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In this paper, we investigate how to design greedy routing to achieve sustainable and scal-
able in a large-scale three-dimensional (3D) sensor network. Several 3D position-based
routing protocols were proposed to seek either delivery guarantee or energy-efficiency
in 3D wireless networks. However, recent results [1,2] showed that there is no deterministic
localized routing algorithm that guarantees either delivery of packets or energy-efficiency of
its routes in 3D networks. In this paper, we focus on design of 3D greedy routing protocols
which can guarantee delivery of packets and/or energy-efficiency of their paths with high
probability in a randomly deployed 3D sensor network. In particular, we first study the
asymptotic critical transmission radius for 3D greedy routing to ensure the packet delivery
in large-scale random 3D sensor networks, then propose a refined 3D greedy routing protocol
to achieve energy-efficiency of its paths with high probability. We also conduct extensive
simulations to confirm our theoretical results.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Most existing wireless sensor systems and protocols are
based on two-dimensional (2D) design, where all wireless
sensor nodes are distributed in a two-dimensional plane.
This assumption is somewhat justified for applications
where sensor nodes are deployed on earth surface and
where the height of the network is smaller than transmis-
sion radius of a node. However, 2D assumption may no
longer be valid if a wireless sensor network is deployed
in space, atmosphere, or ocean, where nodes of a network
are distributed over a 3D space and the difference in the
third dimension is too large to be ignored. In fact, recent
interest in under-water sensor networks [3] or space sen-
sor networks [4] hints at the strong need to design 3D
wireless networks. However, the design of networking pro-
tocols for 3D wireless networks is surprising more difficult
. All rights reserved.

: +1 7046873516.
), yi@cs.nctu.edu.tw
du (F. Li).
than that for 3D networks. In this paper, we focus on one
particular problem in 3D networks: 3D localized posi-
tion-based routing.

Localized position-based routing makes the forwarding
decision based solely on the position information of the
destination and local neighbors. It does not need the dis-
semination of route discovery information and the mainte-
nance of routing tables. Thus, it enjoys the advantages of
lower overhead and higher scalability than other tradi-
tional routing protocols. This makes localized routing pro-
tocols much suitable for large-scale sensor networks. The
most common and efficient localized routing is greedy
routing, in which a packet is greedily forwarded to the clos-
est node to the destination in order to minimize the aver-
age hop-count. Greedy routing can be easily extended to
3D case. Actually, several under-water routing protocols
[5,6] are just variations of 3D greedy routing. Fig. 1 illus-
trates the basic idea of 3D greedy routing. Let t be the des-
tination node. As shown in Fig. 1a, current node u finds the
next relay node v who is the closest to t among all neigh-
bors of u. But, it is easy to construct an example (see
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Fig. 1. Illustration of greedy routing in 3D networks.
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Fig. 1b) to show that greedy routing will not succeed to
reach the destination but fall into a local minimum (at a
node without any ‘‘better” or ‘‘closer” neighbors). This is
true for both 2D and 3D networks.

However, to guarantee packet delivery of 3D greedy
routing is not straightforward and very challenging. Face
routing can be used on planar topology to recovery from
the local minimum of greedy routing and guarantee the
delivery in 2D networks, as did in many 2D localized rout-
ing protocols [7–9]. However, there is no planar topology
concept any more in 3D networks and simple projection
from 3D to 2D may break the network connectivity. In fact,
Durocher et al. [1] recently proved that there is no deter-
ministic localized routing algorithm for 3D networks that
guarantees the delivery of packets. On the other hand, even
a localized routing method can find the route to deliver the
packet, it may not guarantee the energy-efficiency of
the path, i.e., the total power consumed compared with
the optimal could be very large in the worst case. Several
energy-aware localized 2D routing protocols [10–12] al-
ready took the energy concern into consideration, but none
of them can theoretically guarantee the energy-efficiency
of their routes. This is true for all existing 3D localized
routing methods too. Recently, Flury and Wattenhofer [2]
showed an example 3D network where the path found
by any deterministic localized routing protocol to connect
two nodes s and t has energy-consumption asymptotically
at least H(d3) in the worst case. Here d is the optimal en-
ergy-consumption to connect s and t.

Therefore, in this paper, we are interested in (1) how to
achieve delivery guarantee of 3D greedy routing in large-
scale random networks; and (2) how to achieve energy-
efficiency of paths in large-scale 3D networks so that the
networks can be sustainable. In particular, we make the
following contributions on 3D greedy routing:

� We prove that 3D greedy routing can guarantee the
delivery of packets between any source–destination
pairs if the underlying topology is Delaunay translation.
� We study on the critical transmission radius (CTR) of 3D

greedy routing that guarantees the delivery of packets
between any source–destination pairs. We prove that
for a 3D random network, formed by nodes that are
generated by a Poisson point process of density n over
a convex compact region of unit-volume, the CTR for
3D greedy routing is asymptotic almost surely (a.a.s). at
most
ffiffiffiffiffiffiffiffiffiffi
3b ln n

4pn
3
q

for any b > b0 and at least
ffiffiffiffiffiffiffiffiffiffi
3b ln n

4pn
3
q

for any

b < b0. Here, b0 = 3.2.
� We extend our previous 2D energy-aware routing

method [13] to an energy-efficient restricted 3D greedy
routing, which is a simple variation of 3D greedy rout-
ing. The proposed routing method can guarantee
energy-efficiency of its path with high probability if it
finds one in 3D networks. We also study its CTR in ran-
dom 3D networks and show it is in the same formation
of that of 3D greedy routing, except for b0 ¼ 2

1�cosa where
a is an parameter used by the proposed method.
� We conduct extensive simulations on 3D random net-

works to study the distributions of CTRs of both 3D
greedy routing and restricted 3D greedy routing and
evaluate their routing performances.

The rest of the paper is organized as follows. In Section
2, we first review related work on 3D position-based rout-
ing and critical transmission radius of greedy routing. Then
we present our network model and several preliminaries in
Section 3. In Section 4, we study how to achieve delivery
guarantee of 3D greedy routing by deriving the asymptotic
almost sure bounds on the critical transmission radius of
3D greedy routing. In Section 5, we further extend the 3D
greedy routing to an energy-efficient localized routing
and derive its CTR bounds. We present simulation results
in Section 6 and summarize this paper in Section 7.
2. Related work

Due to its wide-range potential applications, 3D wire-
less sensor network has recently emerged as a premier re-
search topic. Most current research in 3D sensor networks
primarily focuses on coverage [14–17], connectivity
[15,18–20], and routing issues [5,6,21–24]. Since we focus
on design of 3D position-based localized routing in this pa-
per, we will first review the status on 3D position-based
localized routing.

2.1. 3D localized routing: delivery guarantee and energy-
efficiency

As the most widely used position-based routing, greedy
routing has been used by Pompili and Melodia and Xie
et al. [5,6] for 3D under-water sensor networks. However,
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all of these greedy-based routings cannot guarantee the
delivery, since they may fail at the local minimum. In 2D
networks [7–9], delivery guarantee can be achieved by
applying face routing as a backup method to get out of
the local minimum after simple greedy heuristic fails.
The idea of face routing is to walk along the faces which
are intersected by the line segment st between the source
s and the destination t. To guarantee the packet delivery,
face routing requires the underlying 2D routing topology
to be a planar graph (i.e., no link/edge intersection). How-
ever, 3D networks cannot be planarized any more. Fevens
et al. [21,22] proposed several 3D position-based routing
protocols and tried to find a way to still use face routing
to get out of the local minimum. Their basic idea is project-
ing the 3D network to a 2D plane (as shown in Fig. 2a),
then applying the face routing in the plane. However, as
shown in Fig. 2b [21], a planar graph cannot be extracted
from the projected graph. It is clear that removing either
v 03v 04 or v 01v 02 will break the connectivity. Furthermore,
Durocher et al. [1] have recently proven that there is no
deterministic localized routing algorithm for 3D networks that
guarantees the delivery of packets. Flury and Wattenhofer
[2] then proposed a randomized 3D routing which adopts
a randomized recovery technique when 3D greedy fails.

Beside the delivery guarantee of packets, the energy-
efficiency of paths is also very important for large-scale
sensor networks. Given a routing method A, let PAðs; tÞ
be the path found by A to connect the source node s and
the destination node t. A routing method A is called
energy-efficient if for every pair of nodes s and t, the en-
ergy-consumption of path PAðs; tÞ is within a constant fac-
tor of the least energy-consumption path connecting s and
t in the network. Even a 3D localized routing method can
find the route to deliver the packet, it may not guarantee
the energy-efficiency of the path, i.e., the total power con-
sumed compared with the optimal could be very large in
the worst case. Several energy-aware localized 2D routing
protocols [10–12] already took the energy concern into
consideration, but none of them can theoretically guaran-
tee the energy-efficiency of their routes. This is true for
all existing 3D localized routing methods too. For path en-
ergy-efficiency, recently, Flury and Wattenhofer [2] proved
that no deterministic localized routing method is energy-
efficient in 3D networks. They proved the claim by
Fig. 2. Simple projection from
constructing an example of a 3D network (Fig. 1 of [2])
where the path found by any localized routing protocol
to connect two nodes s and t has energy-consumption (or
hop-count or distance) asymptotically at least H(d3) in
the worst case, where d is the optimum cost. Therefore,
we are also interested in refining 3D greedy routing into
a 3D energy-
efficient routing. In particular, we extend our previous 2D
energy-aware routing method [13] to an energy-efficient
restricted 3D greedy routing.

2.2. Critical transmission radius for greedy routing

One way to guarantee the packet delivery for greedy
routing in 2D/3D networks is letting all nodes have suffi-
ciently large transmission radii to avoid the existence of lo-
cal minimum. It is clear that this can be achieved when the
transmission radius is infinite. Assume that V is the set of
all wireless nodes in the network and each wireless node
has a transmission radius r. Let B (x,r) denote the open disk
of radius r centered at x. Let

qðVÞ ¼ max
ðu;vÞ2V2

u–v

min
w2Bðv ;ku�vkÞ

kw� uk: ð1Þ

In the equation, (u,v) is a source–destination pair. Since
w 2 B(v,ku � vk), we have kw � vk < ku � vk. It means w
is closer to v than u. If the transmission radius is not less
than kw � uk,w might be the one to relay packets from u
to v. Therefore, for each (u,v), the minimum of kw � uk over
all nodes on B(v,ku � vk) is the transmission radius that en-
sures there is at least one node that can relay packets from
u to v, and the maximum of the minimum over all
(u,v)pairs guarantees the existence of relay nodes between
any source–destination pair. Clearly, if the transmission ra-
dius is at least q(V), packets can be delivered between any
source–destination pairs. On the other hand, if the trans-
mission radius is less than q(V), there must exist some
source–destination pair, e.g., the (u,v)that yields the value
q(V), such that packets cannot be delivered. Therefore,
q(V) is called the critical transmission radius (CTR) for gree-
dy routing that guarantees the delivery of packets between
any source–destination pair of nodes among V.

Previously, several studies (e.g. [25–28]) focused on the
critical transmission radius for certain network proper-
3D to 2D does not work!
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ties such as connectivity, k-connectivity, and coverage.
Surprisingly, there is not much study for the critical trans-
mission radius for certain routing methods, except for the
recent results [29,30] for 2D greedy routing. Traditionally it
is assumed that the network nodes are represented by a
Poisson point process of density n, denoted as Pn, over a
unit area disk or square. Wan et al. [29] proved that for

any constant e > 0, it is a.a.s. that ð1� eÞ
ffiffiffiffiffiffiffiffiffiffi
b0 ln n
pn

q
6 qðPnÞ 6

ð1þ eÞ
ffiffiffiffiffiffiffiffiffiffiffi
b0 ln n

pn

q
, where b0 ¼ 1= 2

3�
ffiffi
3
p

2p

� �
. The same authors

further improved asymptotic bounds on qðPnÞ in [30]. Spe-
cifically, they proved that for any constant c, the asymp-

totic probability of qðPnÞ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 ln nþc

pn

q
is at least

1� 1
1=b2�1=3�

b0
2

� �
e�c and at most e�

b0
2 e�c . In this paper, we

will apply similar techniques used by Wan et al. [29] to
derive the CTR for 3D greedy routing and the proposed
restricted 3D greedy routing.
3. Preliminaries

In this section, we present our models and several use-
ful results which are used by our analysis on critical trans-
mission radius of 3D greedy routing.

3.1. Assumptions and notations

We consider a set V of n wireless sensor devices (called
nodes hereafter) uniformly distributed in a compact and
convex 3D region D with unit-volume in R3. By proper
scaling, we assume the nodes are represented by a Poisson
point process Pn of density n over a unit-volume cube D.
Each node knows its position information and has a uni-
form transmission radius r (orrn). Then the communication
network is modeled by a unit disk graph G(V,r), where two
nodes u and v are connected if and only if their Euclidean
distance is at most r. Hereafter, we use ku � vk to denote
the Euclidean distance between u and v. For a link
uv 2 G(V,r), we use kuvk to denote its length. We further as-
sume that the energy needed to support the transmission
of a unit amount of data over a link uv is e(kuvk), where
e(x) is a non-decreasing function on x.

For a finite set S, we use #(S) to denote its cardinality.
For a set A � R3, we use jAj to denote the volume of A
and use @A to denote the topological boundary of A. Let
B(x,r) denote the open sphere of radius r centered at x.
For any two points u;v 2 R3, the intersection of two
spheres of radii ku � vkcentered respectively at u and v, de-
noted by Luv, is called the biconvex of u and v, i.e. Luv = B(u,k
u � vk) \ B(v,ku � vk), and ku � vk is called the depth of the
biconvex. An event is said to be asymptotic almost sure if it
occurs with a probability converges to one as n ? 1. To
avoid trivialities, we assume n to be sufficiently large if
necessary.

3.2. Geometric preliminaries

We first provide several geometric lemmas which will
be used in the analysis of critical transmission radius of
3D greedy routing. Due to the space limit, we ignore
their proofs (which are similar to those of lemmas in
[29] for 2D case). If ku � vk = 1, a straightforward calcula-
tion yields that j Luv j¼ 5p

12. The volume of such a biconvex
with respect to the volume of a unit-volume ball is
5p=12
4p=3 ¼ 5

16. Let b0 ¼ 16
5 ¼ 3:2. Then, the volume of a bicon-

vex with depth r is 1
b0

4
3 pr3
� �

. The following lemma gives
a lower bound of the volume of two intersecting
biconvexes.

Lemma 1. Assume R > 0 and a1; b1; a2; b2 2 R3 . Let z1 ¼
1
2 ða1 þ b1Þ; r1 ¼ ka1 � b1k; z2 ¼ 1

2 ða2 þ b2Þ, and r2 = ka2 �
b2k. If r1; r2 2 1

2 R;R
� �

; kz1 � z2k 6
ffiffiffi
3
p

R; a1; b1 R La2b2
, and

a2; b2 R La1b1
, there exist a constant c such that

jLa1b1
[ La2b2

j � jLa1b1
jP cR2kz1 � z2k:

For any convex compact set C � R3, we use C�r to denote
the set of points in C that are away from @C by at least r. The
next lemma gives a lower bound of the volume of C�r.
Lemma 2. Given a convex compact set C � R3 with diameter
at most d,

jC�r jP jCj � pd2r:
An e-tessellation is a technique that divides the 3D
space by vertical planes perpendicular to either x-axis or
y-axis and horizontal planes perpendicular to z-axis into
equal-size cubes, called cells, in which cells are with width
e. Without loss of generality, we assume the origin is a cor-
ner of cells. In a tessellation, a polycube is a collection of
cells intersecting with a convex compact set. The x-span
(and y-span, z-span, respectively) of a polycube is the dis-
tance measured in the number of cells in the x-direction
(and y-direction, z -direction, respectively). If the span of
a convex compact set is s and the width of cells is l, the
span of the corresponding polycube is at most ds/le + 1.
We have the following lemma.
Lemma 3. If a convex compact set S consists of m cubes and s
is a positive integer constant, the number of polycubes with
span at most s and intersecting with S is H(m).

3.3. Probabilistic preliminaries

The following lemma from [29] gives a lower bound for
the minimum of a collection of Poisson RVs.

Lemma 4 [29]. Assume that limn!1
kn

ln n ¼ b for some b > 1.
Let Y1;Y2; � � � ;YIn be In Poisson RVs with means at least kn. If
In ¼ oðn

ffiffiffiffiffiffiffiffi
ln n
p

Þ, then for any 1 < b0 < b;minIn
i¼1Yi > Lðb0Þ ln n

a.a.s.

Here, LðxÞ is defined as a function L over (0,1) by

LðxÞ ¼ x/�1ð1=xÞ when x P 1 and =0 otherwise. / is the
function over (0,1) defined by /(x) = 1 � x + x ln x and
/�1 is the inverse of the restriction of / to (0,1]. It can
be verified that L is a monotonic increasing function of
b.

At last, we state the Palm theory [31] on the Poisson
process.
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Fig. 3. Any node v can find a neighbor u which is strictly closer to t than v
is.
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Theorem 5 [31]. Let n > 0. Suppose k 2 N, and hðY;XÞ is a
bounded measurable function defined on all pairs of the form
ðY;XÞ with X � R3 being a finite subset and Y being a subset
of X , satisfying hðY;XÞ ¼ 0 except when Y has k elements.
Then

E
X
Y#Pn

hðY;PnÞ
" #

¼ nk

k!
E½hðX k;Xk [ PnÞ�

where the sum on the left side is over all subsets Y of the ran-
dom Poisson point set Pn, and on the right side the set X k is a
binomial process with k nodes, independent of Pn.

We need to estimate the number of subsets with some
specified topology, e.g., two nodes are local minima w.r.t.
each other. But it is not so easy to estimate this among
Poisson point processes. The Palm theory allows us to place
a set of random points first and then estimate the expecta-
tion over the Poisson point process. This technique will be
used in proof of Theorem 7.

4. Delivery guarantee of 3D greedy routing

In this section, we study how to guarantee the packet
delivery of 3D greedy routing. We first prove that 3D gree-
dy routing can guarantee the delivery on Delaunay trian-
gulation. Then, we investigate the critical transmission
radius of 3D greedy routing in random networks.

4.1. 3D greedy routing on delaunay trianglation

In a d-dimensional Euclidean space, a Delaunay triangu-
lation [32] is a triangulation Del(V) such that there is no
point in V inside the circum-hypersphere of any d-simplex
in Del(V). For example, in 3D space the 3-simplex is a tet-
rahedron, while in 2D scarce the 2-simplex is a triangle.
In [33], Morin proved that 2D greedy routing can guarantee
the packet delivery on Delaunay triangulation. Here, we
extend his proof to 3D space.

Theorem 6. The 3-dimensional greedy routing can guarantee
the packet delivery on any Delaunay triangulation Del(V).
Proof. Assume that t is the destination. We first prove that
every node v in Del(V) has a neighbor that is strictly closer
to t than v is. In other words, there is no local minimum for
3D greedy routing in Del(V). In Euclidean space, the
Delaunay triangulation Del(V) of V corresponds to the dual
graph of the Voronoi diagram Vor(V) of V. Let f be the first
face in Vor(V) intersected by the directed line from v to t.
The face f must exist, since v and t are contained in two dif-
ferent Voronoi cells. See Fig. 3 for illustration. Face f is the
boundary shared by two Voronoi cells, one for v and one
for some node u. The 2D plane which face f defines parti-
tions the 3D space into two open subspaces (all points in
the same subspace with v is closer to v than to u, while
all points in the same subspace with u is closer to u than
to v). Since t is in the same subspace with u, node u is closer
to t than node v. Therefore, at each routing step of 3D
greedy routing, the packet gets closer to t. The number of
steps is bound by n, thus, the packet is guaranteed to reach
t. h
Delaunay triangulation has been used as routing topol-
ogy for wireless ad hoc networks [34,24]. Since building
the Delaunay triangulation needs global information and
the length of a Delaunay edge could be longer than the max-
imum transmission radius, both methods [34,24] use some
local structures to approximate the Delaunay triangulation.
This can break the delivery guarantee of 3D greedy routing.

4.2. Critical transmission radius of 3D greedy

Next we will prove the following theorem on critical
transmission radius qðPnÞ of 3D greedy routing in random
sensor networks.

Theorem 7. Let b0 = 3.2 and n 4
3 pr3

n

� �
¼ ðbþ oð1ÞÞ ln n for

some b > 0. Then, for 3D greedy routing,

1. If b > b0, then qðPnÞ 6 rn is a.a.s.
2. If b < b0, then qðPnÞ > rn is a.a.s.

To simplify the argument, we ignore boundary effects
by assuming that there are nodes outside D with the same
distribution. So, if necessary, packets can be routed
through those nodes outside D.

4.2.1. Upper bound of Theorem 7
The upper bound in Theorem 7 is going to be proved

through a technique called minimal scan statistics. For a fi-
nite point set V and a real number r > 0, we define

SðV ; rÞ ¼ min
u;v2D;ku�vk¼r

#ðV \ LuvÞ:

S(V,r) is the minimal number of nodes of V that can be cov-
ered by a biconvex with depth r. In other words, S(V,r) is
the minimal number of ‘‘better” neighboring nodes that
any intermediate node u can choose for any possible desti-
nation v. As proved in [29], SðPn; rnÞ > 0 implies the event
qðPnÞ 6 rn. Therefore, it suffices to prove that SðPn; rnÞ > 0
is a.a.s. Instead, we now prove a stronger result shown in
the following lemma.

Lemma 8. Suppose that n 4
3 pr3

n

� �
¼ ðbþ oð1ÞÞ ln n for some

b > b0. Then for any constant b1 2 (b0,b), it is a.a.s. that

SðPn; rnÞ > L
b1

b0

	 

ln n:
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Proof. To have the lower bound of minimal scan statistics,
we apply the tessellation technique to discretize the scan-
ning process. We tessellate the deployment region by
properly choosing cell size such that: (1) each copy of the
biconvex contains a polycube with volume at least g ln n

n

for some g > 1, and (2) the number of polycubes is O n
ln n

� �
.

Let d ¼
ffiffiffi
3
p

rn which is the largest distance between any
two points in a biconvex. For a given b1, choose a constant
b2 2 (b1,b), and let e ¼ 4

27b0
1� b2

b

� �
. Consider an e d-tessel-

lation. (Note that eis chosen such that each copy of the
biconvex contains a polycube with volume at least g n

ln n

for some g > 1.) To prove this inequality, it is sufficient to
show that any biconvex of two points in D that are sepa-
rated by a distance of rn contains a polycube with span at
most 1

e and volume at least b2
b0

4
3 pr3

n

� �
1
b.

For a biconvex L, let P denote the polycube induced by
L�

ffiffi
3
p

ed. Then, P # L, and the span of P is at most d�2
ffiffi
3
p

ed
ed

l m
þ

1 < 1
e. By Lemma 2 and the fact that jLj ¼ 4

3 pr3
n

1
b0
¼

4
9
ffiffi
3
p pd3 1

b0
, we have

jPjP jL� ffiffi3p edjP jLj � pd2ð
ffiffiffi
3
p

edÞ ¼ jLj �
ffiffiffi
3
p

epd3

¼ jLj � 27b0

4
ejLj ¼ jLj 1� 27b0

4
e

	 

¼ b2

b
jLj

¼ b2

b0

4
3
pr3

n

	 

1
b
:

Let In denote the number of polycubes in D with span at

most 1
e and volume at least b2

b0

4
3 pr3

n

� �
1
b ¼

b2
b0
þ oð1Þ

� �
ln n

n ,

and Yi be the number of nodes on the ith polycubes. Then

Yi is a Poisson RV with rate at least b2
b0
þ oð1Þ

� �
ln n. Since

the number of cells in D is O 1
ed

� �3
� �

¼ O n
ln n

� �
, by Lemma

3, In ¼ O n
ln n

� �
. By Lemma 4, it is a.a.s. that

minIn
i¼1Yi

ln n
P L b2

b0

	 

> L b1

b0

	 

:

Thus,

SðPn; rnÞP min
In

i¼1
Yi > L

b1

b0

	 

ln n: �
4.2.2. Lower bound of Theorem 7
The second half of Theorem 7 can be proved by showing

that if rn ¼
ffiffiffiffiffiffiffiffiffiffi
3b ln n

4pn
3
q

for any b < b0, there a.a.s. exists local
minima. The space is going to be tessellated into equal-size
cube cells. For each cell, an event that implies the existence
of local minima in the cell is introduced, and a lower bound
for the probability of the event is derived. Since these
events are identical and independent over cells, we can
estimate a probability lower of existence of local minima.
By showing the lower bound is a.a.s. equal to 1, we prove
the second part of Theorem 7. The detail is given below.

Let b1 and b2 be two positive constants such that
max 1

8 b0; b
� �

< b1 < b2 < b0 . In addition, let R1 and R2 be

given by n 4
3 pR3

1

� �
¼ b1 ln n and n 4

3 pR3
2

� �
¼ b2 ln n, respec-

tively. Since 1
8 b0 < b1 < b2 < b0, we have 1

2 R2 6 R1 6 R2. Di-

vide D by 4
ffiffiffiffiffiffi
ln n
np

3
q� �

-tessellation. Let In denote the number

of cells fully contained in D. Here we have In ¼ O n
ln n

� �
. For
each cell fully contained in D, we draw a ball of radius
1
2

ffiffiffiffiffiffi
ln n
np

3
q

at the center of the cell. For 1 6 i 6 In, let Ei be the

event that there exists two nodes X; Y 2 Pn such that their
midpoint is in the ith ball, their distance is between R1 and
R2, and there is no other node in LXY. For any two nodes u
and v with ku � vk > rn, if there are no other nodes in Luv,
u and v are local minima w.r.t. each other. So, Ei implies
existence of local minimum, and

Pr½qðPnÞ > rn�P Pr ½at least one Ei occurs�:

Let oi denote the center of the ith ball, and u,v be two
points such that 1

2 ðuþ vÞ is in the ith ball and
R1 6 ku � vk 6 R2. By triangle inequality, for any point
w 2 Luv, we have kw�oik6 kw� 1

2ðuþvÞkþkoi� 1
2ðuþvÞk

<
ffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffi
3b0 ln n

4np
3
q

þ 1
2

ffiffiffiffiffi
lnn
np

3
q

<2
ffiffiffiffiffi
lnn
np

3
q

. Since the width of cells is

4
ffiffiffiffiffi
lnn
np

3
q

; u;v , and Luv are contained in the ith cube. Therefore,

E1; . . . ;EIi
are independent. In addition, E1; . . . ;EIi

are identi-
cal. Then,

Pr½none of Ei occurs� ¼ ð1� Pr ½E1�ÞIn
6 e�InPrðE1Þ:

If InPr(E1) ?1, we may have Pr½qðPnÞ > rn� ! 1 and the
second half of Theorem 7 follows. Next, we will prove that
InPr(E1) ?1.

First, we introduce several relevant events and derive
their probabilities. Let A denote the disk with radius
1
2

ffiffiffiffiffiffi
ln n
np

3
q

at the center of the first cube. Assume V is a point
set and T � V . Let h1(T,V) denote a function such that
h1(T = {x1,x2},V) = 1 only if 1

2 ðx1 þ x2Þ 2 A;R1 6 kx1�
x2k 6 R2, and there is no other node of V in Lx1x2 ; otherwise,
h1(T,V) = 0. In addition, under Boolean addition, for any
{x1,x2,x3} # V, let h2({x1,x2,x3},V) = h1({x1,x2},V) � h1({x1,
x3},V) + h1({x2,x1},V)� h1({x2,x3},V) + h1({x3,x1},V)�h1 ({x3,
x2},V); for any {x1,x2,x3,x4} # V, let h3({x1,x2,x3,x4},V) =
h1({x1,x2},V) � h1({x3,x4},V) + h1({x1,x3},V) � h1({x2,x4},V) +
h1({x1,x4},V) � h1({x2,x3},V). E1 is the event that there ex-
ists two nodes X;Y 2 Pn such that h1ðfX;Yg;PnÞ ¼ 1. In
the remaining of this subsection, we use X01;X

0
2;X

0
3 and X 04

to denote elements of Pn. Let F 01 X01;X
0
2

� �� �
be the event that

h1 X 01;X
0
2

� �
;Pn

� �
¼ 1; F 02 X01;X

0
2;X

0
3

� �� �
be the event that

h2 X 01;X
0
2;

��
X03g;PnÞ ¼ 1; and F 03 X01;X

0
2;X

0
3;X

0
4

� �� �
be the

event that h3 X01;X
0
2;X

0
3;X

0
4

� �
;Pn

� �
¼ 1. Applying Boole’s

inequalities, we have

Pr½E1�P
X

fX01 ;X
0
2g#Pn

Pr F 01 X01;X
0
2

� �� �� �

�
X

fX01 ;X
0
2 ;X
0
3g#Pn

Pr F 02 X01;X
0
2;X

0
3

� �� �� �

�
X

fX01 ;X
0
2 ;X
0
3 ;X
0
4g#Pn

Pr F 03 X 01;X
0
2;X

0
3;X

0
4

� �� �� �
: ð2Þ

For the sake of clarity, we use X1,X2,X3 and X4 to denote
independent random points with uniform distribution over
D and independent of Pn. Let F1 be the event that
h1ðfX1;X2g; fX1;X2g [ PnÞ ¼ 1; F2 be the event that
h2ðfX1;X2;X3g; fX1;X2;X3g [ PnÞ ¼ 1, and F3 be the event
that h3ðfX1;X2;X3;X4g; fX1;X2;X3;X4g [ PnÞ ¼ 1. According
to the Palm theory (Theorem 5), we have
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X
fX01 ;X

0
2g#Pn

Pr F 01 X01;X
0
2

� �� �� �
¼E

X
fX01 ;X

0
2g#Pn

h1 X 01;X
0
2

� �
;Pn

� �2
4

3
5

¼n2

2!
E½h1ðfX1;X2g;fX1;X2g[PnÞ�

¼n2

2
Pr½F1�; ð3Þ

X
fX01 ;X

0
2 ;X
0
3g#Pn

Pr F 02 X 01;X
0
2;X

0
3

� �� �� �

¼ E
X

fX01 ;X
0
2 ;X
0
3g#Pn

h2 X01;X
0
2;X

0
3

� �
;Pn

� �2
4

3
5

¼ n3

3!
E½h2ðfX1;X2;X3g; fX1;X2;X3g [ PnÞ�

¼ n3

2
Pr½F2�; ð4Þ
and
X
fX01 ;X

0
2 ;X
0
3 ;X
0
4g#Pn

Pr F 03 X01;X
0
2;X

0
3;X

0
4

� �� �� �

¼ E
X

fX01 ;X
0
2 ;X
0
3 ;X
0
4g#Pn

h3 X01;X
0
2;X

0
3;X

0
4

� �
;Pn

� �2
4

3
5

¼ n4

4!
E½h3ðfX1;X2;X3;X4g; fX1;X2;X3;X4g [ PnÞ�

¼ n4

8
Pr½F3�: ð5Þ
From Eqs. (2)–(5), we have

Pr½E1�P
n2

2
Pr½F1� �

n3

2
Pr½F2� �

n4

8
Pr½F3�: ð6Þ

In the next, we will derive the probabilities of F1, F2, and
F3. Let S1 denote the set fðx1; x2Þj 12 ðx1 þ x2Þ 2 A;R1 6

kx1 � x2k 6 R2:g. We have
Pr½F1� ¼
ZZ

S1

Pr½F1jX1 ¼ x1;X2 ¼ x2� dx1dx2

¼
ZZ

S1

e�njLx1x2 jdx1dx2 ¼
ZZ

S1

e�n 1
b0
ð43pkx1�x2k3Þdx1dx2:

Let z ¼ x1þx2
2 and r ¼ 1

2 kx1 � x2k. Then,

Pr½F1� ¼
Z

z2A

Z R2
2

r¼R1
2

e�
n

b0
32
3 pr3

32pr2drdz

¼
Z

z2A

Z R2
2

r¼R1
2

e�
n

b0
32
3 pr3

d
32
3

pr3
	 


dz

¼ � b0

n
e�

n
b0

32
3 pr3


R2
2

r¼R1
2

0
@

1
AjAj

¼ b0

6n2 n�
b1
b0 � n�

b2
b0

	 

ln n: ð7Þ
Let S2 denote the set

ðx1; x2; x3Þ
x1þx2

2 ; x1þx3
2 2 A;

R1 6 kx1 � x2k 6 R2; x1; x2 R Lx1x3 ;
R1 6 kx1 � x3k 6 R2; x1; x3 R Lx1x2


8<
:

9=
;:

Applying Lemma 1, if (x1,x2,x3) 2 S2, we have

Pr½F2� ¼
ZZZ

S2

Pr F2

Xi ¼ xi

8i ¼ 1;2;3


2
4

3
5dx1dx2dx3

6 3
ZZZ

S2

e�njLx1x2[Lx1x3 jdx1dx2dx3

6 3
ZZZ

S2

e
�n 1

b0
4
3pkx1�x2k3þcR2

2
x1þx2

2 �x1þx3
2k k

� �
� dx1dx2dx3:

Let z1 ¼ x1þx2
2 ; z2 ¼ x1þx3

2 ; r ¼ kx1�x2k
2 , and q = kz1 � z2k. Then,

Pr½F2� 6 3
Z

z12A

Z R2
2

r¼R1
2

Z
z22A

e
�n 1

b0
32
3 pr3þcR2

2kz1�z2k
� �

� 256pr2drdz1dz2

6 24
Z

z12A

Z R2
2

r¼R1
2

e�
n

b0
32
3 pr3ð Þd 32

3
pr3

	 

dz1

�
Z

z22A
e�cnR2

2kz1�z2kdz2

6 24
Z

z12A

Z R2
2

r1¼
R1
2

e�
n

b0
32
3 pr3ð Þd 32

3
pr3

	 

dz1

�
Z 1

q¼0
e�cnR2

2q4pq2dq

¼ 24
b0

6n2 n�
b1
b0 � n�

b2
b0

	 

ln n

	 

8p

cnR2
2

� �3

0
B@

1
CA

¼ 32pb0

c3 nR3
2

� �2
n3

n�
b1
b0 � n�

b2
b0

	 

ln n: ð8Þ

Let S3 denote the set

ðx1; x2; x3; x4Þ
x1þx2

2 ; x3þx4
2 2 A;

R1 6 kx1 � x2k 6 R2; x1; x2 R Lx3x4 ;
R1 6 kx3 � x4k 6 R2; x3; x4 R Lx1x2


8<
:

9=
;.

Applying Lemma 1, if (x1,x2,x3,x4) 2 S3, we have

Pr½F3� ¼
ZZ ZZ

S3

Pr F3

Xi ¼ xi;

8i ¼ 1;2;3;4


2
4

3
5dx1dx2dx3dx4

6 3
ZZ ZZ

S3

e�njLx1 x2 [Lx3 x4 jdx1dx2dx3dx4

6 3
ZZ ZZ

S3

e
�n 1

b0
4
3pkx1�x2k3þcR2

2
x1þx2

2 �x3þx4
2k k

� �
� dx1dx2dx3dx4:

Let z1 ¼ x1þx2
2 ; r1 ¼ kx1�x2k

2 ; z2 ¼ x3þx4
2 ; r2 ¼ kx3�x4k

2 , and q =
kz1 � z2k. Then, Pr [F3]
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6 3
Z

z12A

Z R2
2

r1¼
R1
2

Z
z22A

Z R2
2

r2¼
R1
2

e
�n 1

b0
32
3 pr3

1þcR2
2kz1�z2k

� �

� 32pr2
1dr1dz1

� �
32pr2

2dr2dz2
� �

6 3
Z

z12A

Z R2
2

r1¼
R1
2

e�
n

b0
32
3 pr3

1 d
32
3

pr3
	 


dz

 !

� 32p R2

2

	 
2 R2

2
� R1

2

	 
Z 1

q¼0
e�cnR2

2q4pq2dq

 !

¼ 16p2b0

c3 nR3
2

� �
n4

1� R1

R2

	 

n�

b1
b0 � n�

b2
b0

	 

ln n: ð9Þ

Put Eqs. (6)–(8) together. We have

Pr½E1�P
b0

12
� 16pb0

c3 nR3
2

� �2 �
2p2b0

c3 nR3
2

� � 1� R1

R2

	 
0
B@

1
CA

� n�
b1
b0 � n�

b2
b0

	 

ln n

� b0

12
n�

b1
b0 � n�

b2
b0

	 

ln n:

Since In ¼ X ln n
n

� �
, we have Pr½E1� ¼ X n�

b1
b0 � n�

b2
b0

	 

ln n

	 

,

and

InPr½E1� ¼ X n1�b1
b0

	 

!1:

This complete the proof of the second half of Theorem 7.
1 Here, we assume that d eðxÞ
x

� �
=dx is monotone increasing, thus, r0 is

unique.
5. Energy-efficiency of 3D greedy routing

Since Flury and Wattenhofer [2] showed no determinis-
tic localized routing protocol is energy-efficient in
3D networks, the simple 3D greedy routing may lead
to energy-inefficient paths in the worst case. Therefore,
we are interested in designing a localized routing method
that is energy-efficient with high probability for random
3D networks. Here a routing method is energy-
efficient with high probability if (1) with high probability,
the routing method will find a path successfully; and
(2) with high probability, the found path is energy-
efficient.

5.1. Energy-efficient restricted 3D greedy routing (ERGrd)

Our energy-efficient localized 3D routing method is a
variation of classical 3D greedy routing and an extension
of a localized routing method [13] we designed for 2D net-
works. In 3D greedy routing, current node u selects its next
hop neighbor based purely on its distance to the destina-
tion, i.e., it sends the packet to its neighbor who is closest
to the destination. However, such choice might not be the
most energy-efficient link locally, and the overall route
might not be globally energy-efficient too. Therefore, our
routing method use two concepts energy mileage and re-
stricted region to refine the choices of forwarding nodes
in 3D greedy routing.

Energy mileage. Given a energy model e(x), energy mileage
is the ratio between the transmission distance and the en-
ergy-consumption of such transmission, i.e., x

eðxÞ. Let r0 be
the value such that r0

eðr0Þ
¼ maxx

x
eðxÞ. We call r0 as the maxi-

mum energy mileage distance1 under energy model e(x). We
assume that the energy mileage x

eðxÞ is an increasing function
when x < r0 and a decreasing function when x > r0. This
assumption is true for most of commonly used energy mod-
els. For example, if e(kuvk) = kuvk2 + c is the energy used by
sending message from u to v, the maximum energy mileage
distance r0 ¼

ffiffiffi
c
p

. Our 3D localized routing greedily selects
the neighbor who can maximize the energy mileage as the
forwarding node.

Restricted region. Instead of selecting the forwarding node
from all neighbors of current node u (a unit ball in 3D
as shown in Fig. 4a), our 3D routing method prefers the
forwarding node v inside a smaller restricted region. The
region is defined inside a 3D cone with an angle parame-
ter a < p/3, such that angle \vut 6 a, as shown in Fig. 4b.
The use of a (restricting the forwarding direction) is to
bound the total distance of the routing path. Then the re-
stricted region is a region inside this 3D cone and near the
maximum energy mileage distance r0, such that every
node v inside this area satisfies g1r0 6 kuvk 6 g2r0, as
shown in Fig. 4b. Here, g1 and g2 are two constant param-
eters. This can help us to prove the energy-efficiency of
the route.

Notice that both these ideas are not completely
new. Restricted region with an angle has been used
in some localized routing methods, such as nearest/far-
thest neighbor routing [34], while concepts similar to
energy mileage have been used in some energy-aware
localized routing methods [11,12,35]. However, combin-
ing both of these techniques to guarantee energy-effi-
ciency is first done in our previous work [13] for 2D
networks. In this paper, we further adapt them into
3D routing.

Our energy-efficient localized 3D routing protocol is gi-
ven in Algorithm 1. There are four parameters used by our
method. Three adjustable parameters 0 < a < p

3 and
g1 < 1 < g2 define the restricted region, while r0 is the best
energy mileage distance based on the energy model. For
example, the following setting of these parameters can
be used for energy model eðxÞ ¼ x2 þ c : a ¼ p

4 ; r0 ¼
ffiffiffi
c
p
;

g1 ¼ 1=2 and g2 = 2. Hereafter, we denote the routing algo-
rithm, energy-efficient restricted greedy, as ERGrd if no gree-
dy routing (Grd) is used when no node v satisfies that
\vut 6 a. If Grd is applied afterward, then the routing pro-
tocol is denoted ERGrd+Grd. Notice that if Grd fails to find a
forwarding node, randomized scheme [2] could also be
applied.

The path efficiency of 3D ERGrd is given by the follow-
ing two theorems. The detail proofs of these two theorems
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are exactly the same with the proofs of Theorems 1–3 in
[13] for 2D network, thus are ignored here.

Theorem 9. When 3D ERGrd routing indeed finds a path
PERGrd(s,t) from the source s to the target t, the total Euclidean
length of the found path is at most dkt � sk where d ¼ 1

1�2 sina
2
,

thus, a constant factor of the optimum.
Theorem 10. When 3D ERGrd routing indeed finds a path
PERGrd(s, t) from the source s to the target t, the total energy-
consumption of the found path is within a constant factor r
of the optimum. When r0 P r, r depends on a; otherwise,
depends on g1, g2 and a.
Algorithm 1. Energy-efficient restricted 3D greedy routing
(3D ERGrd)
1:
 while node u receives a packet with destination t
do
2:
 if t is a neighbor of u then

3:
 Node u forwards the packet to t directly.

4:
 else if there are neighbors inside the restricted

region and r0 < r then

5:
 Node u forwards the packet to the neighbor

v such that its energy mileage kuvk
eðkuvkÞ is maximum

among all neighbors w inside the restricted
region, as shown in Fig. 4b.
6:
 else if there are neighbors inside the 3D cone
then
7:
 Node u finds the node v inside the 3D cone
(Fig. 4c) with the minimum kt � vk.
8:
 else

9:
 Greedy routing (Fig. 4d) is applied, or the

packet is simply dropped.

10:
 end if

11:
 end while
5.2. Critical transmission radius of 3D ERGrd
ricted region, (b) greedy forwarding in the 3D cone, (c) greedy forwarding
Notice that 3D ERGrd routing may fail, as all other gree-
dy-based methods do, when an intermediate node cannot
find a better neighbor to forward the packet. We now study
the critical transmission radius for ERGrd routing in ran-
dom 3D wireless networks. Given a set of nodes V distrib-
uted in a region D, the critical transmission radius q(V) for
successful routing by 3D ERGrd is

max
u;v

min
w:\wuv6a

kw� uk: ð10Þ

By setting the r = q(V), ERGrd can always find a forwarding
node inside the 3D cone region, thus can guarantee its
packet delivery. Now, we can prove a similar result for
3D ERGrd as we did for 3D greedy routing.

Theorem 11. Let b0 ¼ 2
1�cosa and n 4

3 pr3
n

� �
¼ b ln n for some

b > 0. Then, for 3D ERGrd routing,

1. If b > b0, then qðPnÞ 6 rn is a.a.s.
2. If b < b0, then qðPnÞ > rnis a.a.s.

Here, b0 ¼ 4p=3
2pð1�cosaÞ=3 ¼ 2

1�cosa is the ratio between the
volume of a unit ball and the volume of a 3D cone (the for-
warding region) inside the ball. Next, we present the de-
tailed proofs for two parts of this theorem. Again, we
ignore boundary effects.

5.2.1. Upper bound of Theorem 11
The proof of this part is very similar to the proof in

Theorem 7, we also prove it by proving a lemma similar
to Lemma 8 except for b0 ¼ 2

1�cosa now.
Given a node u, the region that node u can choose its

neighbor to forward data is a 3D cone with angle 2a, as
shown in Fig. 4c. Now L denotes this 3D cone instead of
the biconvex. Let d be its diameter (i.e., the largest distance
between any two points inside it). Clearly d = rn when
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a 6 p
6, and d = 2sina�rn when p

6 6 a < p
3. Thus, d <

ffiffiffi
3
p

rn.
Again the same tessellation technique can be used. The

only difference is that jLj ¼ 4
3 pr3

n
1
b0
> 4

9
ffiffi
3
p pd3 1

b0
instead of

¼ 4
9
ffiffi
3
p pd3 1

b0
. However, this will not affect the proof of

jPj > b2
b0

4
3 pr3

n

� �
1
b. The remaining parts are the same with

the proof of Lemma 8.

5.2.2. Lower bound of Theorem 11
We now show that, if rn ¼

ffiffiffiffiffiffiffiffiffiffi
3b ln n

4pn
3
q

for any b < b0, a.a.s.,
there are two nodes u and v such that we cannot find a
node w for forwarding by node u, i.e., there does not exist
node w inside the 3D cone. Again we partition the space
using equal-size cubes (called cells) with side-length grn

for a constant 0 < g to be specified later. Thus the number
of cells, denoted by In here, that are fully contained inside
the compact and convex region D with unit-volume, is

H 1
g3r3

n

� �
¼ H n

ln n

� �
. Let Eu,v denote the event that no forward-

ing node w (in the 3D cone) exists for node u to reach node
v. Then to prove our claim, it is equivalent to prove that the
probability of at least one of the event Eu,v happens a.a.s.,
i.e., 1-Pr (none of event Eu,v happens). Since the events
Eu,v are not independent for all pairs u and v, we will only
consider a special subset of events that are independent.
Consider any cell produced by the 3D grid partition that
are contained inside D. For each cell, we draw a shaded
cube with side-length (g � 2(1 + d))rn and it is of distance
(1 + d)r to the boundary of the cell, as shown in Fig. 5a.
We only consider the case when node u is located in this
shaded cube. We also restrict the node v to satisfy that
rn < ku � vk 6 (1 + d)rn, i.e., in the torus region in Fig. 5b.
Clearly, node v will also be inside this cell, and the shaded
3D cone where the possible forwarding node could locate
is also inside this cell. Thus, events Eu1 ;v1 and Eu2 ;v2 are inde-
pendent if u1 and u2 are selected as above from different
cells.

For each cell i, we compute the probability that event
Eui ;v i

happens, where ui is selected from the shaded cube
of cell i and vi is selected such that rn < kvi � uik 6
(1 + d)rn. Recall that for any region A, the probability that
it is empty of any nodes is e�njAj. Clearly, the probability

that node ui exists is 1� e�nðg�2�2dÞ3r3
n since the shared cube
Fig. 5. Illustrations of the proof of lower bound: (a) a cubic cell and the region wh
node w to reach a node v.
has volume ðg� 2� 2dÞ3r3
n; the probability that node vi ex-

ists is 1� e�n4
3pðð1þdÞ3�1Þr3

n since the torus has volume
4
3 pðð1þ dÞ3 � 1Þr3

n. Given node ui and vi, the probability

that event Eui ;v i
happens is e�n2

3pð1�cosaÞr3
n ¼

e�b=b0 ln n ¼ n�b=b0 . Consequently, event Eu,v happens for

some node pairs ui and vi is PrðEui ;v i
ÞP 1� e�nðg�2�2dÞ3r3

n

� �
1�e�n4

3pðð1þdÞ3�1Þr3
n

� �
n�b=b0 ¼ð1�n�bðg�2�2dÞ33=4pÞð1�n�bðð1þdÞ3�1ÞÞ

n�b=b0 . Thus, the probability that ERGrd routing fails to find a
path for some source/destination pairs is Pr (at least one
of events Eu,v happens) PPr (at least one of Eui ;v i

happens)=

1-Pr (none of Eui ;v i
happens)= 1�ð1�PrðEui ;v i

ÞÞIn ¼1

�eIn �lnð1�PrðEui ;vi
ÞÞP1�e�In �PrðEui ;vi

Þ. Notice that In �PrðEui ;v i
Þ

PH n
lnn

� �
ð1�n�bðg�2�2dÞ33=4pÞ ð1�n�bðð1þdÞ3�1ÞÞn�b=b0 ’ n1�b=b0

lnn ,
which goes to 1 as n ?1 when b < b0, g � 2 �
2d > 0, and d > 0. This can be easily satisfied, e.g., d = 1, g = 5.
Thus, limn!11�e�In �PrðEui ;v i

Þ ¼1. This completes the proof.
6. Simulation

6.1. Critical transmission radius for random networks

We have analyzed the theoretical bounds of the critical
transmission radius for 3D greedy routing and 3D ERGrd
routing. To confirm our theoretical analysis, we conduct
several simulations to see what is the practical value of
transmission radius rn such that greedy can guarantee
the packet delivery with high probability in random net-
works. We randomly generate 1000 networks with n nodes
in a 100 � 100 � 100 cubic region, where n is from 50 to
500. For each network V, we compute the critical transmis-
sion radius q (V) of 3D greedy and 3D ERGrd by their def-
initions (Eqs. (1) and (10)). For 3D ERGrd routing, we let
a = p/6 or a = p/4. Fig. 6 gives the histograms of the distri-
bution of q(V) of these 3D greedy routing methods for 1000
random networks. Fig. 7 show the probability distribution
function of q(V) for these methods. It is clear that the CTRs
of all methods satisfy a transition phenomena, i.e., there is
a radius r0 such that 3D Grd/ERGrd can successfully deliver
all packets when rn > r0 and cannot deliver some packets
when rn < r0. Notice that the transition becomes faster
ere we select a node u; (b) the event that node u cannot find a forwarding



Fig. 6. The distributions of q(V) for random networks with 100–500 nodes. (a–e) For 3D greedy, (f–j) for 3D ERGrd with a = p/6, and (k–o) for 3D ERGrd with
a = p/4.
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Fig. 7. PDF curves of 3D greedy routing and 3D ERGrd routing with a = p/6 or p/4.
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when the number of nodes increases. This confirms our
theoretical analysis on the existence of CTR. In addition,
from these figures, we can find that larger node density al-
ways leads to smaller value of CTR. The practical value of
q(V) is larger than the theoretical bound in our analysis,
since the theoretical bound is standing for n ? 1. How-
ever, the practical value will approach the theoretical
bound with the increasing of n . For example, when
n = 500, the theoretical bound of 3D greedy isffiffiffiffiffiffiffiffiffiffiffi

3b0 ln n
4pn

3
q

� 100 ¼ 0:212� 100 ¼ 21:2 for a 100 � 100 � 100
cubic region. From Fig. 7a, the CTR of 3D greedy is around
25, which already becomes very near the theoretical
bound. . Compared the two cases of ERGrd method with
a = p/6 and p/4, larger CTR is required if smaller restricted
region (i.e. smaller a) is applied.
6.2. Network performance of 3D greedy routing

We also study network performance of 3D greedy rout-
ing and proposed ERGrd routing in random 3D networks
via extensive simulation. We implement the classic 3D
greedy routing (Grd) and variations of our proposed re-
stricted greedy routing (specifically, ERGrd with a = p/6,
ERGrd with a = p/4, ERGrd+Grd with a = p/6, and
ERGrd+Grd with a = p/4) in our simulator. We assume that
the energy-consumption of a link uv is e(kuvk) = kuvk2 + c,
where c = r2/4. The values of g1 and g2 are 1/2 and 2. By set-
ting various transmission radii, we generate random net-
works with 100 wireless nodes again in a 100 � 100 �
100 cubic region. Fig. 8 shows a set of random networks
generated on the same set of nodes. We select 100
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Fig. 8. Network topologies with 100 nodes when rn is from 10 to 80.
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Fig. 10. Path efficiency (length stretch factor and energy stretch factor)
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connected random networks for each setting, then for each
network we randomly select 100 source–destination pairs
and test five greedy-based 3D routing. All results presented
hereafter are average values over all routes and networks.
In all figures, ERGrd+G denotes ERGrd+Grd, which is the re-
stricted greedy routing with classical greedy routing as the
back up.

Fig. 9 illustrates the average delivery ratios of the five
routing methods. Clearly, the delivery ratio increases when
rn increases. After rn is larger than a certain value, it always
guarantees the delivery. This also confirms our theoretical
analysis of CTRs. In addition, we can conclude that the CTR
for 3D greedy routing (approaching 100% delivery ratio
when rn is around 35 in Fig. 9) is just a little bit larger than
the CTR for connectivity (network becomes connected
when rn is around 30 in Fig. 8). Notice that ERGrd methods
without greedy backup have lower delivery ratio under the
same circumstance, since they have smaller region to se-
lect the next hop node. With greedy backup, the delivery
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of 3D greedy and 3D ERGrd routing methods in random networks.
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ratios of ERGrd+Grd methods are almost the same with
those of Grd (simple 3D greedy).

Fig. 10a and b illustrate the average length stretch fac-
tors and energy stretch factors of all routing methods,
respectively. Here, the length/energy stretch factor of a path
from node s to node t is the ratio between the total length/
energy of this path and the total length/energy of the opti-
mal path connecting s and t. Smaller stretch factor of a
routing method shows better path efficiency. For the
length stretch factor, the ERGrd with a = p/6 has the best
length efficiency. It is surprising that with a = p/4 the
length of ERGrd path could be longer than simple greedy.
However, when considering the energy-efficiency, all
ERGrd methods can achieve better path efficiency than
simple greedy method. Notice that smaller restricted re-
gion leads to better path efficiency, however it also has
lower delivery ratio. Therefore, it is a trade-off between
path efficiency and packet delivery. It is also clear that
when the network is dense (with large transmission ra-
dius), ERGrd and ERGrd+Grd are almost the same, since
ERGrd can always find nodes inside the 3D cone. Notice
that all the stretch factors in our simulations are near to
1.0, this is due to the uniform distribution of nodes. In pra-
tice, the stretch factors of simple greedy routing could be
very large in the worst case.

Besides deploying random networks in a cubic region,
we also performed simulations for networks deployed in
a spherical region. The conclusions from these simulations
are consistent with the simulations for random network
deployed in cubic region.

7. Conclusion

In this paper, we study the design of 3D greedy routing
for large-scale sensor networks. We first provide a theoret-
ical analysis on the critical transmission radius for 3D gree-
dy routing which leads to a delivery-guaranteed 3D
localized routing. We theoretically prove that for a random
3D network, formed by nodes that are generated by a
Poisson point process of density n over a convex compact
region of unit volume, the critical transmission radius for

3D greedy routing is a.a.s.
ffiffiffiffiffiffiffiffiffiffiffi
3b0 ln n

4pn
3
q

, where b0 = 3.2. This the-

oretical result answers a fundamental question about how
large the transmission radius should be set in a 3D net-
works, such that the greedy routing guarantees the deliv-
ery of packets between any two nodes. We then refine
the 3D greedy routing to a new localized routing protocol
3D ERGrd, which achieves the energy-efficiency by limiting
its choice inside a restricted region and picking the node
with best energy mileage. We also derive its critical trans-
mission radius in random networks. Finally, we conduct
extensive simulations to confirm our theoretical results.
We believe that the proposed energy-efficient localized
routing protocol is crucial for achieving sustainable and
scalable in large-scale sensor networks.
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