
492 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

A Mutually Recurrent Interval Type-2 Neural Fuzzy
System (MRIT2NFS) With Self-Evolving

Structure and Parameters
Yang-Yin Lin, Jyh-Yeong Chang, Member, IEEE, Nikhil R. Pal, Fellow, IEEE, and Chin-Teng Lin, Fellow, IEEE

Abstract—In this paper, a mutually recurrent interval type-2
neural fuzzy system (MRIT2NFS) is proposed for the identifica-
tion of nonlinear and time-varying systems. The MRIT2NFS uses
type-2 fuzzy sets in order to enhance noise tolerance of the system.
In the MRIT2NFS, the antecedent part of each recurrent fuzzy
rule is defined using interval type-2 fuzzy sets, and the consequent
part is of the Takagi–Sugeno–Kang type with interval weights. The
antecedent part of MRIT2NFS forms a local internal feedback and
interaction loop by feeding the rule firing strength of each rule to
others including itself. The consequent is a linear combination of
exogenous input variables. The learning of MRIT2NFS starts with
an empty rule base and all rules are learned online via structure
and parameter learning. The structure learning of MRIT2NFS
uses online type-2 fuzzy clustering. For parameter learning, the
consequent part parameters are tuned by rule-ordered Kalman
filter algorithm to reinforce parameter learning ability. The type-2
fuzzy sets in the antecedent and weights representing the mutual
feedback are learned by the gradient descent algorithm. After the
training, a weight-elimination scheme eliminates feedback connec-
tions that do not have much effect on the network behavior. This
method can efficiently remove redundant recurrence and interac-
tion weights. Finally, the MRIT2NFS is used for system identifi-
cation under both noise-free and noisy environments. For this, we
consider both time series prediction and nonlinear plant modeling.
Compared with type-1 recurrent fuzzy neural networks, simula-
tion results show that our approach produces smaller root-mean-
squared errors using the same number of iterations.

Index Terms—Dynamic system identification, on-line fuzzy clus-
tering, recurrent neural fuzzy systems, type-2 fuzzy systems.

I. INTRODUCTION

THERE are many real-life problems that are dynamic sys-
tems, and hence, identification of nonlinear dynamic sys-

tems is a very important research problem. In the control area,
we usually encounter the problem of identification and control

Manuscript received September 5, 2012; revised January 7, 2013 and March
11, 2013; accepted March 14, 2013. Date of publication April 1, 2013; date
of current version May 29, 2013. This work of N. R. Pal was supported by
Grants 102W963 and NSC-101-2911-I-009-101 of the Brain Research Center,
National Chiao Tung University, Hsinchu, Taiwan. Y.-Y. Lin, J.-Y. Chang, and
C.-T. Lin contributed equally to this work.

Y.-Y. Lin, J.-Y. Chang, and C.-T. Lin are with the Institute of Electrical Control
Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (e-mail:
oliver.yylin@gmail.com; jychang@mail.nctu.edu.tw; ctlin@mail.nctu.edu.tw).

N. R. Pal is with the Electronics and Communication Sciences Unit, Indian
Statistical Institute, Kolkata 700108, India (e-mail: nrpal59@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2013.2255613

of dynamic systems. Since for a dynamic system, the control
output is a combination of past inputs and/or outputs, identifi-
cation and modeling of such a system is not as straightforward
as that for a static/algebraic system. To deal with the temporal
characteristics of dynamic systems, some recurrent fuzzy neu-
ral networks (RFNNs) have already been proposed [1]–[12] and
have been shown to outperform feedforward FNNs and recur-
rent neural networks. Recently, a considerable research effort is
being devoted toward developing recurrent neural-fuzzy models
that are separated into two major categories. One category of
recurrent FNNs uses feedback from the network output as the
recurrence structure [2]–[4]. The other approach of recurrent
FNNs uses feedback from internal state variables as its recur-
rence structure [5]–[12]. In [2], a recurrent neural-fuzzy system
is proposed, where the consequent of a rule is a linear model in
an autoregressive form with exogenous inputs. In [3] and [4],
the authors have proposed an output-recurrent fuzzy neural net-
work where the output values are fed back as input values. In [5]
and [6], the recurrence property is achieved by feeding the out-
put of each membership function (MF) back to itself; therefore,
each membership value is dependent on its past values. In [8],
a dynamic fuzzy neural network is proposed, where consequent
parts are recurrent neural networks with local internal feedback.
Recurrent self-organizing neural fuzzy inference network [7]
and Takagi–Sugeno–Kang (TSK)-type recurrent fuzzy network
(TRFN) [9], [10] use a global feedback structure, where the fir-
ing strengths of all rules are summed and fed back as internal
network inputs. The recurrent self-evolving fuzzy neural net-
work with local feedbacks (RSEFNN-LF) is proposed in [11]
for dynamic system identification, where the recurrent firing
values are influenced by both prior and current values.

All of the recurrent FNNs that we have discussed so far use
type-1 fuzzy sets. In recent years, studies on type-2 fuzzy logic
systems (FLS) have drawn much attention [13]–[17], [48]–[57].
Type-2 FLSs are extensions of type-1 FLSs, where the MFs in-
volved in the fuzzy rules are type-2 fuzzy sets. We shall refer to
such rules as type-2 fuzzy rules or type-2 rules. The member-
ship values of a type-2 fuzzy set are type-1 fuzzy sets. Type-2
FLSs appear to be more promising than their type-1 counterparts
in handling uncertainties, which allow researchers to model and
minimize the effect of uncertainties associated with the rule-base
system, and have already been successfully applied in several
areas [17]–[21], [45]–[47], [58]–[61]. Usually, the T2FNN is
computationally more expensive than that of its type-1 counter-
part primarily due to the complexity of type reduction from type-
2 to type-1. An interval type-2 fuzzy set (IT2FS) is a special case

1063-6706/$31.00 © 2013 IEEE

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 493

of a general type-2 fuzzy set, which reduces the computational
overhead of a general type-2 fuzzy system significantly. For an
IT2FS, the membership associated with an element is a subin-
terval of [0, 1]. In this paper, we use the interval type-2 fuzzy
modeling to simplify the computational efforts to some extent.
In [22]–[27], some interval type-2 FNNs are proposed for the
designing of interval type-2 FLS. In [28]–[38], the authors have
proposed automatic design of fuzzy rules, which are used in a va-
riety of applications. A self-evolving interval type-2 fuzzy neu-
ral network (SEIT2FNN) is proposed in [30], which learns the
structure and parameters in an online manner. The premise and
consequent parameters in an SEIT2FNN are tuned by gradient
descent and rule-ordered Kalman filter algorithm, respectively.
The performances of SEIT2FNN are especially good for time-
varying systems. Several interval type-2 FNNs [35]–[38], which
use feedback/recurrent structure, are proposed for modeling of
dynamic systems. In [35], a recurrent interval type-2 fuzzy neu-
ral network (RIT2FNN-A) that uses interval asymmetric type-2
fuzzy sets is proposed. This five-layer FNN uses a four-layer
forward network and a feedback layer. In [36], the authors pro-
pose an internal/interconnection recurrent type-2 fuzzy neural
network (IRT2FNN) structure that is suitable for dealing with
time-varying systems. All free parameters of the IRT2FNN are
updated via the gradient descent algorithm. Moreover, recurrent
interval type-2 FNNs with local feedbacks are proposed in [37]
and [38], where the recurrent property is achieved by locally
feeding the firing strength of each rule back to itself. In [37],
the consequent part of the recurrent self-evolving interval type-
2 fuzzy neural network (RSEIT2FNN) is a linear function of
current and past outputs and inputs. On the other hand, the con-
sequent part in the RIFNN [38] is of Mamdani type, which is
formulated as an interval-valued fuzzy set. In many papers, it
has been seen that the TSK-type modeling can do an excellent
job of modeling dynamic systems [9], [11], [30], [34], [36], [40].

This paper proposes a mutually recurrent interval type-2 neu-
ral fuzzy system (MRIT2NFS) for dynamic system identifica-
tion. Our approach falls within the second category mentioned
earlier, with an internal dynamics introduced in the consequent
part. The MRIT2NFS has a self-evolving ability such that it can
automatically evolve to acquire the required network structure
as well as its parameters based on the training data. Therefore,
to start the learning process, no preassigned network structure
is necessary. In this proposed MRIT2NFS, we have three major
contributions. First, we propose a novel recurrent NFS struc-
ture utilizing IT2FSs. Our network incorporates the advantage
of local feedback and effective delivery of information through
mutual feedbacks in the rule layer. In our network, the internal
feedback and interaction loops in the antecedent part are formed
by feeding the firing strength of each rule back to itself and to
other rules. Second, we propose innovative learning algorithms
for the structure and parameters of the system. Third, we also
propose an interesting scheme to eliminate the less-useful recur-
rent weights. During the learning process, the MRIT2NFS may
generate many recurrent weights when the rule base is bigger.
As a result of elimination of the less-useful recurrent weights,
our system achieves a significant reduction in both complexity
and computational requirements. The consequent parameters in

Fig. 1. Proposed six-layer MRIT2NFS structure, where each recurrent fuzzy
rule in layer 4 forms an internal feedback and an interaction loop and each node
in layer 5 performs a linear combination of current and lagged network inputs.

the MRIT2NFS are tuned by a rule-ordered Kalman filter algo-
rithm. The antecedent parameters and all of the rule recurrent
weights are learned by a gradient descent learning algorithm.
To demonstrate the performance of MRIT2NFS, several simu-
lations have been conducted. The performance of MRIT2NFS is
also compared with that of recurrent type-1 FNNs, feedforward
type-1 FNNs, and other type-2 FNNs.

The rest of this paper is organized follows. Section II illus-
trates the MRIT2NFS structure. Section III discusses the struc-
ture and parameter learning methods for MRIT2NFS. Section IV
presents results on five examples: one static system identifica-
tion, three dynamic system identifications, and a chaotic time
series prediction. Finally, Section V draws the conclusions.

II. MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY

SYSTEM STRUCTURE

This section introduces the structure of an MRIT2NFS. This
multi-input multi-output (MIMO) system consists of nu inputs
and no outputs. We represent the input and output of the dynamic
system by u and yp , respectively, where u = (u1 , . . . , unu

)T

and yp = (yp1 , . . . , ypno
)T . Fig. 1 shows the proposed six-

layered MRIT2NFS structure. The detailed function of each
layer is discussed next.

Layer 1 (Input layer): The inputs are crisp values. Only the
current state x(t) = (u(t), yp(t)) is fed as input to this layer.
This is in contrast with the usual feedforward FNNs where both
current and some past states are fed as inputs to input layer
when such networks are used to model time-varying systems.
To further clarify the inputs used in the system, we consider a
system with one control input u(t) and one system output y(t).
Then, at t = 1, u(1) and y(1) are used as inputs and the system
output computed by the rules consequents is y(2). Similarly, at
t = 2, u(2) and y(2) are used as inputs and the computed system
output is y(3). Thus, current input and output both are used to
define the rule antecedent. Note that this is a fan-out layer, and
hence, there is no weight to be adjusted in this layer.

494 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

Fig. 2. IT2FS with Gaussian shape whose center (mean) is not known with
certainty (the mean has an uncertainty). The mean can vary between m1 and
m2 , m1 < m2 .

Layer 2 (MF layer): Each node in this layer performs fuzzifi-
cation of one of the (nu + no) input variables using an interval
type-2 MF, where nu and no are the numbers of control inputs
and system outputs. For the ith IT2FS Ãi

j on the input vari-
able xj , j = 1, . . . , (nu + no), a Gaussian primary MF having
a fixed standard deviation (STD) σ and an uncertain mean that
takes on values in [m1 ,m2] is used as shown in the following:

μÃi
j

= exp

⎧
⎨

⎩
−1

2

(
xj − mi

j

σi
j

)2
⎫
⎬

⎭

≡ N(mi
j , σ

i
j ;xj), mi

j ∈ [mi
j1 ,m

i
j2]. (1)

Fig. 2 depicts one such MF [20]. The uncertainty associated
with the primary membership can be modeled in a more general
manner. For example, we can consider uncertainty about the
center of the MF as well as that about the spread of the MF.
Here, following the protocol used in most type-2 neural fuzzy
systems in the literature, we assumed that there is uncertainty
only about the mean (the mean is not known with certainty) of
the Gaussian MF. This choice yields an IT2FS, as depicted in
Fig. 2.

The footprint of uncertainty [20] (the shaded region in Fig. 2)
of this MF can be represented by the two bounding MFs: upper
MF, μ̄i

j and lower MF, μi
j
, where

μ̄i
j (xj) =

⎧
⎨

⎩

N(mi
j1 , σ

i
j ;xj), xj < mi

j1
1, mi

j1 ≤ xj ≤ mi
j2

N(mi
j2 , σ

i
j ;xj), xj > mi

j2

(2)

and

μi
j
(xj) =

⎧
⎪⎪⎨

⎪⎪⎩

N(mi
j2 , σ

i
j ;xj), xj ≤

mi
j1 + mi

j2

2

N(mi
j1 , σ

i
j ;xj), xj >

mi
j1 + mi

j2

2
.

(3)

Thus, the output of each node can be represented by an inter-
val [μi

j
, μ̄i

j] [20]. Another popular choice for type-2 MF is Trape-
zoidal MF. A general trapezoidal MF involves eight parameters
to define it, while our Gaussian MF needs just three parameters
and, thereby, drastically reduces the degrees of freedom (num-
ber of free variables) of the system. Moreover, the Gaussian
function is differentiable, which helps us to use gradient-based
tuning methods, and hence, we use it here.

Layer 3 (Spatial firing layer): Each node in this layer repre-
sents the antecedent part of a fuzzy rule, and it computes the
spatial firing strength. We call it “spatial” as it does not de-
pend on any temporal input, and also, we distinguish it from
the “temporal” firing strength that is computed in the next layer.
To compute the spatial firing strength F i , each node performs a
fuzzy meet operation on the inputs that it receives from layer 2
using an algebraic product operation. There are M nodes in this
layer, where each node corresponds to one rule. Each node in
this layer is connected to nu + no nodes of the previous layer.
The structure learning process starts with no rule (M = 0), and
the first data point is used to generate the first rule making M
= 1. Then, with new incoming data points, depending on how
well a new data point matches with existing rules, new rules are
generated. In Section III-A, we explain in detail how these M
rules are generated. The spatial firing strength is an interval [13]
and is computed as follows [27]:

F i = [fi, f̄ i], i = 1, . . . ,M (4)

f̄ i =
nu +no∏

j=1

μ̄i
j , f i =

nu +no∏

j=1

μi
j
. (5)

As explained earlier, in (4), M is the total number of rules.
Use of (5) to compute the firing strength is probably the most
common compared with the use of other T-norms [14], [21],
[25], [26], [28]–[38]. Product is also used to compute rule fir-
ing strength even with type-1 Takagi–Sugeno-type systems [2],
[4]–[12], [40]. A first look at (5) suggests that with a large
number of antecedents, the firing strength will approach zero.
However, this actually does not cause a problem for two reasons.
The main reason is that the defuzzified output is computed as
a convex combination of consequent values, where the weights
of the convex combinations are the normalized temporal fir-
ing strength, which is computed using the firing strengths in
(5). Moreover, for practical systems, the number of antecedent
clauses involved in a rule is usually not very large. One can,
of course, use minimum as the T-norm to compute the firing
interval, but min is not differentiable (while product is), and
hence, it is difficult to use the gradient-based tuning algorithm,
which we use here. The problem associated with the use of min-
imum can be avoided by using a softer but differentiable version
of minimum [43], [44], but this makes the learning rules quite
complicated. Therefore, we restrict ourselves to product only.

Layer 4 (Temporal firing layer): There are M × no nodes
in this layer. Each node in this layer is a recurrent rule node,
which generates an internal feedback (self-loop) and external
interconnection with mutual feedbacks. As a result, the recur-
rent weights λs are represented as self-loop and interconnection

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 495

weights. The output of a recurrent rule node is a temporal firing
strength that depends not only on current spatial firing strength
but also on the previous temporal firing strength. In order to
compute the temporal firing strength using (6), the nodes in this
layer store the immediately past temporal firing strength (i.e.,
each node is equipped with some memory). Once the training
starts, the initial value of the past temporal firing strength is set
to zero.

The temporal firing strength [ψ̄q
i (t), ψq

i
(t)], i = 1, . . . , M and

q = 1, . . . , no , is computed combining the spatial firing strength
F i(t) and previous temporal firing strength ψq

i (t − 1) using the
following equation:

ψq
i (t) =

∑

k=1

(λq
ik · ψq

k (t − 1)) + (1 − γq
i) · F i(t) (6)

where ψq
i (t)s lie in [0, 1], and λ

q
ik = C q

i k

M is the rule interaction
weight between itself and other rules. Here, Cq

ik is the feedback
related to node i of layer 4 from node k of layer 4 that is related
to the qth output node. Thus, for local (internal) feedback i = k
and for i not equal to k, we get external feedback to the ith
node of layer 4 from the kth rule (antecedents in layer 4) node.
Assume that a new rule is generated, the initial value of Cq

ik in
local feedback (i.e., for i = k), is set to 0.5, and for i not equal to
k,Cq

ik is set to 0.2. The initial Cq
ik may be adjusted for different

examples to yield better results. Thus, the total feedback to the
ith rule node (layer 4) for the qth output node is γq

i =
∑M

k=1 λ
q
ik .

The interval in (6) now may be written as

[ψ̄q
i (t), ψq

i
(t)] =

M∑

k=1

λ
q
ik · [ψ̄q

k (t − 1), ψq
k
(t − 1)]

+(1 − γq
i) · [f̄ i(t), f i(t)] (7)

where

ψ̄q
i (t) =

∑

k=1

(λq
ik · ψ̄q

k (t − 1)) + (1 − γq
i) · f̄ i(t) (8)

and

ψq
i
(t) =

∑

k=1

(λq
ik · ψq

k
(t − 1)) + (1 − γq

i) · fi(t). (9)

Note that for the first epoch of the online learning, i.e., for
t = 1, (6) will only use (1 − γq

i) · F i(t) because the initial
past temporal firing strength is set to 0. For subsequent epochs,
since the nodes in layer 4 store past firing strengths, (6) can be
computed without any problem.

Layer 5 (Consequent layer): Each node in this layer
is called a consequent node and functions as a linear
model with exogenous inputs and lagged values. The out-
put of a consequent node is a linear combination of cur-
rent input states x(t) = (u(t), yp(t)) = (u1(t), . . . , unu

(t),
yp1(t), . . . , ypno

(t)) and their lagged values (uj (t −
1), . . . , uj (t − Nj), ypk (t − 1), . . . , ypk (t − Oj)). In Fig. 1, a
consequent node is zoomed to elaborate its functioning. The out-
put ỹi

q (t + 1), i = 1, . . . ,M, q = 1, . . . , no , of the ith rule node

connecting to the qth output variable is computed as follows:

ỹi
q (t+1)=

nu∑

j=0

Nj∑

k=0

ãi
jkquj (t−k)+

no∑

j=1

Oj∑

k=0

ãi
(j+nu)kq ypj (t−k)

(10)
where u0(t) = 1 and N0 = 0; Nj and Oj are the numbers of
lagged control input uj (t) and system output ypj (t), respec-
tively, and ãi

jkq s are interval valued coefficient denoted by

ãi
jkq = [ci

jkq − si
jkq , c

i
jkq + si

jkq] (11)

where ci
jkq and si

jkq are the center and spread of an interval type-
1 set, respectively. For an interval type-1 set, the membership
value of every point over the interval [ci

jkq − si
jkq , c

i
jkq+si

jkq]
is unity. Note that, in order to compute (10), some past values
of u and y are needed, and these values are stored at appropriate
nodes in this layer. In other words, nodes in this layer have
some local memory. The inclusion of lagged values of u(t) and
yp(t) in the linear consequent part instead of the antecedent part
simplifies the computation process of the network for modeling
of dynamic systems, especially when IT2FSs are used. The
output ỹi

q (t + 1) is an interval type-1 set, which is denoted by
[ỹi

lq , ỹ
i
rq], where indices l and r denote left and right limits,

respectively. According to (10) and (11), the node output is

ỹi
q = [ỹi

lq , ỹ
i
rq] =

nu∑

j=0

Nj∑

k=0

[ci
jkq − si

jkq , c
i
jkq + si

jkq] · uj (t − k)

+
no∑

j=1

Oj∑

k=0

[ci
(j+nu)kq − si

(j+nu)kq , c
i
(j+nu)kq + si

(j+nu)kq]

· ypj (t − k). (12)

That is

ỹi
lq =

nu∑

j=0

Nj∑

k=0

ci
jkquj (t − k) +

no∑

j=1

Oj∑

k=0

ci
(j+nu)kq ypj (t − k)

−
nu∑

j=0

Nj∑

k=0

si
jkq |uj (t−k)|−

no∑

j=1

Oj∑

k=0

si
(j+nu)kq |ypj (t−k)|

(13)

and

ỹi
rq =

nu∑

j=0

Nj∑

k=0

ci
jkquj (t − k) +

no∑

j=1

Oj∑

k=0

ci
(j+nu)kq ypj (t − k)

+
nu∑

j=0

Nj∑

k=0

si
jkq |uj (t−k)|+

no∑

j=1

Oj∑

k=0

si
(j+nu)kq |ypj (t−k)|.

(14)

Layer 6 (Output layer): Each node in this layer corresponds to
one output variable. For defuzzification operation, the qth output
layer node computes the network output variable y′

q using type-
reduction. The type-reduced set is an interval set [y′

lq , y
′
rq]. The

outputs y′
lq and y′

rq can be computed using the Karnik–Mendel
(KM) iterative procedure [13]. Using the KM procedure, we

496 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

shall rewrite the expressions for y′
lq and y′

rq of [y′
lq , y

′
rq] in

suitable forms so that we can derive the learning rules easily.
In the KM procedure, the consequent values are reordered in
an ascending order. Let ỹlq and ỹrq be the original consequent
values, and ŷlq and ŷrq be the corresponding rule ordered (in
an ascending order) consequent values. Then, the relationship
between ỹlq , ỹrq , ŷlq , and ŷrq is

ŷlq = Qlỹlq and ŷrq = Qr ỹrq . (15)

Here, Ql and Qr are M × M appropriate permutation matrices
to reorder the values. Let ψ̄q = (ψ̄1

q (t), ψ̄2
q (t) . . . ψ̄M

q (t))T and
ψ

q
= (ψ1

q
(t), ψ2

q
(t) . . . ψM

q
(t))T . According to [27], the output

y′
lq can be computed as follows:

y′
lq =

∑L
i=1 (Qlψ̄q)i ŷ

i
lq +

∑M
i=L+1 (Qlψq

)i ŷ
i
lq

∑L
i=1 (Qlψ̄q)i +

∑M
i=L+1 (Qlψq

)i

=
ψ̄

T
q QT

l ET
1 E1Qlỹlq + ψT

q
QT

l ET
2 E2Qlỹlq

pT
l Qlψ̄q + bT

l Qlψq

(16)

where L and R denote the left and right crossover-over points,
respectively. The end points L and R are defined in [13]. The
other vectors and matrices involved in (16) are defined as

pl = (1, 1, . . . , 1
︸ ︷︷ ︸

L

, 0, . . . , 0)T ∈ �M ×1

bl = (0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

M −L

)T ∈ �M ×1 (17)

E1 = (e1 , e2 , . . . , eL , 0, . . . , 0) ∈ �L×M , and

E2 = (0, . . . , 0, ε1 , ε2 , . . . , εM −L) ∈ �(M −L)×M (18)

where ei ∈ �L×1 and εi ∈ �M −L are unit vectors, whose all
but ith element is zero and the ith element is one. In (16), (Qlψ̄q)
produces a vector in M dimension where the components of
(Qlψ̄q) are permuted version of components in ψ̄q . In addition,
(Qlψ̄q)i represents the ith component of (Qlψ̄q). Thus, (19)
computes a convex combination of ȳi

rq , i = 1, . . . , M , values.
The weights of the convex combination are computed from the
components of (Qlψ̄q), which are nothing but the temporal firing
strength in (8).

Similarly, the output y′
rq can be computed as follows:

y′
rq =

∑R
i=1 (Qrψq

)i ŷ
i
rq +

∑M
i=R+1 (Qr ψ̄q)i ŷ

i
rq

∑R
i=1 (Qrψq

)i +
∑M

i=R+1 (Qr ψ̄q)i

=
ψT

q
QT

r ET
3 E3Qrỹrq + ψ̄

T
q QT

r ET
4 E4Qrỹrq

pT
r Qrψq

+ bT
r Qrψ̄q

(19)

where

pr = (1, 1, . . . , 1
︸ ︷︷ ︸

R

, 0, . . . 0)T ∈ �M ×1

br = (0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

M −R

)T ∈ �M ×1 (20)

E3 = (e1 ,e2 , . . . ,eR ,0, . . . ,0) ∈ �R×M

E4 = (0, . . . ,0, ε1 , ε2 , . . . , εM −R) ∈ �(M −R)×M (21)

and where ei ∈ �R×1 and εi ∈ �M −R are unit vectors (all but
ith element are zero and the ith element is 1). All of unit vec-
tors are defined in [27]. Such an expression is helpful in de-
riving the proposed parameter learning algorithm discussed in
Section III-B. Finally, the defuzzification operation defuzzifies
the interval set [y′

lq , y
′
rq] by computing the average of y′

lq and y′
rq .

Hence, the defuzzified output for network output variable y′
q is

y′
q =

y′
lq + y′

rq

2
. (22)

III. MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL

FUZZY SYSTEM LEARNING

Initially, there is no rule in an MRIT2NFS. All of the re-
current type-2 fuzzy rules evolve from simultaneous structure
and parameter learning. The following sections introduce the
structure and parameter learning algorithm explicitly.

A. Structure Learning

The online rule is generated according to the structure learn-
ing algorithm. A previous study [30] utilized the rule firing
strength as a criterion for type-1 fuzzy rule generation. This idea
is extended to type-2 fuzzy rule generation using an MRIT2NFS.
The spatial firing strength F i in (4) is used to decide whether a
new rule should be generated. The type-2 rule firing strength
is an interval. The center of the spatial firing interval, i.e.,
fc = 1

2 (f̄ i + fi), is used as a criterion for rule generation. The
first incoming data point x is used to generate the first fuzzy
rule, and the uncertain mean and width of the type-2 fuzzy MFs
associated with this rule are set as

[
m1

j1 ,m
1
j2
]

= [xj − 0.1, xj + 0.1] and σ = σfixed

j = 1, . . . , nu + no (23)

where σfixed is a predefined value (we use σfixed = 0.3 in this
paper) that determines the width of the memberships associated
with a new rule. Subsequently, for each of new incoming data
x(t), we find

I = arg max
1≤i≤M (t)

fi
c (t) (24)

where M(t) is the number of existing rules at time t. If
fI

c (t) ≤ fth(0 < fth ≤ 1 is a prespecified threshold), then a
new fuzzy rule is generated. A smaller value fth generates a
smaller number of rules. Conversely, a large number of rules
may be generated when fth is set to be a high value. The idea
is that if the present data point does not match well with any of
the existing rules, then a new rule is generated. Here also, we
use the same procedure to assign the uncertain mean as done
for the very first rule, i.e., for the new rule, the means of the
corresponding type-2 fuzzy sets are defined as

[
m

M (t)+1
j1 ,m

M (t)+1
j2

]
= [xj (t) − 0.1, xj (t) + 0.1]

j = 1, . . . , nu + no. (25)

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 497

The width of the each fuzzy set associated with a new rule is
defined as follows:

σM (t)+1 = β ·

⎛

⎝
nu +no∑

j=1

(

xj −
mI

j1 + mI
j2

2

)2
⎞

⎠

1
2

. (26)

In (26), I is the index of the best matching rule, and mI
j1

and mI
j2 are the means of the MF of the jth antecedent clause

of the Ith rule. Equations (23) and (25) indicate that for the
mean, the width of the uncertain region is 0.2. If the uncertainty
associated with the mean is made too small, then the type-2
fuzzy sets become similar to type-1 fuzzy sets. On the other
hand, if the width of the uncertain region is too large, then the
uncertain mean covers most of input domain. Equation (26)
indicates that the initial width is equal to the Euclidean distance
between current input data x and the center of best matching rule
for this data point times an overlap degree β(β > 0). If β is set to
a very large value, then it may result in a high overlap between a
fuzzy set associated with the new and fuzzy sets associated with
the existing rules, while with a very small value of β, practically,
there will be no overlap between fuzzy sets. In this study, β is
set to 0.5 so that the width of new type-2 fuzzy set is half of the
Euclidean distance from the center of the best matching rule,
and an adequate overlap between adjacent rules is realized.

B. Parameter Learning

Along with the learning of the structure, the parameters are
also learned. All free parameters of the MRIT2NFS are adjusted
with each incoming training data regardless of whether a rule is
generated. For clarity, let us just consider the qth output of the
network. The parameter learning process updates the network
parameters minimizing the error function

E =
1
2
[y′

q (t + 1) − yd(t + 1)]2 (27)

where y′
q (t + 1) and yd(t + 1) represent the MRIT2NFS output

and the desired output, respectively. The parameters in the con-
sequent part are learned based on the rule-ordered Kalman filter
algorithm [30], as described next. To compute y′

lq and y′
rq in

the KM iterative procedure, the required precondition is that ỹlq

and ỹrq are rearranged in an ascending order. As the consequent
values ỹlq and ỹrq change, their rule-ordering may also change.
The (15) indicated the arranged consequent values with respect
to the original rule order. According to the mapping, (16) and
(19) are expressed by ỹlq and ỹrq as follows [37]:

y′
lq = φT

lq ỹlq

φlq =
ψ̄

T
q QT

l ET
1 E1Ql + ψT

q
QT

l ET
2 E2Ql

pT
l Qlψ̄q + bT

l Qlψq

∈ �M ×1 (28)

and

y′
rq = φT

rq ỹrq

φrq =
T
q QT

r ET
3 E3Qr + ψ̄

T
q QT

r ET
4 E4Qr

pT
r Qrψq

+ bT
r Qrψ̄q

∈ �M ×1 . (29)

Thus, the output y′
q in (22) can be re-expressed as

y′
q =

1
2
(y′

lq + y′
rq) =

1
2
(φT

lq ỹlq + φT
rq ỹrq)

= [φ̄T
lq φ̄

T
rq]

[
ỹlq

ỹrq

]

=[φ̄1
lq · · · φ̄

M
lq φ̄

1
rq · · · φ̄

M
rq]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ỹ1
lq

...
ỹM

lq

ỹ1
rq

...
ỹM

rq

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(30)

where φ̄
T
lq = 0.5φT

lq and φ̄rψ
T
q

= 0.5φT
rq . According to (13)

and (14), (30) can be further expressed as (31), shown at the
bottom of the page [37].

In (31), cl
jkq and sl

jkq are the coefficients of the linear equa-
tions involved in the consequents. During the online structure
learning, the dimension of ỹlq and ỹrq increases with time, and
the positions of cjkq and sjkq change accordingly within the
same vector. To keep the position of cjkq and sjkq unaltered
in the vector, the rule-ordered Kalman filtering algorithm re-
arranges elements in rule order in (31). Let ṽTSK denote the

y′
q = [φ̄T

lq φ̄
T
rq]

[
ỹlq

ỹrq

]

= [φ̄1
lq · · · φ̄

M
lq φ̄

1
rq · · · φ̄

M
rq]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

nu∑

j=0

Nj∑

k=0
c1
jkquj (t − k) +

no∑

j=1

Oj∑

k=0
c1
(j+nu)kq ypj (t − k) −

nu∑

j=0

Nj∑

k=0
s1

jkq |uj (t − k)| −
no∑

j=1

Oj∑

k=0
s1

(j+nu)kq |ypj (t − k)|

...
nu∑

j=0

Nj∑

k=0
cM
jkquj (t − k) +

no∑

j=1

Oj∑

k=0
cM
(j+nu)kq ypj (t − k) −

nu∑

j=0

Nj∑

k=0
sM

jkq |uj (t − k)| −
no∑

j=1

Oj∑

k=0
sM

(j+nu)kq |ypj (t − k)|

nu∑

j=0

Nj∑

k=0
c1
jkquj (t − k) +

no∑

j=1

Oj∑

k=0
c1
(j+nu)kq ypj (t − k) +

nu∑

j=0

Nj∑

k=0
s1

jkq |uj (t − k)| +
no∑

j=1

Oj∑

k=0
s1

(j+nu)kq |ypj (t − k)|

...
nu∑

j=0

Nj∑

k=0
cM
jkquj (t − k) +

no∑

j=1

Oj∑

k=0
cM
(j+nu)kq ypj (t − k) +

nu∑

j=0

Nj∑

k=0
sM

jkq |uj (t − k)| +
no∑

j=1

Oj∑

k=0
sM

(j+nu)kq |ypj (t − k)|

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (31)

498 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

vector all consequent parameters, i.e.,

ṽT SK = [c1
00q . . . c1

(no +nu)Nn o q s
1
00q . . . s1

(no +nu)Nn o q . . .

× cM
00q . . . cM

(no +nu)Nn o q s
M
00q . . . sM

(no +nu)Nn o q]
T (32)

where the consequent parameters are placed according to the
rule order. Equation (31) can now be re-expressed as

y′
q = [φ̄c1u0 . . . φ̄c1ypno

(t − Ono
) − φ̄s1 |u0 | . . . − φ̄s1 |ypno

× (t − Ono
)| φ̄cM u0 . . . φ̄cM ypno

(t − Ono
)

− φ̄sM |u0 | . . . − φ̄sM |ypno
(t − Ono

)|]ṽTSK

= φ̄
′T
TSK ṽTSK (33)

where φ̄j
cq = φ̄j

lq + φ̄j
rq and φ̄j

sq = φ̄j
rq − φ̄j

lq , j = 1, . . . ,M .
The consequent parameter vector ṽTSK is updated by executing
the following rule-ordered Kalman filtering algorithm [37]:

ṽTSK(t + 1) = ṽTSK(t) + S(t + 1)φ̄′
TSK(t + 1)(yd(t + 1)

− φ̄
′T
TSK(t + 1)ṽTSK(t))

S(t + 1) =
1
κ

[

S(t) − S(t)φ̄′
TSK(t + 1)φ̄′T

TSK(t + 1)S(t)

κ + φ̄
′T
TSK(t + 1)S(t)φ̄′

TSK

]

(34)

where 0 < κ ≤ 1 is a forgetting factor. (Just to keep parity with
a previous study [37], we have used κ = 0.99995; however,
our experience suggests that one can use κ = 1.0 without much
effect, as expected, on the overall performance.) The dimension
of ṽTSK and φ̄

′
TSK and the matrix S increases when a new rule

is generated. When a new rule evolves, MRIT2NFS augments
S(t) as follows, (35), shown at the bottom of the page, where
C is a large positive constant (we use C = 10), and the size of
the identity matrix I is

2

⎛

⎝
nu∑

j=0

(Nj + 1) +
no∑

j=1

(Oj + 1)

⎞

⎠

×2

⎛

⎝
nu∑

j=0

(Nj + 1) +
no∑

j=1

(Oj + 1)

⎞

⎠ . (36)

Note that S(0) is 1 × 1 matrix. We used S(0) = [10]. The
antecedent parameters of MRIT2NFS are tuned by the gradient
descent algorithm. For convenience of notations for the gradient
descent learning rules, according to [27], (16) can be rewritten
as

y′
lq =

ψ̄
T
q alq + ψT

q
blq

ψ̄
T
q clq + ψT

q
dlq

(37)

where

alq = QT
l ET

1 E1Qlỹlq ∈ �M ×1

blq = QT
l ET

2 E2Qlỹlq ∈ �M ×1 (38)

clq = QT
l pl ∈ �M ×1 , dlq= QT

l bl ∈ �M ×1 . (39)

Similarly, (19) can be rewritten as

y′
rq =

ψT
q
arq + ψ̄

T
q brq

ψT
q
crq + ψ̄

T
q drq

(40)

where

arq = QT
r ET

3 E3Qrỹrq ∈ �M ×1

brq = QT
r ET

4 E4Qrỹrq ∈ �M ×1 (41)

crq = QT
r pr ∈ �M ×1 , drq= QT

r br ∈ �M ×1 . (42)

Using the gradient descent algorithm, we have

λ
q
ik (t + 1) = λ

q
ik (t) − η

∂E

∂λ
q
ik (t)

(43)

where η is a learning constant (η = 0.075 in this paper) and

∂E

∂λ
q
ik

=
∂E

∂y′
q

(
∂y′

q

∂y′
lq

∂y′
lq

∂λ
q
ik

+
∂y′

q

∂y′
rq

∂y′
rq

∂λ
q
ik

)

=
1
2
(y′

q − yd)

×
[(

∂y′
lq

∂ψ̄q
i

+
∂y′

rq

∂ψ̄q
i

)
∂ψ̄q

i

∂λ
q
ik

+
(

∂y′
lq

∂ψq
i

+
∂y′

rq

∂ψq
i

)
∂ψq

i

∂λ
q
ik

]

(44)

where

∂y′
lq

∂ψ̄
q
i

=
alqi − y′

lq clqi

ψ̄
T
q clq + ψT

q
dlq

,
∂y′

rq

∂ψ̄
q
i

=
brqi − y′

rq drqi

ψT
q
crq + ψ̄

T
q drq

(45)

∂y′
lq

∂ψq
i

=
blqi − y′

lq dlqi

ψ̄
T
q clq + ψT

q
dlq

,
∂y′

rq

∂ψq
i

=
arqi − y′

rq crqi

ψT
q
crq + ψ̄

T
q drq

(46)

∂ψ̄
q
i

∂λ
q
ik

= ψ̄
q
k (t − 1) − f̄ i(t),

∂ψq
i

∂λ
q
ik

= ψq
k
(t−1)−fi(t). (47)

Details of the learning equations for parameters, including
mj1 ,mj2 , and σ, of the antecedents can be found in [27].

Pruning of less-important rules: Our system involves many
recurrent weights. Depending on the nature of the underlying
system that we are trying to model, all of these recurrent feed-
backs may not be important. In fact, if the magnitude of a re-
current weight is very low, then that weight will not have much
effect on the system output, and hence, such weights/feedbacks
can be dropped. This is what we do. If the absolute value of a
recurrent weight is less than a predefined threshold ε, we delete
that connection ε lies in [0,1]. Once we delete some recur-
rent weights (feedback connections), we must adapt the system
in its new environment, and hence, we retrain the network a
few epochs (here, we use only five epochs). The MRIT2NFS
that uses such elimination of recurrent weights is called
MRIT2NFS-ε.

S(t) = block diag[S(t)C · I] ∈ �2(M +1)(
∑ n u

j = 0 (Nj +1)+
∑ n o

j = 1 (Oj +1))×2(M +1)(
∑ n u

j = 0 (Nj +1)+
∑ n o

j = 1 (Oj +1)) (35)

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 499

TABLE I
LIST OF PARAMETERS USED IN MRIT2NFS

IV. SIMULATION

Our MRIT2NFS uses a set of parameters. For convenience,
we have summarized these parameters in Table I. Next, we
describe application of MRIT2NFS on five problems. These ex-
amples include identification of two single-input single-output
(SISO) dynamic systems (see Examples 1 and 2), one MIMO
dynamic system (see Example 3), prediction of chaotic time
series (see Example 4), and identification of nonlinear system
plant (see Example 5). For all but Example 5, we normalize the
datasets in [−1, 1]. Example 5 is not a dynamical system, and it
is comparatively easy to learn. Therefore, we did not normalize
the data, but we have used the same membership definition as in
(23). We shall see later that even in this case, the performance
of the system is very satisfactory indicating the robustness of
our system. The performance of MRIT2NFS is compared with
that of recurrent and feedback type-1 and type-2 FNNs.

A. Example 1 (Dynamic System Identification)

This example uses MRIT2NFS to identify an SISO linear
time-varying system, which was introduced in [9]. The dynamic
system with lagged inputs is guided by the following difference
equation:

yp(t + 1) = f(yp(t), yp(t − 1), yp(t − 2), u(t), u(t − 1))
(48)

where

f(x1 , x2 , x3 , x4 , x5) =
x1x2x3x5(x3 − 1)x4

1 + x2
2 + x2

3
. (49)

The system has a single input (i.e., nu = 1) and a single output
(i.e., no = 1). The current variables u(t) and yp(t) are fed as
inputs to the MRIT2NFS input layer. The current output of the
plant depends on two previous outputs and one previous input.
Therefore, the consequent part parameters of MRIT2NFS are
set as N1 = 2 and O1 = 1. The training procedure minimizes
the square error between the output of the system yp(t + 1)
and the target output yd(t + 1). To train the MRIT2NFS, we
follow the same computational protocols as in [9], i.e., we use
only ten epochs and there are 900 time steps in each epoch. In
each epoch, the first 350 inputs are random values uniformly
distributed over [−2, 2], and the remaining 550 training inputs
are generated from a sinusoid defined by 1.05 sin(πt/45). This
type of training is analogous to an online training process, where
the total number of online training time steps is 9000. The
structure learning threshold fth influences the number of fuzzy
rules to be generated. After training, two recurrent fuzzy rules

are generated when fth is set to 0.02. Table II shows the root-
mean-squared error (RMSE) on the training data. To validate
the identified system, as adopted in [9], we use the following
input:

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
(

πt

25

)

, t < 250

1.0, 250 ≤ t < 500
−1.0, 500 ≤ t < 750

0.3 sin
(

πt

25

)

+ 0.1 sin
(

πt

32

)

+0.6 sin
(

πt

10

)

, 750 ≤ t < 1000.

(50)

Fig. 3 compares the actual output with the output produced
by MRIT2NFS for the test input generated using (50), while
Fig. 4 shows the test error between the desired output and actual
output produced by MRIT2NFS. Figs. 3 and 4 together reveal a
very good match suggesting that MRIT2NFS architecture along
with our system identification scheme does a very good job of
identifying the dynamical system with feedback.

Table II compares the performance of MRIT2NFS with that
of seven different approaches including TSK-type feedforward
type-1 and type-2 FNNs, a recurrent NN, and type-1 recurrent
FNNs. The comparison is done in terms of number of rules,
number of free parameters, training RMSE, and test RMSE. As
in MRIT2NFS, all these networks use the same information in-
cluding number of input variables, training data, test data, and
training epochs. In order to make a fair comparison, the total
number of parameters of the feedforward type-1 FNN is kept
similar to that of feedforward interval type-2 FNN. The number
of parameters in an interval type-2 FNN is larger than that in
a feedforward type-1 FNN because of extra free parameters in
type-2 fuzzy sets and rule consequent part. Consequently, the
number of rules used in a feedforward type-1 FNN is larger than
that in a feedforward interval type-2 FNN, as shown in Table I.
The compared feedforward type-2 FNN is an interval type-2
FNN with uncertain means, where all network parameters are
learned by the gradient descent algorithm. Our result reveals the
advantage of using recurrent structure in the MRIT2NFS, which
achieves smaller test RMSE than that by the feedforward type-2
FNN. All of the compared recurrent type-2 FNNs use the same
fuzzy sets in the antecedent part, i.e., use IT2FSs with uncertain
means. The performance of MRIT2NFS is also compared with
other interval type-2 FNNs with recurrent structure, including
a recurrent self-evolving interval type-2 fuzzy neural network
with uncertain means (RSEIT2FNN-UM) [37] and a recurrent
interval-valued fuzzy neural network (RIFNN) [38]. In these
cases also, MRIT2NFS yields better test accuracies. However,
RIFNN and RSEIT2FNN-UM use a marginally lower number
of free parameters. Our results demonstrate that MRIT2NFS
can effectively capture information about the system using mu-
tual feedbacks and outperforms the RSEIT2FNN, which only
uses local feedbacks. The recurrent type-1 FNNs considered
include the wavelet-based RFNN (WRFNN) [6], TSK-type

500 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

TABLE II
PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR SISO PLANT IDENTIFICATION IN EXAMPLE 1

Fig. 3. Outputs of the dynamic plant (dashed-dotted line) and MRIT2NFS (dotted line) in Example 1.

recurrent fuzzy network with supervised learning (TRFN-S) [9],
and RSEFNN-LF [11]. Table I indicates that the test error of the
TRFN and the RIFNN are very close for the noise-free envi-
ronment, but for noisy environment, the TRFN-S is found to
perform better. We have also compared the performance be-
tween TRFN and RSEIT2FNN. The recurrent structure with
only local feedbacks in RSEIT2FNN may not be adequate for
this example because the rules lack the information from other
rules. For this reason, the performance of the TRFN is found to
be better than that of the RSEIT2FNN (see Table II).

Like any other type-2 method, the proposed type-2 methods
demand more computation, but it can yield more quality outputs.
Moreover, although each learning step is computationally more
expensive compared with that of its type-1 counterpart, our
network, using the same number of iterations, yields a better
solution (faster convergence) than the type-1 systems.

There are a few parameters, i.e., fth , β, and ε, that are in-
volved in the learning of MRIT2NFS. We now investigate the in-
fluence of these parameters on the performance of MRIT2NFS.
In addition, we shall also consider the robustness of the system

against noise in the inputs. The threshold parameter fth decides
the number of rules in the MRIT2NFS, while the parameter ε
in MRIT2NFS-ε is used to decide the feedback connections in
layer 4 that could be removed. Table III shows the MRIT2NFS
performance for different values of fth and ε when β = 0.5.

As expected, larger values of fth result in larger numbers of
rules, and larger ε reduces the number of tunable parameters in
the system. Table II suggests that although different choices of
fth and ε change the number of rules marginally, the training
and test errors practically do not change. Thus, at least for this
dataset, our system is quite robust with respect to the choice of
these two parameters. From a user point of view, the network
with the smallest number of free parameters that can provide the
desired level of performance should be the preferred network.
Because with a larger degrees of freedom, the chances of having
more local optima and getting stuck to one of them would usually
be higher. Next, we investigate the effect of β on the performance
of MRIT2NFS for a constant value of fth . A small value of β
generates larger numbers of rules because of the smaller width
of the initial type-2 fuzzy sets.

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 501

Fig. 4. Test errors between the MRIT2NFS and actual plant outputs.

TABLE III
INFLUENCE OF fth AND ε ON THE PERFORMANCE OF MRIT2NFS WITH β = 0.5

502 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

TABLE IV
INFLUENCE OF β ON THE PERFORMANCE OF MRIT2NFS WITH fth = 0.02

Table IV shows the performance of MRIT2NFS for different
values of β when fth = 0.02. From Table IV, we observe that
the network performance (both training and test error) is not
sensitive to variations in β when fth = 0.02, although the num-
ber of rules decreases as β increases. It is interesting to note that
as β increases from 0.2 to 0.7, the number of rules decreases
from 5 to 2 without affecting the performance of the system. In
fact, with two rules, both the training and test performances are
slightly improved over the case with five rules. However, for a
given problem, if the goal is to find the optimal parameters, we
can use a two-level cross-validation mechanism.

Next, we assess how robust the network is with respect to
measurement noise in the plant output. Since the plant output yp

is fed back as an input to the network, a noise in the measurement
of the plant output yp is likely to have an effect on the perfor-
mance of the system. The experiment also uses the control input
sequence in (50). We consider three levels of Gaussian noise
with STDs 0.1, 0.3, and 0.5. We use 30 simulations for the sta-
tistical analysis. Table V shows the performance of MRIT2NFS
for the three different noisy environments. For the purpose of
comparison, we also use the same noisy environment to assess
the noise tolerance of the other networks, including feedfor-
ward type-1 and type-2 FNN, TRFN [9], RSEIT2FNN [37],
and RIFNN [38]. The results in Table V indicate that the feed-
forward type-2 FNN can deal with noise much better than the
feedforward type-1 FNN. The consequent part of the TRFN is
a function of current input variables. The consequent part in the
RSEIT2FNN and the MRIT2NFS is of TSK-type that consists of
system output yp and its previous values. As a result of this, the
rate of increase in the RMSE with increase in σ for MRIT2NFS
may be marginally higher than that for other networks, which
do not use feedback of system outputs. Finally, the MRIT2NFS
achieves better performance than the other compared FNNs for
noise-free and noisy cases.

B. Example 2 (Single-Input Single-Output Dynamic System
Identification)

We now consider the following dynamic system with longer
input delays:

yp(t + 1) = 0.72yp(t) + 0.025yp(t − 1)u1(t − 1)

+ 0.01u2
1(t − 2) + 0.2u1(t − 3). (51)

This plant is the same as the one used in [9]. This system
has a single input (nu = 1) and a single output (no = 1). Thus,
the current values of u(t) and yp(t) are fed as inputs to the
MRIT2NFS input layer. The current output of the plant de-
pends on one previous output and three previous inputs. There-
fore, for MRIT2NFS, N1 = 3 and O1 = 1. The training data

and time steps are the same as those used in Example 1. In
MRIT2NFS training, the structure learning threshold is set to
0.02. After 90 epochs of training, two rules are generated. To
test the identified system, the test signal used in Example 1 is
also adopted here. Fig. 5 shows the outputs of the plant and
those of the MRIT2NFS for these test inputs. Fig. 6 shows the
test error between the outputs of MRIT2NFS and of the plant.
Table VI shows the structure, and training and test RMSEs of
MRIT2NFS. The performance of MRIT2NFS-ε (ε = 0.6 is used
in this paper) with the same network size is also shown in Ta-
ble VII. Like Example 1, Table VII shows that MRIT2NFS and
MRIT2NFS-ε have similar performance. The performance of
MRIT2NFS is compared with that of feedforward type-1 and
typ-2 FNNs and recurrent type-1 FNNs. These models also use
the same number of training epochs and training and test data as
used for the MRIT2NFS. Table VI also depicts the number of
rules and parameters, and the training and test RMSEs of these
compared networks. These results show that the MRIT2NFS
achieves better performance than that of other networks. In Ta-
ble VII, we investigate the effect of different choices fthandε
on the performance of MRIT2NFS when β = 0.5.

As done for Example 1, here also using the same compu-
tational protocols, we study the robustness of MRIT2NFS in
noisy environments. Table VIII summarizes the results for the
MRIT2NFS with different noise levels (Gaussian noise with
STDs of 0.1, 0.3, and 0.5, and with 30 Monte Carlo realizations
for each case). As revealed by Table VIII, for noisy environ-
ments, the MRIT2NFS achieves smaller RMSE than the other
compared FNNs except the RIFNN. Note that, for noise-free
data for the same problem, Table VI reveals that MRIT2NFS
performs better than RIFNN, but with noisy data, RIFNN per-
forms better. A possible reason for this may be that the conse-
quent part in the RIFNN is a constant interval-valued set and is
not a function of the system output, yp , that are noisy. However,
for MRIT2NFS, the rule consequents are functions of current
output yp , which are noisy. Therefore, the impact of noise on
RIFNN is much weaker than that on MRIT2NFS. These results
show that MRIT2NFS and MRIT2NFS-ε have similar perfor-
mance. Table VIII reveals that the test error for the MRIT2NFS
is smaller than that of the feedforward type-1 and type-2 FNNs
and recurrent type-1 and type-2 FNNs.

C. Example 3 (Chaotic Series Prediction)

In this example, which is introduced in [41], we use
MRIT2NFS to predict the chaotic behavior of a dynamic system
with one delay and two sensitive parameters that are generated
by the following equation:

yp(t + 1) = −P · y2
p (t) + Q · yp(t − 1) + 1.0. (52)

Equation (52), with P = 1.4 and Q = 0.3, produces a chaotic
attractor. The system has no control input (i.e., nu = 0) and a
single output (i.e., no = 1) so that only output variable yp(t) is
fed as input to the MRIT2NFS. It is a second-order system with
one delay; therefore, O1 = 1. The training procedure uses the
plant output yp(t + 1) as the desired output yd(t + 1). Starting
from the initial state [yp(1), yp(0)]= [0.4, 0.4], 2000 patterns are

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 503

TABLE V
PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 1

Fig. 5. Outputs of the dynamic plant (dashed-dotted line) and MRIT2NFS (dotted line) in Example 2.

Fig. 6. Test errors between the MRIT2NFS and actual plant outputs.

504 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

TABLE VI
PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR SISO

PLANT IDENTIFICATION IN EXAMPLE 2

TABLE VII
INFLUENCE OF fth AND ε ON THE PERFORMANCE OF AN MRIT2NFS WITH

β = 0.5

Fig. 7. Results of the phase plot for the chaotic system (O) and MRIT2NFS
(X).

generated of which the first 1000 patterns are used for training
and the remaining 1000 patterns are used for testing. In addition,
the structure learning threshold fth is set to 0.2, and the number
of rules generated is 5 after 90 epochs of training.

Fig. 7 displays the phase plot of the actual and MRIT2NFS
predicted results for the test patterns. Table IX includes the net-
work size, and training and test RMSEs of MRIT2NFS. The
performance of MRIT2NFS-ε is also depicted in Table IX. Like
the other two examples, the performance of MRIT2NFS and

MRIT2NFS-ε is quite similar. The performance of MRIT2NFS
is also compared with that of feedforward type-1 and type-
2 FNNs, and recurrent type-1 FNNs, including RFNN [5],
WRFNN [6], TRFN-S [9], and RSEFNN [11]. From Table VIII,
we find that MRIT2NFS-ε exhibits the best performance us-
ing almost the minimum number of free parameters, while
MRIT2NFS achieves the next best performance, although it
uses a few more free parameters.

In this case, we study the noise tolerance of our system with
three levels of Gaussian noise with STDs of 0.3, 0.5, and 0.7.
Based on 30 Monte Carlo realizations, in Table X, we summarize
the test RMSEs of the feedforward type-1 and type-2 FNNs,
recurrent type-1 FNNs, and MRIT2NFS. Table IX shows that
the test error of the MRIT2NFS is much smaller than that of the
RIFNN for noise-free data. However, Table X depicts that the
test error of the MRIT2NFS for noisy environment is very close
to that of the RIFNN. The possible reason for this is the same
as explained in Example 2. These results also reveal that the
test error of MRIT2NFS is smaller than those of the compared
networks for all the three noise levels.

D. Example 4 (Multi-Input Multi-Output Dynamic System
Identification)

In this example, we consider the plant described by

yp1(t + 1) = 0.5 ·
[

yp1(t)
1 + y2

p2(t)
+ u1(t − 1)

]

(53)

yp2(t + 1) = 0.5 ·
[

yp1(t)yp2(t)
1 + y2

p2(t)
+ u2(t − 1)

]

. (54)

This MIMO dynamic system was also studied in [9]. This
plant has two inputs (nu = 2) and two outputs (no = 2). There-
fore, four current input–output values u1(t), u2(t), yp1(t), and
yp2(t) are fed to the input layer of the network. The present
output of the plant depends on control inputs with one time
step delay and current plant states. Therefore, the lag numbers
N1 , N2 , O1 , and O2 in MRIT2NFS are set to 1, 1, 0, and 0,
respectively. The desired outputs for MRIT2NFS training are
yp1(t + 1) and yp2(t + 1). The MRIT2NFS is trained in an
online manner from time step t = 1 to t = 11000. The two
control inputs u1(t) and u2(t) are independent and identically
distributed uniform random sequences over [−1.4, 1.4] for t = 1
to t = 4000. For the remaining 7000 time steps, sinusoid signals
generated by sin(πt/45) are used for both u1(t) and u2(t). The
learning coefficient η and the threshold fth are set to 0.075 and
0.05, respectively. Based on a compromise between network
size and performance, the threshold value 0.05 is used, as dis-
cussed in Example 1. For this dataset, the training results in three
rules. Table XI shows the structure and RMSE of MRIT2NFS.
To evaluate the effectiveness of the identified network, we use

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 505

TABLE VIII
PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 2

TABLE IX
PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT MODELS IN EXAMPLE 3

TABLE X
PERFORMANCE OF MRIT2NFS AND OTHER FEEDFORWARD AND RECURRENT MODELS WITH DIFFERENT NOISE LEVEL IN EXAMPLE 3

the following two control input sequences:

u1(t) = u2(t) =
⎧
⎪⎨

⎪⎩

sin(πt/25), 1001 ≤ t < 1250
1.0, 1250 ≤ t < 1500
−1.0, 1500 ≤ t < 1750
0.3 sin(πt

25)+0.1 sin(πt
32)+0.6 sin(πt

10), 1750 ≤ t < 2000.

(55)

Fig. 8 shows a very good match between the actual output
and the network output. Table XI shows the test RMSEs of yp1
and yp2 . We also compare the performance of MRIT2NFS with
that of memory NN (MNN) [39], feedforward type-1 and type-
2 FNNs, and recurrent type-1 FNNs. The MNN is a kind of

recurrent NN and has been applied to the same problem in [9].
For the recurrent FNNs, we use the same training data, test data,
and the number of training epochs as those for MRIT2NFS,
except in the case of the MNN, where a total number of 77 000
time steps are used in [39]. Table XI shows that the performance
of MRIT2NFS is better than that of feedforward and recurrent
networks.

In this case also, we investigate the noise tolerance of
MRIT2NFS with the same three levels of noise that are used in
the previous example. Table XII summarizes the results for feed-
forward type-1 and type-2 FNNs, TRFN [9], RSEIT2FNN [36],
and MRIT2NFS over 30 Monte Carlo realizations. In this case
too, we find that under noisy environments, the test RMSEs of
MRIT2NFS is better than those of the compared networks.

506 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

TABLE XI
PERFORMANCE OF MRIT2NFS AND OTHER RECURRENT MODELS FOR MIMO PLANT IDENTIFICATION IN EXAMPLE 4

Fig. 8. Output of the MIMO system (dashed-dotted curve) and MRIT2NFS (dotted curve) in Example 4. (a) Output yp1 . (b) Output yp2 .

TABLE XII
PERFORMANCE OF MRIT2NFS AND OTHER MODELS WITH DIFFERENT NOISE LEVELS IN EXAMPLE 4

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 507

TABLE XIII
PERFORMANCE OF MRIT2NFS-ε AND OTHER MODELS FOR MODELING OF NONLINEAR SYSTEM IN EXAMPLE 5

Fig. 9. Pictorial representation of HANG.

E. Example 5 (HANG Nonlinear System)

This example uses an MRIT2NFS-ε to deal with the nonlinear
characteristics of a plant. This is a very well-studied system, but
it is not recurrent in nature. The HANG [42] system is defined
by the equation:

y = (1 + x−1
1 + x−1.5

2)2 , 1 ≤ x1 , x2 ≤ 5. (56)

To obtain the training data as done in [42], we have gener-
ated 50 random pairs of (x1 , x2),1 ≤ x1 , x2 ≤ 5, and computed
the corresponding outputs using (56). This system has only two
current control inputs x1(t) and x2(t) (nu = 2) and no external
output (no = 0). Therefore, only two input states x1 and x2 are
fed as input to the MRIT2NFS. The current output of the plant
depends on current control inputs with no time delay. Thus, in
this case, we set N1 = 0 and O1 = 0 in the MRIT2NFS con-
sequent part. Fig. 9 shows a pictorial representation of HANG.
The threshold fth is set to be 0.02, and the number of rules is
3 after 100 epochs of training. Table XIII shows the number
of rules, parameters, and test RMSE of the MRIT2NFS. For
comparison, Table XIII also shows the test RMSEs of feedfor-
ward type-1 and type-2 FNNs, and TRFN using the same I–O
data. The result shows that the test error of the MRIT2NFS-ε
is marginally better than feedforward type-2 FNN. Since this is
not a dynamic system, the recurrent architecture is not likely to
yield any additional benefits.

V. CONCLUSION

In this paper, we have proposed a novel recurrent type-2 neural
fuzzy system called MRIT2NFS to identify time-varying sys-
tems (systems with temporal behavior). Identification of such
systems is difficult because the plant output depends on the
present state as well as on previous states and past outputs. The
proposed MRIT2NFS approach is quite effective in modeling
dynamic systems. It is equally effective indentifying nondynam-
ical (algebraic) systems also. For MRIT2NFS learning, we have
used the type-2 fuzzy set theoretic concepts to evolve the struc-
ture of the network in an online manner. Our online structure
learning algorithm enables the network to efficiently identify the
required structure of the network—we do not need to set any ini-
tial MRIT2NFS structure in advance. We use the rule-ordered
Kalman filter algorithm to tune the consequent parameters to
yield a very effective learning. We have also proposed a strategy
to eliminate redundant recurrent weights. This is quite effec-
tive particularly when we have more rules. We have tested our
system on several dynamic systems and one algebraic (non-
recurrent) system and compared the performance with several
existing state-of-the-art systems. We have compared the perfor-
mance of our system with both type-1 and type-2 state-of-the-art
FNNs. Among the two type-1 FNNs, one is of the feedforward
type and the other is a recurrent network with linear conse-
quents. Our results have demonstrated the consistently superior
performance of MRIT2NFS over both the type-1 (recurrent and
feedforward) systems as well as recurrent type-2 systems. We
have demonstrated the superior performance both in terms of
modeling capability as well as noise handling capability. Our
system is found to be quite robust with respect to noisy data.
In order to make a fair comparison, we have tried to keep the
number of free parameters in all systems comparable.

In this investigation, we have assumed knowledge about the
system order and number of delayed inputs. In the absence
of this information, one can use sufficiently large number of
delayed inputs and past outputs in the consequents and then find
the useful ones using a concept similar to the feature attenuating
gates as done in [44]. However, use of such a concept may not
ensure that all useful delayed inputs and outputs are consecutive
in time. The other alternative could be to use a cross-validation
scheme to find the best combination of number of lagged inputs
and outputs to be used in the consequents. In the future, we
would like to study such possibilities and also make theoretical
study on the convergence of MRIT2NFS learning algorithm.

508 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 3, JUNE 2013

REFERENCES

[1] J. B. Theocharis and G. Vachtsevanos, “Recursive learning algorithms
for training fuzzy recurrent models,” Int. J. Intell. Syst., vol. 11, no. 12,
pp. 1059–1098, 1996.

[2] J. Zhang and A. J. Morris, “Recurrent neuro-fuzzy networks for nonlinear
process modeling,” IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 313–326,
Feb. 1999.

[3] C. Mouzouris and J. M. Mendel, “Dynamic nonsingleton fuzzy logic sys-
tems for nonlinear modeling,” IEEE Trans. Fuzzy Syst., vol. 5, no. 2,
pp. 199–208, May 1997.

[4] Y. C. Wang, C. J. Chien, and C. C. Teng, “Direct adaptive iterative learn-
ing control of nonlinear systems using an output-recurrent fuzzy neural
network,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 5,
pp. 2144–2154, Jun. 2004.

[5] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems
using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 8,
no. 4, pp. 349–366, Aug. 2000.

[6] C. J. Lin and C. C. Chin, “Prediction and identification using wavelet-
based recurrent fuzzy neural networks,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 34, no. 5, pp. 2144–2154, Oct. 2004.

[7] C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy in-
ference network,” IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 828–845,
Jul. 1999.

[8] P. A Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model
for dynamic system identification,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 32, no. 2, pp. 176–190, Apr. 2002.

[9] C. F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems
processing by neural network and genetic algorithm,” IEEE Trans. Fuzzy
Syst., vol. 10, no. 2, pp. 155–170, Apr. 2002.

[10] C. F. Juang and J. S. Chen, “Water bath temperature control by a recur-
rent fuzzy controller and its FPGA implementation,” IEEE Trans. Ind.
Electron., vol. 53, no. 3, pp. 941–949, Jun. 2006.

[11] C. F. Juang, Y. Y. Lin, and C. C. Tu, “A recurrent self-evolving fuzzy
neural network with local feedbacks and its application to dynamic system
processing,” Fuzzy Sets Syst., vol. 161, pp. 2552–2568, Oct. 2010.

[12] J. B. Theocharis, “A high-order recurrent neuro-fuzzy system with internal
dynamics: Application to the adaptive noise cancellation,” Fuzzy Sets
Syst., vol. 157, no. 4, pp. 471–500, Feb. 2006.

[13] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,”
IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 643–658, Dec. 1999.

[14] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic System: Introduction
and New Directions. Upper Saddle River, NJ, USA: Prentice–Hall, 2001.

[15] J. M. Mendel and R.I. John, “Type-2 fuzzy sets made simple,” IEEE Trans.
Fuzzy Syst., vol. 10, no. 2, pp. 117–127, Apr. 2002.

[16] J. M. Mendel, “Type-2 fuzzy sets and systems: An overview,” IEEE Com-
put. Intell. Mag., vol. 2, no. 1, pp. 20–29, Feb. 2007.

[17] R. John and S. Coupland, “Type-2 fuzzy logic: A historical view,” IEEE
Comput. Intell. Mag., vol. 2, no. 1, pp. 57–62, Feb. 2007.

[18] J. Zeng, L. Xie, and Z. Q. Liu, “Type-2 fuzzy Gaussian mixture models,”
Pattern Recognit., vol. 41, no. 12, pp. 3636–3643, Dec. 2008.

[19] Q. Liang and J. M. Mendel, “Equalization of nonlinear time-varying chan-
nels using type-2 fuzzy adaptive filters,” IEEE Trans. Fuzzy Syst., vol. 8,
no. 5, pp. 551–563, Oct. 2000.

[20] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory
and design,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct.
2000.

[21] H. Hagras, “Comments on dynamical optimal training for interval type-
2 fuzzy neural network (T2FNN),” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 36, no. 5, pp. 1206–1209, Oct. 2006.

[22] J. Zeng and Z. Q. Liu, “Type-2 fuzzy hidden Markov models and their
application to speech recognition,” IEEE Trans. Fuzzy Syst., vol. 14, no. 3,
pp. 454–467, Jun. 2006.

[23] C. H. Wang and F. C. H. Rhee, “Uncertain fuzzy clustering: Interval type-
2 fuzzy approach to C-means,” IEEE Trans. Fuzzy Syst., vol. 15, no. 1,
pp. 107–120, Feb. 2007.

[24] G. M. Mendez and O. Castillo, “Interval type-2 TSK fuzzy logic systems
using hybrid learning algorithm,” in Proc. IEEE Int. Conf. Fuzzy Syst.,
May 22–25, 2005, pp. 230–235.

[25] C. H. Lee, Y. C. Lin, and W. Y. Lai, “Systems identification using type-2
fuzzy neural network (Type-2 FNN) systems,” in Proc. IEEE Int. Symp.
Comput. Intell. Robotics Autom., Jul. 16–20, 2003, vol. 3, pp. 1264–1269.

[26] C. H. Wang, C. S. Cheng, and T. T. Lee, “Dynamical optimal training for
interval type-2 fuzzy neural network (T2FNN),” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 34, no. 3, pp. 1462–1477, Jun. 2004.

[27] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic sys-
tem,” IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84–98, Feb. 2004.

[28] Y. C. Lin and C. H. Lee, “System identification and adaptive filter using
a novel fuzzy neuro system,” Int. J. Comput. Cognition, vol. 5, no. 1,
pp. 15–26, 2007.

[29] W. S. Chan, C. Y. Lee, C. W. Chang, and Y. H. Chang, “Interval type-2
fuzzy neural network for ball and beam systems,” in Proc. IEEE conf.
Syst. Sci. Eng., Jul. 1–3, 2010, pp. 315–320.

[30] C. F. Juang and Y. W. Tsao, “A self-evolving interval type-2 fuzzy neural
network with online structure and parameter learning,” IEEE Trans. Fuzzy
Syst., vol. 16, no. 6, pp. 1411–1424, Dec. 2008.

[31] C. D. Li, J. Q. Yi, and D. B. Zhao, “Interval type-2 fuzzy neural network
controller (IT2FNNC) and its application to a coupled-tank liquid-level
control system,” in Proc. Int. Conf. Innovative Comput. Inf. Control, Jun.
18–20 2008, p. 508.

[32] F. J. Lin and P. H. Chou, “Adaptive control of two-axis motion control
system using interval type-2 fuzzy neural network,” IEEE Trans. Ind.
Electron., vol. 56, no. 1, pp. 178–193, Jan. 2009.

[33] C. F. Juang, R. B. Huang, and W. Y. Cheng, “An interval type-2 fuzzy neu-
ral network with support vector regression for noisy regression problems,”
IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 686–699, Aug. 2010.

[34] R. H. Abiyev and O. Kaynak, “Type-2 fuzzy neural structure for identi-
fication and control of time-varying plants,” IEEE Trans. Ind. Electron.,
vol. 57, no. 12, pp. 4147–4159, Dec. 2010.

[35] C. H. Lee, H. H. Chang, C. T. Kuo, J. C. Chien, and T. W. Hu, “A novel re-
current interval type-2 fuzzy neural network for nonlinear channel equal-
ization,” in Proc. Int. Muticonf. Eng. Computer Scientists, Mar. 18–20,
2009, vol. 1, pp. 1231–1240.

[36] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “An internal/interconnection recur-
rent type-2 fuzzy neural network (IRT2FNN) for dynamic system identi-
fication,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct 10–13, 2010,
pp. 733–737.

[37] C. F. Juang, R. B. Huang, and Y. Y. Lin, “A recurrent self-evolving interval
type-2 fuzzy neural network for dynamic system processing,” IEEE Trans.
Fuzzy Syst., vol. 17, no. 5, pp. 1092–1105, Oct. 2009.

[38] C. F. Juang, Y. Y. Lin, and R. B. Huang, “Dynamic system modeling
using a recurrent interval-valued fuzzy neural network and its hardware
implementation,” Fuzzy Sets Syst., vol. 179, pp. 83–99, May 2011.

[39] P. S. Sastry, G. Ssntharam, and K. P. Unnikrishnan, “Memory neural net-
works for identification and control of dynamic systems,” IEEE Trans.
Neural Netw., vol. 5, no. 2, pp. 306–319, Mar. 1994.

[40] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy
inference network and its applications,” IEEE Trans. Fuzzy Syst., vol. 6,
no. 1, pp. 12–32, Feb. 1998.

[41] G. Chen, Y. Chen, and H. Ogmen, “Identifying chaotic system via a
Wiener-type cascade model,” IEEE Trans. Control Syst., vol. 17, no. 5,
pp. 29–36, Oct. 1997.

[42] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative
modeling,” IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7–31, Feb. 1993.

[43] A. Laha, N. R. Pal, and J. Das, “Land cover classification using fuzzy
rules and aggregation of contextual information through evidence theory,”
IEEE Trans. Geosci. Remote Sensing, vol. 24, no. 6, pp. 1633–1641, Jun.
2006.

[44] N. R. Pal and S. Saha, “Simultaneous structure identification and fuzzy
rule generation for Takagi–Sugeno models,” IEEE Trans. Syst., Man, Cy-
bern. B, Cybern., vol. 38, no. 6, pp. 1626–1638, Dec. 2008.

[45] C. S. Lee, M. H. Wang, and H. Hagras, “A type-2 fuzzy ontology and
its application to personal diabetic-diet recommendation,” IEEE Trans.
Fuzzy Syst., vol. 18, no. 2, pp. 374–395, Apr. 2010.

[46] D. Hidalgo, O. Castillo, and P. Melin, “Type-1 and Type-2 fuzzy inference
systems as integration methods in modular neural networks for multimodal
biometry and its optimization with genetic algorithms,” Inf. Sci., vol. 179,
pp. 2121–2145, 2009.

[47] X. Chen, Y. Li, R. Harrison, and Y. Q. Zhang, “Type-2 fuzzy logic-based
classifier fusion for support vector machines,” Appl. Soft Comput., vol. 8,
pp. 1222–1231, 2008.

[48] X. Liu and J. M. Mendel, “Connect Karnik–Mendel algorithms to root-
finding for computing the centroid of an interval type-2 fuzzy set,” IEEE
Trans. Fuzzy Syst., vol. 19, no. 4, pp. 652–565, Aug. 2011.

[49] D. Wu, J. M. Mendel, and S. Coupland, “Enhanced interval approach
for encoding words into interval type-2 fuzzy sets and its convergence
analysis,” IEEE Trans. Fuzzy Syst., vol. 20, no. 3, pp. 499–513, Jun. 2012.

[50] D. Wu and J. M. Mendel, “Linguistic summarization using IF–THEN rules
and interval type-2 fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1,
pp. 136–151, Feb. 2011.

LIN et al.: MUTUALLY RECURRENT INTERVAL TYPE-2 NEURAL FUZZY SYSTEM (MRIT2NFS) 509

[51] O. Linda and M. Manic, “General type-2 fuzzy c-means algorithm for un-
certain fuzzy clustering,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5, pp. 883–
897, Oct. 2012.

[52] D. Wu and J. M. Mendel, “On the continuity of type-1 and interval type-2
fuzzy logic systems,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 179–192,
Feb. 2011.

[53] C. Y. Yeh, W. H. R. Jeng, and S. J. Lee, “An enhanced type-reduction
algorithm for type-2 fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 19, no. 2,
pp. 227–240, Apr. 2011.

[54] D. Zhai and J. M. Mendel, “Enhanced centroid-flow algorithm for com-
puting the centroid of general type-2 fuzzy sets,” IEEE Trans. Fuzzy Syst.,
vol. 20, no. 5, pp. 939–956, Oct. 2012.

[55] D. Zhai and J. M. Mendel, “Comment on “toward general type-2 fuzzy
logic systems based on zSlices,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5,
pp. 996–997, Oct. 2012.

[56] D. Zhai and J. M. Mendel, “Computing the centroid of a general type-2
fuzzy set by means of the centroid-flow algorithm,” IEEE Trans. Fuzzy
Syst., vol. 19, no. 3, pp. 401–422, Jun. 2011.

[57] O. Linda and M. Manic, “Monotone centroid flow algorithm for type
reduction of general type-2 fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 20,
no. 5, pp. 805–819, Oct. 2012.

[58] R. Hosseini, S. D. Qanadli, S. Barman, M. Mazinani, T. Ellis, and
J. Dehmeshki, “An automatic approach for learning and tuning Gaussian
interval type-2 fuzzy membership functions applied to lung CAD classifi-
cation system,” IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 224–234, Apr.
2012.

[59] M. Nie and W. W. Tan, “Analytical structure and characteristics of sym-
metric Karnik–Mendel type-reduced interval type-2 fuzzy PI and PD con-
trollers,” IEEE Trans. Fuzzy Syst., vol. 20, no. 3, pp. 416–430, Jun. 2012.

[60] D. Wu, “On the fundamental differences between interval type-2 and
type-1 fuzzy logic controllers,” IEEE Trans. Fuzzy Syst., vol. 20, no. 5,
pp. 832–848, Oct. 2012.

[61] S. Barkat, A. Tlemcani, and H. Nouri, “Noninteracting adaptive control
of PMSM using interval type-2 fuzzy logic systems,” IEEE Trans. Fuzzy
Syst., vol. 19, no. 5, pp. 925–936, Oct. 2011.

Yang-Yin Lin received the B.S. degree from the
Department of Electronics Engineering, National
Kaohsiung University of Applied Sciences, Kaoh-
siung, Taiwan, in 2005 and the M.S. degree from the
Institute of Electrical Engineering, National Chung-
Hsing University, Taichung, Taiwan, in 2008. He
is currently working toward the Ph.D. degree with
the Department of Electrical Engineering, National
Chiao Tung University, Hsinchu, Taiwan.

His current research interests include computa-
tional intelligence, type-2 fuzzy neural networks, and

field-programmable gate array chip design.

Jyh-Yeong Chang (S’84–M’86) received the B.S.
degree in control engineering and the M.S. degree
in electronic engineering from National Chiao Tung
University (NCTU), Hsinchu, Taiwan, in 1976 and
1980, respectively, and the Ph.D. degree in electrical
engineering from North Carolina State University,
Raleigh, NC, USA, in 1987.

During 1976–1978 and 1980–1982, he was a Re-
search Fellow with the Chung Shan Institute of Sci-
ence and Technology, Lung-Tan, Taiwan. In 1987, he
was an Associate Professor with the Department of

Electrical and Control Engineering, NCTU, where he is currently a Professor.
His current research interests include neural fuzzy systems, video processing,
surveillance, and bioinformatics.

Nikhil R. Pal (F’05) is currently a Professor with the
Electronics and Communication Sciences Unit, In-
dian Statistical Institute, Kolkata, India. His current
research interest includes bioinformatics, brain sci-
ence, fuzzy logic, image and pattern analysis, neural
networks, and evolutionary computation.

Dr. Pal was the Editor-in-Chief of the IEEE
TRANSACTIONS ON FUZZY SYSTEMS from January
2005 to December 2010. He has served/been serving
on the Editorial/Advisory Board/Steering Commit-
tee of several journals, including the International

Journal of Approximate Reasoning, Applied Soft Computing, Neural Informa-
tion Processing—Letters and Reviews, the International Journal of Knowledge-
Based Intelligent Engineering Systems, the International Journal of Neural Sys-
tems, Fuzzy Sets and Systems, the International Journal of Intelligent Computing
in Medical Sciences and Image Processing, Fuzzy Information and Engineer-
ing: An International Journal, the IEEE TRANSACTIONS ON FUZZY SYSTEMS,
and the IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS—PART B:
CYBERNETICS. He has given many plenary/keynote speeches in different pre-
mier international conferences in the area of computational intelligence. He has
served as the General Chair, Program Chair, and Co-Program Chair of several
conferences. He was a Distinguished Lecturer of the IEEE Computational In-
telligence Society (CIS) and was a member of the Administrative Committee of
the IEEE CIS (2010–2012). At present, he is the Vice President for Publications
of the IEEE CIS. He is the General Chair of the 2013 IEEE International Con-
ference on Fuzzy Systems. He is a Fellow of the National Academy of Sciences,
India, a Fellow of the Indian National Academy of Engineering, a Fellow of
the Indian National Science Academy, and a Fellow of the International Fuzzy
Systems Association.

Chin-Teng Lin (S’88–M’91–SM’99–F’05) received
the B.S. degree from National Chiao Tung University
(NCTU), Hsinchu, Taiwan, in 1986 and the M.S. and
Ph.D. degrees in electrical engineering from Purdue
University, West Lafayette, IN, USA, in 1989 and
1992, respectively.

He is currently the Provost, Chair Professor of
Electrical and Computer Engineering, and Director
of the Brain Research Center, National Chiao Tung
University. He has published more than 120 journal
papers in the areas of neural networks, fuzzy systems,

multimedia hardware/software, and cognitive neuroengineering, including ap-
proximately 74 IEEE journal papers.

Dr. Lin became a Fellow of the IEEE for his contributions to biologically
inspired information systems in 2005. He is the Editor-in-Chief of the IEEE
TRANSACTIONS ON FUZZY SYSTEMS. He also served on the Board of Governors
of the IEEE Circuits and Systems Society during 2005–2008, the IEEE Systems,
Man, and Cybernetics Society during 2003–2005, the IEEE Computational In-
telligence Society during 2008–2010, and Chair of IEEE Taipei Section during
2009–2010. He served as the Deputy Editor-in-Chief of the IEEE TRANSAC-
TIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS during 2006–2008. He
is the co-author of Neural Fuzzy Systems (Englewood Cliffs, NJ: Prentice-Hall)
and the author of Neural Fuzzy Control Systems with Structure and Parameter
Learning (Singapore: World Scientific).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

