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A phase selector is designed by relatively sliding two coupled identical photonic crystal waveguides (PCWs) of a
photonic directional coupler (DC). By solving the coupled equations analytically derived from the tight-binding
theory, symmetry breaking in the crossing of dispersion curves can be observed as countersliding two degenerated
waveguides along the propagation direction. There exists a different phase shift between two eigenmodes by vary-
ing the sliding distance and the operating frequency. Numerical simulations of DCs made of photonic crystal slabs
were used to verify the correctness of our theoretical predictions and to discuss thoroughly the underlying physics
of the symmetry-breaking system. The design concept is provided for a phase selector or a beam splitter whose
output phase difference can be controlled by the sliding distance of two PCWs. © 2013 Optical Society of

America
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1. INTRODUCTION

Photonic crystals (PCs) are the structures in which the dielec-
tric media are arranged periodically and attract a great deal of
attention in fabricating photonic integrated devices [1-9]. One
of these promising devices, the photonic crystal waveguide
(PCW), is created by inserting a row of defects into a PC that
allows the light wave to propagate with low loss even through
a sharp bend [10]. The directional coupler (DC), which is
made of a pair of parallel PCWs separated by one or several
rows of partition rods or holes, can be applied to optical
switches [11-14], beam splitters [1,15], and modulators [16].

In a symmetrical DC made of two coupled identical wave-
guides, an electromagnetic (EM) wave with a given frequency
incident into one waveguide of the DC will transfer entirely
to the other waveguide after a certain distance, called the
coupling length and defined as z/ Ak [17]. Here Ak is the wave-
vector mismatch of the even and odd modes of the DC at the
operating frequency. In conventional DCs made of two
coupled dielectric waveguides, the coupling between these
two identical waveguides removes the degeneracy or breaks
the symmetry to cause splitting or anticrossing of dispersion
curves [18]. However, in a symmetrical DC made of two iden-
tical PCWs, the waveguides are composed of periodic distrib-
uted defect rods or holes, so the coupling coefficients are
periodic functions of propagation distance. The propagation-
dependent coupling between two PCWs can be expanded into
two terms under tight-binding approximation [18]. The first
term involving the coupling between the nearest-neighbor
defects of the two PCWs causes constant splitting of the
two dispersion curves, while the second term involving
the coupling between the second nearest-neighbor defects
sinusoidally modulates the split dispersion curves. Thus,

0740-3224/13/061631-06$15.00/0

the degeneracy of the two dispersion curves may be removed
at all frequencies but leaves a certain frequency where the two
dispersion curves cross [18]. At this crossing point with an
infinite coupling length or called the decoupling point, no
energy transfers between PCWs. The mode parities of the
DCs also switch when varying the mode frequency across this
decoupling point.

When designing wavelength-selective devices such as
demultiplexers [19], manipulating the crossing point and the
dispersion relation of a DC is a remarkable issue in getting the
proper coupling length in the range of operating frequency for
optical communication. There are several ways to approach
this manipulation. Here we suggest two methods to control
the coupling length through removing the crossing point.
One is by way of reducing the coupling between the second
nearest-neighbor defects of the two PCWs or increasing
the coupling between the nearest-neighbor defects, which
can be achieved by sliding the two PCWs in the DC. As the
modulating frequency caused by the coupling of the second
nearest-neighbor defects is smaller than the splitting fre-
quency of two dispersion curves caused by coupling of the
nearest-neighbor defects, the dispersion curves will not cross
and the degeneracy or symmetry at the crossing point will be
removed. The other way is to use an asymmetrical DC, which
contains two PCWs made of different defects. For an asym-
metrical DC, for example, with different radii or refractive
indices of defects in the two PCWs [17], the dispersion
curves can only degenerate into the frequencies of the
two nonidentical single PCWs at decoupling or degenerated
points, but the eigenfrequencies of two single PCWs are differ-
ent at this decoupling point. Therefore, the dispersion curves
do not cross.
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This aim of breaking symmetry of the degenerate DC made
of identical PCWs can also be achieved through introducing
the optical Kerr media to one PCW of the DC such that the
optical Kerr effect causes the difference of the refractive
index of the two PCWs. This symmetry breaking through
nonlinear modulation of refractive indices of PCWs can be
carried out by, for example, embedding the quantum dots
in the defect structure of one PCW [6]. However, in such
an asymmetric DC, the energy in one PCW cannot completely
transfer into the other waveguide due to different electric field
ratio of the eigenmodes between two PCWs [17]. Therefore, it
is not so practical to make a DC in which the complete energy
transfer is requested.

Another symmetry breaking is observed as countersliding
two identical PCWs with the same distances along the
propagation direction. These two PCWs in this type of longi-
tudinally countersliding DC (LCS-DC) are degenerate; i.e., the
dispersion relations of individual waveguides are identical,
but symmetry breaking can still be observed in these LCS-
DCs. To our knowledge, this phenomenon has never been re-
ported and no theoretical explanation of this type of symmetry
breaking exists that leads to anticrossing of the dispersion.
Therefore, a theoretical and numerical study of this phenome-
non in such a practical device is quite necessary due to not
only its academic interest but also its physical concepts for
designing the optical devices.

In this paper, we first introduce the general tight-binding
theory (TBT) to derive an analytical solution to describe such
a symmetry-breaking DC. Second, wave-guiding properties
of such a DC are discussed. Third, a practical DC made of
a photonic crystal slab (PCS) with air holes is studied numeri-
cally using the plane wave expansion method (PWEM) [20] to
verify the correctness of our theory through sliding two PCWs
of the DC. Finally, the applications of the symmetry-breaking
DCs and derived coupled equations are given.

2. TIGHT-BINDING THEORY

We consider a PCW made of a PCS with lattice constant a. The
radius of air holes or dielectric rods in the PCW is either en-
larged or reduced to support a single propagation mode as
shown in Fig. 1(a). To generalize the discussion in the PCS-
DC, we consider that all of the defects in each PCW can be
slid with respect to the perfect PC shown in Fig. 1(b) so
that the distance of the next-neighbor defects between two
PCWs can be varied. Here, we only consider the same shift
distance of the air holes along the x and y axis at the same
(or opposite) direction for mutual-sliding (or countersliding)
DCs, as shown in Fig. 2. When the sliding distances are not the
same, the DC becomes asymmetrical. The results can be
obtained by a similar method, but this is far from the scope
of this paper.

Under the TBT, the electric field in the PCWs can be written
as the superposition of the electric field E(r) of point defects
at different sites. Therefore, the time evolution of the field
amplitude (u},) at the nth site of the ith PCW or PCW; with
© =1 and 2 involves coupling between the electric fields of
the neighbor sites [21],
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Fig. 1. Geometric structures of (a) single and (b) double PCWs with
the lattice constant a. P,,’s are the coupling coefficients between
defects within a single waveguide. a, f;, and f, are the coupling
coefficients between two PCWs.

Here, w, is the eigenfrequency of a point defect, Cff represents
a small shift in frequency due to the perturbation of the dielec-
tric constant in both PCWs on the site n, and C% represents
the coupling coefficients between the site n of PCW; and the
site n + m of PCW;, defined as
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Here E;,, and E;,,, indicate electric fields of the site n in
PCW; and the site n +m in PCW}, respectively, and Ae(r)
is the difference between the perturbed and the unperturbed
dielectric constants.
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Fig. 2. Types of sliding coupled waveguides: (a) mutual-sliding along

x axis, (b) mutual-sliding along y axis, (c) countersliding along x axis,
and (d) countersliding along y axis.



Lee et al.

In a single PCW, the dispersion relation of the single PCW
can be derived as

3
w1 (k) = wg — Py - Z 2P,, cos(mka), 3
m=1
in which P, = Cff causes the relative frequency shift for all
the wavevector k's from the single defect frequency w, and
P,, = C% causes the sinusoidal modulation. The time evolu-
tion equations of field amplitudes in two PCWs of a DC are
shown as the following when the coupling coefficients a
and S, 5 between two PCWs are considered:
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Here a = C2 = C3, ) = C'3 = C% and f, = C'3 = C?] are
the coupling coefficients between two PCWs induced by the
nearest-neighbor and the next nearest-neighbor defects of
one PCW onto the other PCW. Assuming the time-varying field
amplitudes have the forms u(t) = U, exp(ikna - iwt) and
u2(t) = V, exp(ikna - iot), substituting them into Egs. @
and (5), we obtain the characteristic equations of the DC as

(0 - @)Uy + (a + 2, cos(ka) + (B2 - f1) exp(ika))Vo = 0;
©6)

(0 - @) Vo + (a + 2p; cos(ka) + (B - p1) exp(—ika))U, = 0.
)

Here U, and V are the field amplitudes of PCW; and PCW,, »
is the eigenfrequency of the DC, and o) (k) = w; (k) + Aw; (k)
is the eigenfrequency of a single PCW with the additional
term Aw; (k) in the presence of the other PCW. Generally,
the perturbation Aw; is small and only causes a slight shift
in the dispersion curves. Therefore, the dispersion curves
of this DC derived from Egs. (6) and (7) are

w(k)* = o1(k) + Aoy (k) + {g(k)? + [Ap sin(ka)P}/2 (8)

with g(k) = a + (f; + p2) cos(ka) and Ap = f; — f.

From Eq. (8), two dispersion curves of the DC are split from
the single PCW ones that will cross only at k = 0 or z/a when
(B2 + p1)/a = -1 or +1 if Ap # 0. This criterion is difficult
to be reached because in general the signs of the coupling
coefficients @ and f;, are all negative [22]. Therefore, the
dispersion curves will not cross if the next nearest-neighbor
coupling coefficients (f;5) are not equal. Substitute Eq. (8)
into Egs. (6) and (7); one has the amplitude ratio of PCW,
and PCW, for two eigenmodes,
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with
¢ = tan"'[Ap sin(ka)/g(k)]. (10)

Here the “+” sign stands for the high-frequency eigenmode,
while the “~” sign stands for the low-frequency one. There ex-
ists a phase difference ¢ between the amplitudes of two PCWs
for an eigenmode if Ap # 0. The phase difference depends
upon the propagation wavevector or frequency. The energy
incident from one PCW can completely couple into the other
waveguide because |Uy/Vy| = 1.
As ) = py = B, Eq. (8) reduces to

w(k) = (k) + Awy (k) £ (a + 26 cos(ka)),  (11)

and the phase difference ¢ is either 0 or = at any frequency
for the symmetric DC. In this case, two dispersion curves
will cross and the mode parities will switch at k=
[cos™'(-a/2p)]/a when |28/a| > 1. The crossing wavevector
decreases as |2//a| increases. Mutually sliding the two PCWs
along the x and y directions, or countersliding along the y di-
rection is suitable for Eq. (11) since f; always equals f; during
the slide. On the other hand, when these two PCWs are
counter slid along the x direction, f#; is not equal to fs and
Egs. (8) and (10) should be used to describe the dispersion
relation and the phase difference of the two PCWs. The exist-
ence of mismatch between the second nearest-neighbor cou-
pling coefficients, Ap # 0, causes symmetry breaking. The
dispersion curves do not cross even with a small slide, and
the phase difference ¢ between the amplitudes of the two
PCWs for an eigenmode depends upon the sliding distance
and the operation frequency.

3. SIMULATION RESULTS IN PHOTONIC
CRYSTAL SLAB AND APPLICATIONS

To study the propagation properties caused by sliding the two
PCWs in a DC, we consider a PCS in a triangular lattice with
lattice constant a made of a silicon-on-insulator (SOI) sub-
strate [23]; the radius of the air holes, and the thickness and
dielectric constant of the slab, are 0.3a, 0.55a, and 12, respec-
tively. Let the radius of the defect holes in the waveguide be
0.44a, and assume a TE-like wave (the magnetic field mainly
parallel to the hole axis) propagates in the PCWs.

When mutually sliding or countersliding two PCWs of the
DC along the y direction simultaneously, as shown in the in-
sets of Figs. 3(a) and 3(b), the distances between the second
nearest-neighbor coupling defects are always the same.
Therefore, f; = f» =  and Eq. (11) is applied. The shift of
the defect holes does not cause symmetry breaking, so the
dispersion curves are always crossing in both cases. The blue
shift of the dispersion curves is caused by the increase of w,
because the effective refractive index of the point defects de-
creases, in turn increasing the eigenfrequency w, of a point
defect when the defect hole moves away from the center
of a point defect.

On the other hand, as we simultaneously shift two PCWs of
the DC longitudinally along the x direction, as shown in
the inset of Fig. 4(a), we would expect that the shift would
have not caused the symmetry breaking and therefore their
dispersion curves were still crossed since they still possess
degenerate dispersions. We found the crossing point shifts
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Fig. 3. Dispersion curves of the DCs when (a) mutually sliding and (b) countersliding two waveguides along the y direction. The insets show the

cross sections of the simulation structures at z = 0.

toward the larger wavenumber as the shifting distance sets to
0.05a in Fig. 4(a). This is because |24/a| in Eq. (11) becomes
smaller. However, when the shifting distance is 0.1a, the dis-
persion curves do not cross anymore because of |23/a| < 1, in
which the criterion for the crossing dispersion curves fails.

It is even more interesting when one longitudinally counter-
slides two PCWs, shown in the inset of Fig. 4(b). In this case,
the coupling coefficients of the second nearest-neighbor de-
fects become unequal (Apg # 0); thus the symmetry of this
PCS-DC is broken and Eq. (8) should be applied. The nonzero
Ap removes the degeneracy at all operation frequencies
and leads to the fact that the dispersion curves no longer
cross. The phase difference of amplitudes in two PCWs has
frequency dependence even with a small shift distance as
in Fig. 4(b). Such a device has a unique application as a 50/50
beam splitter with a desired phase difference between two
outputs and a phase selector to select a designable relative
phase between two inputs of the DC for obtaining a maximal
output. The design concept is shown as the following.

As an operating frequency is chosen, the electric field
amplitudes at the distance x = na in PCW; and PCW, can
be expressed in terms of two eigenmodes with propagation
constants k; and k, as

U(x) = Ae1 + Beiler, (12)

V(x) = Aettiwtids _ Betkavtids 13)
where A and B are the amplitudes contributed from two ei-
genmodes and ¢; and ¢, are their corresponding phase shifts
of PCWj; relative to PCW;. When the electric field is incident
from PCW,, which mean V(0) = 0, Egs. (12) and (13) become
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For coupling half of the intensity of the EM wave from PCW,
into PCW,, one has Ak x = (ks — k;)x = /2. Thus, the phase
difference between two output channels becomes

y=-

i ln{l + Expli(n/2 + ¢ - 4’2)]}. (16)

ei¢1 (1 + e—irr/Z)

It is obvious that the phase difference between the two output
channels of a 50/50 splitter made of a PCS-DC can be different
from z/2. The phase shift between two PCWs is mainly
dominated by ¢;, which can be tuned by the longitudinal coun-
tersliding distance between two PCWs; meanwhile, in a conven-
tional beam splitter, ¢; = ¢ = 0, and so the phase difference
between the two output channels is always equal to /2.

The PCS-DC can also be designed as a phase-selecting de-
vice, which can be used in coherent optical communication
with optical differential phase-shift keying [24] when there
is only a single eigenmode existing in the frequency range,
e.g., 0.265-0.282 c¢/a in Fig. 4(b). Assume the single eigenmode
has a propagation constant k; we have the amplitudes of two
PCWs U(x) = Ae** and V(x) = Ae’**+¥« with A =1 and
B =0, from Egs. (12) and (13), and a relative phase shift
¢q(k) determined by Eq. (10). As we inject a local oscillator
at the operation frequency to PCW; and a data signal having a
phase shift of ¢, relative to the local oscillator to PCW,, a
maximal output occurs as ¢, = ¢,; i.e., the phase difference
of the data signal relative to the local oscillator equals
the phase difference between two PCWs in the eigenmode.
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Fig. 4. Dispersion curves of the DCs when (a) mutually sliding and (b) countersliding two waveguides along the x direction. The inset in (a) shows
the cross sections of the simulation structures at 2 = 0. The insets in (b) show the eigenmode patterns H, of the DC with shifting distance 0.1a at
k = 0.3 and 0.5 (2z/a) and the simulation structure at the cross section of z = 0.



Lee et al.

The output intensity at each of PCW outputs equals [1+
cos(¢py — ¢ps)? /4. Therefore, the phase selector can be set
for extracting a chosen phase around ¢,(k). In addition,
one can easily control the relative phase ¢, of two PCWs
through shifting the dispersion curves of the DC toward high
or low frequencies using the optical Kerr or electro-optic ef-
fect if a nonlinear medium is embedded in the defects of the
PCS-DC. Under such a circumstance, the range of the selected
phase can be tuned accordingly.

Similarly, our theory can be applied to the 2D cases in
which the height of the slab is supposed to be infinite. These
equations can also be used to describe the coupling and
symmetry-breaking phenomena of two 1D [25] or 2D [26]
coupled-resonator optical waveguides [27] when they are
close enough.

4. CONCLUSION

We have successfully used the TBT to describe the symmetry
breaking in the photonic DC with a triangular lattice. From the
derived equations, we found the dispersion curves will cross
only when the second nearest-neighbor coupling coefficients
between two waveguides are the same (f; = fs = f). Other-
wise, the dispersion curves will be anticrossing; i.e., the
dispersion curves do not cross. For example, when mutually
sliding or countersliding two PCWs of a DC perpendicular to
the propagation direction, the two next nearest-neighbor cou-
pling coefficients are always equal to each other. The sym-
metry that results in crossing of dispersion curves does not
break and the decoupling point always exists. When mutually
sliding along the propagation direction, symmetry breaking is
not observed, but the crossing point moves toward a high
wavevector due to the smaller ratio between the next
nearest-neighbor and nearest-neighbor coupling coefficients,
i.e., a decrease of |2f/a|. The crossing point disappears when
the sliding distance increases. This is because the criterion for
the crossing of dispersion curves fails.

Longitudinally countersliding two PCWs by the same dis-
tance makes nonequal next nearest-neighbor couplings, i.e.,
P1 # Po, which causes the symmetry breaking. Under this
circumstance, the dispersion curves split and are anticrossing.
There exists a phase shift between the two PCWs. Such a
symmetry-breaking DC can be used as a 50/50 beam splitter
or a phase selector, in which the output phase can be tuned by
varying either the countersliding distance or the refractive
index of the defects of the two PCWs.
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