ðC,D,C,DÞ the tit-for-tat strategy, S6 ¼

ðC,D,D,CÞ the win-stay, lose-shift strategy, and
S15 ¼ ðD,D,D,DÞ the ‘scoundrel’ (ALL-D) strategy.

3. Self-aware Agent Model

Sigmund Freud described human personality as con-
sisting of three parts: id, ego, and super-ego.36,37 The
id contains a person’s subconscious thoughts, including
primitive desires originating from intuitive impulses.
The purpose of the id is to fulfill biological needs
(including sexual desires) and to avoid pain. The
super-ego (also referred to as the moral self or self-
consciousness) is a personality monitor; it operates
according to a ‘perfection principle’ that adheres to
behavioral guidelines. A list of social rules and regula-
tions that rely on the super-ego would include propri-
ety, justice, honesty, shame, loyalty, filial piety,
benevolence, love, trust, righteousness, harmony, and
peace. The ego (the personality executor, or ‘rational
self’) is the part of the personality structure that comes
into contact with external environments. When a per-
son’s id and super-ego come into conflict, the ego uses a
reality principle to make adjustments through which
the needs of the id are satisfied, while super-ego rules
and regulations are adhered to based on the current
context. The ego makes use of multiple defense mech-
anisms to balance discrepancies between internal needs
and external realities. For example, suppose someone
finds a wallet containing $1,000. The id views this as a
windfall, but the super-ego says the money should be

Table 2. Memory-1 deterministic strategies

No. Strategy ðscc, scd, sdc, sddÞ Note

S0 ðC, C, C, CÞ all-cooperation

S1 ðC, C, C, DÞ

S2 ðC, C, D, CÞ

S3 ðC, C, D, DÞ

S4 ðC, D, C, CÞ

S5 ðC, D, C, DÞ tit-for-tat

S6 ðC, D, D, CÞ win-stay, lose-shift

S7 ðC, D, D, DÞ

S8 ðD, C, C, CÞ

S9 ðD, C, C, DÞ

S10 ðD, C, D, CÞ

S11 ðD, C, D, DÞ

S12 ðD, D, C, CÞ

S13 ðD, D, C, DÞ

S14 ðD, D, D, CÞ

S15 ðD, D, D, DÞ all-defection

Table 1. Payoff matrix for the prisoner’s dilemma, adapted from

Axelrod.13 Individual A’s payoffs are in blue, B’s in red

B

Cooperation (C) Defection (D)

A Cooperation (C) R¼ 3, R¼ 3 T ¼ 5, S ¼ 0

Defection (D) S¼ 0, T ¼ 5 P¼ 1, P ¼ 1
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returned to its owner. As an ego-driven compromise,
the finder may decide to search for the person who lost
the money for three days, and keep it if unsuccessful.

Adopting Freud’s theory of personality to learning-
based simulation agents presents many challenges.
Current approaches emphasize continual agent adapta-
tion to achieve optimal performance. In these cases,
only the rational self (ego) is involved in helping
agents to quickly react to environmental changes and
achieve their goals. Although that is sufficient for sur-
vival, relying on ego only means that agents cannot act
to achieve the greatest overall benefit for a community
or society. In contrast, agents who only have egos and
ids can achieve certain individual-centered tasks, but
their self-interested behaviors and strategies will ulti-
mately be rejected by other agents. Agents who possess
both egos and super-egos can understand community
or societal expectations and resolve public good/private
interest conflicts; accordingly, cooperation among
agents emerges more quickly so that societal benefits
are increased. In a later stage of our research we incor-
porated the super-ego into our learning-based agent
model, thus injecting a sense of self-awareness in sup-
port of agent efforts to understand social expectations.

Building on Russell’s learning-based agent model,
we developed a self-aware agent model consisting of
three components: performance, learning, and cogni-
tion. As shown in Figure 3, the cognition component
uses past experiences to add information to a knowl-
edge structure in order to assist agents with understand-
ing, explaining, and predicting self-behavior. The
learning and cognition components, which are coordi-
nated to improve performance, entail external environ-
ment (opponent strategies) and internal cognition
features. According to our proposal, agents become
capable of self-awareness through the addition of var-
ious schemas that improve efficiency via learning and

cognition coordination, thereby moving closer to a
model of human intelligence.

Since an agent’s super-ego has the potential for
increased social benefits and faster collaborative behav-
ior,38,39 we attempted to add this personality compo-
nent to our agent self-awareness mechanism. This
personality component can be analyzed as a mix of
reputation and social expectation strategies. The idea
of reputation, which has been extensively studied in the
context of multi-agent systems,40–42 can be used to
judge opponent strategies for the purpose of making
adjustments. Agent reputation is also considered
useful for constructing self-awareness.

Reputation implementation consists of four steps:

Step 1: Assume that agent Ai has n opponents so that
Oi ¼ ðoi,0, oi,1, oi,2, . . . , oi,n�1Þg during generation g;
oi,j represents agent Ai’s j th opponent (j 2
f0, 1, 2, . . . , n� 1g).

Step 2: At the end of generation g we arrive at the
numerical sequence Ci ¼ ðc0,i, c1,i, c2,i, . . . , cn�1,iÞg,
with cj,i representing the number of times that oppo-
nent oi,j makes a cooperative move during a PD
interaction with agent Ai in generation g.

Step 3: Calculate the average value (avgi) and standard
deviation (stdi) of the numerical sequence Ci.

Step 4: Assign the reputation value ri,j of agent Ai’s
opponent oi,j as ðcj,i � avgiÞ=stdi

� �
.

Agents become aware of their fitness values when
reputation mechanisms are introduced; at a certain
point agents can determine their reputations based on
judgments made by other group members. (The degree
of social fitness of an agent has been widely discussed in
the general multi-agent system literature (see, for exam-
ple, Mead28). In the prisoner’s dilemma, an agent’s
score can be used to indicate social fitness. However,

Figure 3. Self-aware agent model.
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we believe this measure is insufficient, and that self-
aware agents must respond to input from both the
ego (social fitness) and super-ego (agent reputation).)
As shown in Figure 4, fitness values and reputations
can be divided into high, medium, and low categories
(nine cross-categories in all). Using the combination of
high fitness value and low reputation as an example,
this agent type is likely to use an always-defect strategy
in order to improve performance. However, an always-
defect strategy does not improve the public good.
The addition of a super-ego will likely trigger a self-
adjustment, resulting in a strategy that simultaneously
fulfills societal expectations and helps the agent achieve
a higher fitness value. At the end of generation g, agent
Ai can follow six additional steps to attain both a
strong relative fitness value and reputation:

Step 1: Assume that afi is agent Ai’s fitness value.
Step 2: Agent Ai asks all Oi opponents about their eval-

uations of her reputation rj,i. In the numerical
sequence ARi ¼ ðr0,i, r1,i, r2,i, . . . , rn�1,iÞg, rj,i repre-
sents opponent oi,j’s evaluation of agent Ai’s reputa-
tion. This information is used to calculate the average
value ari of numerical sequenceARi; the resulting ari
represents agent Ai’s average reputation in groupOi.

Step 3: Agent Ai collects reputation information for
opponent Oi from all other opponents, and uses it
to create the numerical sequence ORi ¼ ðr0,1, . . . ,
r0,n�1, r1,0, r1,2 . . . , r1,n�1, . . . , rn�1,0, . . . , rn�1,n�2Þg
with length n� ðn� 1Þ. rj,k represents opponent
oi,j’s evaluation of opponent oi,k’s reputation. Also
as part of this step, the average value of numerical
sequence ORi (OR avgi) and standard deviation
OR stdi are calculated.

Step 4: Agent Ai collects fitness value data for all oppo-
nents Oi and creates the numerical sequence
OFi ¼ ð f0, f1, f2, . . . , fn�1Þg with length n� ðn� 1Þ.
fj represents the fitness value of opponent oi,j. Also
as part of this step, the average value of the numer-
ical sequence OFi (OF avgi) and standard deviation
(OF stdi) are calculated.

Step 5: If agent Ai’s fitness value afi is less than
ðOF avgi �OF stdiÞ, then Ai:Fitness ¼ LOW. If the
fitness value is greater than ðOF avgi þOF stdiÞ,
then Ai:Fitness ¼ HIGH. If the fitness value is
between ðOF avgi �OF stdiÞ and ðOF avgiþ
OF stdiÞ, then Ai:Fitness ¼MIDDLE.

Step 6: If agent Ai’s reputation ari is less than
ðOR avgi �OR stdiÞ, then Ai:Reputation ¼ LOW.
If the reputation is greater than ðOR avgiþ
OR stdiÞ, then Ai:Reputation ¼ HIGH. If the repu-
tation is between ðOR avgi �OR stdiÞ and
ðOR avgi þOR stdiÞ, then Ai:Reputation ¼
MIDDLE.

4. Simulations and Experiment Results

Complex systems such as biological ecosystems, human
societies, and Internet commerce generally consist of
large numbers of interacting and coordinating entities.
When a small number of entities regularly betray, take
advantage of, and/or appropriate others’ resources in
order to enhance their own performance, their self-
interested behaviors will eventually damage the sys-
tem’s overall interests. As stated above, self-aware
agents with egos and super-egos at the center of their
operations are more likely to take into account their

Figure 4. Agent fitness score and reputation index table.

606 Simulation: Transactions of the Society for Modeling and Simulation International 87(7)

 at NATIONAL CHIAO TUNG UNIV LIB on April 24, 2014sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


own fitness values and reputations, and therefore
search for appropriate strategies to boost community
or societal performance while still supporting their pri-
vate interests. We designed a simulation experiment
with an IPD scenario to test the effectiveness of
adding these personality characteristics.

Our simulation model includes two layers in which
agent interactions take place: a multi-agent system
upper layer, and a lower layer consisting of either
cellular automata or a Watts and Strogatz (WS)43

small-world network (Figure 5). Cellular automata
are two-dimensional W�H regular networks with
high degrees of local clustering and separation, while
WS small-world networks have high degrees of local
clustering and low degrees of separation. In order to
compare IPD scenario results using these two network
model types, we stipulated that node (agent) and edge
(contact) numbers must be identical for the two net-
work types. Every node (strategic agent) has on average
eight adjacent nodes with which it comes into regular
contact (e.g., family members, neighbors, fellow com-
muters, classmates, etc.). In cellular automata, each cell
is equal to one node and edges are distributed accord-
ing to a Moore neighborhood pattern. WS small-world
network construction is identical to that of the cellular
automata for the first stage. Once all nodes have been
established and connected to their eight adjacent nodes,
edge rewiring takes place according to a predetermined
probability �.

Our IPD simulation experiment consisted of seven
steps:

Step 1: Set environmental parameters and initial
values for evolutionary computations (Table 3).
Environmental parameters include total number of
time steps for each simulation experiment, strategy
and color mapping table, agent memory capacity,

and human contact and interactive social network
values (i.e., numbers of nodes and edges, neighbor
patterns, and small-world network rewiring proba-
bility). Evolutionary computation parameters
include total number of agents/nodes, crossover
rate, mutation rate, and total number of genera-
tions/time steps.

Step 2: Use experimental requirements to choose and
construct the most appropriate network – cellular
automata or two-dimensional WS small-world.

Step 3: Set time step t to 0.
Step 4: Based on network connection patterns, have the

nodes at the ends of links Ai and Aj execute q IPD
rounds. Using the payoff matrix shown in Table 1,
calculate scores for Ai (asi) and Aj (asj), both rang-
ing from q� S to q� T (i.e., from 0 to 5q). Use
these scores as fitness values for agents Ai (afi) and
Aj (afj), with afi  asi and afj  asj.

Step 5: Agents calculate their relative fitness (Ai:Fitness)
and reputation (Ai:Reputation) values, which repre-
sent the evaluations of all Ai opponents.

Step 6: Each agent determines whether or not to make
strategy adjustments. The current strategy is consid-
ered inappropriate when Ai:Fitness ¼ LOW or
Ai:Reputation ¼ LOW. Agents that need to adjust
their strategies use evolutionary computation cross-
over operations to combine their original strategies
with strategies used by opponents with high fitness
values. They also use evolutionary mutation opera-
tions to randomly change their strategies.

Step 7: Increase each time step value by 1.
If t5Time Step Limit, then return to Step 4; oth-
erwise, terminate the experiment.

A screen shot of our simulation system and user
interface is shown as Figure 6. On the right is a list of
parameters and their default values, on the left is the

Figure 5. Our proposed simulation model.
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Figure 6. User interface for our iterated prisoner’s dilemma simulation system.

Table 3. Experimental parameters

Parameter Default value Description

TIME STEP LIMIT 100 Total number of generations for each simulation experiment

q 100 Total number of interactions between an agent and its opponent

Network Type � If NetworkType¼CA, a 2D cellular automata is built; if NetworkType¼WS-SWN,

a 2D Watts and Strogatz small-world network is built

W 50 Width of 2D cellular automaton

H 50 Height of 2D cellular automaton

N 2,500 Total number of nodes (agents). Default value¼W�H

E 10,000 Total number of edges. Default value¼ (50� 50� 8) / 2

Neighborhood Moore Von Neumann/Moore neighborhood pattern, with periodic boundary conditions

� 0.01 Specific parameter for a 2D WS-SWN. Generating such a network begins with 2D

cellular automata with periodic boundary conditions. Each link is randomly rewired to a

new node according to a rewiring probability

c 1 Agent memory capacity

Pc 0.7 Crossover rate of the genetic algorithm used in this work

Pm 0.01 Mutation rate of the genetic algorithm used in this work
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underlying social network. Each cell (node) represents
one strategic agent. To the right of the network is a list
of sixteen memory-1 deterministic strategies and their
corresponding colors. In a later section we will discuss
four of the most commonly used strategies: ALL-C,
TFT, PAVLOV, and ALL-D.

4.1. IPD simulation experiments

First, we spent time observing the complex behaviors of
non-self-aware agents in IPD scenarios using cellular

automata (Figure 7). The simulation process can be
divided into five stages, based on the evolutionary
dynamics and spatial distribution of agent-adopted
strategies. During the first stage (generations 0 to 3),
our proposed simulation model uses random numbers
to determine initial strategies adopted by individual
agents, resulting in those strategies being evenly distrib-
uted throughout the cellular automata (Figure 7(a)).

During the second stage (generations 4 to 10), agents
tend to move toward the ‘scoundrel strategy’ (always
defecting) due to the temptations of maximizing their

Figure 7. Spatial distribution in cellular automata of memory-1 deterministic strategic agents without self-awareness.
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private interests. As stated earlier, when a majority of
agents adopt that strategy, the entire community or
society will likely fall into a cycle in which overall
and individual private benefits rapidly decrease. In cel-
lular automata, if the majority of an agent’s adjacent
nodes tend to adopt the same scoundrel strategy, then
the agent in the center will be forced to adopt the same
strategy for the sake of survival.

During the third stage (generations 11 to 20), agents
wanting to counter the all-defection strategy tend to
move toward a tit-for-tat strategy. In addition to con-
fronting scoundrel strategy agents, this movement also
supports cooperation with ‘yes-men’ (all-cooperation
strategy agents) and other agents that also adopt the
tit-for-tat strategy. Figure 7(b) illustrates a scenario in
which agents who adopt the tit-for-tat strategy gradu-
ally increase in number and cluster in a manner that
surrounds and restricts agents who adopt the all-
defection strategy.

During the fourth stage (generations 21 to 40), the
number of tit-for-tat strategy agents declines. Due to an
asymmetry problem involving memories of previous
encounters, tit-for-tat agents start to defect and stop
trusting one another, resulting in less clustering over
large areas. However, as shown in Figure 7(c), a certain
number of tit-for-tat agents continue to surround all-
defection agents to ensure that the latter group does not
expand to the point of overwhelming tit-for-tat agents.
Note also that as clusters of tit-for-tat agents start to
break up and decrease in size, the number of agents
adopting the win-stay, lose-shift strategy increases.
Since win-stay, lose-shift agents do not have asymmet-
ric memory problems regarding previous encounters
(which increases the potential for promise-breaking),
and since win-stay, lose-shift agents generally move
toward mutual cooperation, their numbers and ten-
dency to cooperate gradually increase.

During the fifth stage (generations 41 to 100), strat-
egy evolution enters a state of ‘dynamic stability.’
Within clusters of win-stay, lose-shift agents, the
number of agents who adopt an all-cooperation strat-
egy gradually increases (Figure 7(d)). However, in reac-
tion to this increase, some agents take advantage of the
situation by reverting to the all-defection strategy,
which reduces (or in some cases, eliminates) clusters
of all-cooperation agents. The term ‘dynamic stability’
refers to the idea that this process enters a long period
of repetition.

5. Results

Graphical representations of our simulations are
shown in Figure 8. The Figure 8(a) social network con-
sists of cellular automata; in Figure 8(b) we present
results for a two-dimensional WS small-world network.

All parameters are identical. As indicated by the pink
average payoff curves in Figures 8(a) and 8(b), the full
community or society clearly benefits when all agents
possess the capacity for self-awareness, and a state of
dynamic stability is achieved within a small number of
generations. However, there can never be a situation in
which all agents possess that capacity, therefore our
focus was on determining the effects of adding a small
number of self-aware agents to an otherwise unaltered
environment. According to the green (10%) and yellow
(30%) average payoff curves in the two figures, adding
a small number of self-aware agents exerted a signifi-
cant influence regardless of social network type.
Specifically, they suppressed growth in the number of
all-defection agents, prevented the initiation of a cycle
in which all agents express betrayal and retaliation, and
helped resolve conflicts between societal benefits and
individual private interests so that cooperation could
be accepted as mainstream behavior.

The average payoff curves in Figures 8(a) and 8(b)
are similar because two-dimensional WS small-world
networks contain many random long-distance shortcuts
that reduce network separation. The main reason for a
lack of strategic clustering is that these shortcuts (a)
result in very low degrees of separation (approximately
logN, with N representing the total number of agents),
and (b) significantly increase the level of complexity in
terms of agent interactions and indirect influences.
Note that the influence of a single strategy can result
in increased evolutionary diffusion capacity and the
increased containment of other agents. Combined,
these factors speed up the movement toward dynamic
stability.

5.1. Emergence of social behavior: Effects of four
common strategies

The ‘yes men’ who follow an all-cooperation strategy
are the most likely to be taken advantage of by agents
who use tactics associated with an all-defection strategy
– breaking promises, betraying opponents, and the like.
In contrast, tit-for-tat agents find it easy to cooperate
with all-cooperation agents and to attack all-defection
agents. However, due to memory asymmetry problems
regarding previous encounters, two tit-for-tat agents
may collide and incidentally express behaviors such as
breaking promises for an extended time period. Finally,
win-stay, lose-shift agents tend to change their behav-
iors as soon as they acknowledge benefits from doing
so. Note that these strategies can be used to categorize
all other strategies.

We analyzed evolutionary dynamics and equilibrium
for these four strategies using simulation results for dif-
ferent mixes of self-aware agents – 0% (Figures 9(a)
and 9(d)), 100% (Figures 9(b) and 9(e)), and 10%
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(Figures 9(c) and 9(f)). Other than differences in social
network type and self-aware agent percentages, all
other parameter values were identical. According to
Figures 9(a), 0% self-aware agents in a cellular autom-
ata resulted in roughly equal numbers of agents adopt-
ing each of the four strategies at the beginning of the
simulation. After three generations, the number of

agents adopting the all-defection strategy rapidly
increased, and the number of agents adopting the all-
cooperation or win-stay, lose-shift strategy slightly
decreased. Tit-for-tat agents emerged when the
number of all-defection agents reached a certain thresh-
old. As described earlier, they confronted and sup-
pressed all-defection agents and collaborated with

Figure 9. Evolutionary dynamics of four well-known prisoner’s dilemma strategies.
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all-cooperation and win-stay, lose-shift agents. After
20 generations, the number of tit-for-tat agents sur-
passed the number of all-defection agents, resulting in
a sharp decrease in all-defection agents. The number
of win-stay, lose-shift agents steadily increased after
30 generations, and after 60 generations the number of
tit-for-tat agents fell below the number of all-defection
agents. The increase in the number of all-defection
agents had the result of reducing the number of win-
stay, lose-shift agents. After 80 generations, the number
of tit-for-tat agents once again surpassed the number of
all-defection agents, and the simulated agent society
entered a state of dynamic stability: the numbers of
win-stay, lose-shift and all-cooperation agents did not
change, and growth and decline in the numbers of all-
defection and tit-for-tat agents balanced each other.

As shown in Figure 9(d), early evolutionary growth/
decline rates for the four strategies in a two-dimen-
sional WS small-world network with 0% self-aware
agents were similar to those shown in Figure 9(a).
After 30 generations, the number of all-defection
agents reached a saturation point and remained at a
fixed number that was clearly higher than their cellular
automata counterparts. Due to the small-world net-
work’s characteristic of low degree of separation, the
numbers of agents adopting each of the four strategies
reached a state of dynamic stability between the fiftieth
and sixtieth generations.

Figure 9(c) presents data on simulations involving
cellular automata and a 10% addition of self-aware
agents. Compared to Figure 9(a) (0% self-aware
agents), the initial number of all-defection agents was
not as great – a 150-agent difference. Figures 9(d) and
9(f) illustrate data for 0% and 10% additions of self-
aware agents, respectively; here the difference in all-
defection agent number was 60. As these figures
show, there was a more significant delay in the emer-
gence of betrayal/retaliation cycles when the percentage
of self-aware agents was 10% rather than 100%. Note
also that following the 10% addition of self-aware
agents, the number of agents adopting a win-stay,
lose-shift strategy surpassed the number of agents
adopting the all-defection or tit-for-tat strategies, but
after 20 generations the win-stay, lose-shift agents
could not successfully resist the all-defection agents,
even though their numbers increased. As a result, the
number of win-stay, lose-shift agents started to decline
to a stable level.

Figure 9(b) shows a cellular automata consisting of
100% self-aware agents. Since all-defection agents
quickly discovered that their strategy was inappropriate
for fulfilling social expectations, during early evolution-
ary stages all of those agents used their self-adjustment
mechanisms to adopt other strategies to fulfill the
expectations of adjacent agents. Starting at the third

or fourth generation, the number of all-defection
agents dropped to zero, and no new all-defection
agents emerged for the rest of the simulation. The num-
bers of agents adopting the other three strategies also
quickly stabilized without additional changes. Again,
all parameters in Figures 9(b) and 9(e) were identical;
the evolutionary dynamics of the four strategies in the
two types of social networks were also virtually identi-
cal. The only significant difference was the presence of
random long-distance shortcuts in the two-dimensional
WS small-world network. Due to increased sensitivity,
even small changes in a single agent’s strategy were
capable of influencing the entire society. However,
due to the low degree of separation characteristic of
WS small-world networks, a new state of dynamic sta-
bility was quickly reestablished.

6. Conclusion

Our proposed self-aware agent model features super-
ego and ego personality traits, and includes an external
learning mechanism and internal cognitive capacity.
The model incorporates features taken from four
research areas: AI, cognitive psychology, economics,
and social/behavioral sciences. According to our results,
the proposed model not only improves agent learning
performance, but also provides a novel agent learning
architecture. In terms of cognitive psychology, our self-
aware agents can utilize personality traits to enhance
their self-understanding and self-identity, thus promot-
ing self-realization. The model also offers a novel
approach to the iterated prisoner’s dilemma: as long
as a small number of self-aware agents are added to
an IPD scenario, public good/private interest conflicts
can be resolved, agent cooperation can be increased,
and overall societal benefits can be enhanced. Finally,
in terms of social/behavioral sciences, observing cluster-
ing behaviors allows for greater understanding of how
self-awareness can influence evolutionary dynamics and
equilibriums in artificial agent societies.
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