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We study the generalized eigenvalue problems (GEPs) that arise from modeling leaky sur-
face wave propagation in an acoustic resonator with an infinite amount of periodically
arranged interdigital transducers. The constitutive equations are discretized by finite ele-
ment methods with mesh refinements along the electrode interfaces and corners. The non-
zero eigenvalues of the resulting GEP appear in reciprocal pairs ðk;1=kÞ. We transform the
GEP into a T-palindromic quadratic eigenvalue problem (TPQEP) to reveal the important
reciprocal relationships of the eigenvalues. The TPQEP is then solved by a structure-pre-
serving algorithm incorporating a generalized T-skew-Hamiltonian implicitly restarted
Arnoldi method so that the reciprocal relationship of the eigenvalues may be automatically
preserved. Compared with applying the Arnoldi method to solve the GEPs, our numerical
results show that the eigenpairs produced by the proposed structure-preserving method
not only preserve the reciprocal property but also possess high efficiency and accuracy.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Waveguide devices have been widely used in controlling and interconnecting guided electromagnetic waves. Advances in
thin film technology and efficient transducers further encourage investigations of more sophisticated waveguide concepts in
acoustic systems. Acoustic waveguide devices are widely employed in applications including telecommunication filters
[8,22] and sensor technologies [2]. One of the basic elements in most of the acoustic wave filters is a resonator that generally
consists of reflectors that are externally coupled through two interdigital transducers (IDT) where the first IDT generates the
surface waves and the second IDT detects the wave and filters the waves in desired frequency range out. The IDT is primarily
made by depositing periodic metallic grating electrodes on a piezoelectric film substrate, as shown in Fig. 1(a). Extensive
theoretical and experimental works have been performed, especially on the Rayleigh surface acoustic wave (SAW)
[4,9,21,22]. Finite element simulations of piezoelectric devices in two dimensions (2D) and three dimensions (3D) have been
studied by Allik and Hughes [1], Buchner et al. [6], Koshiba et al. [16], and Lerch [18] and others. In filter design, it is impor-
tant to know the stop band width and the center frequency fc for a given layout of the second sensing IDT, where fc ¼ vs=ks

and v s and ks are the wave velocity and the wave length of the incident wave, respectively. The center frequency and stop
band width can be determined visually by plotting the dispersion diagram in which an eigenvalue problem associated with
each frequency in the search range must be solved.

Because of the slower propagation velocity of the Rayleigh SAW, filters based on Rayleigh SAW design are usually limited
to an operational frequency range that is less than 1 GHz. For a frequency higher than 1 GHz, more recent attention has been
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Fig. 1. Sketches of SAW resonators
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paid to the so-called leaky surface acoustic wave (LSAW) because of its faster propagation speed in crystal cuts such as 64�
YX-LiNbO3 and 36� YX-LiTaO3 and its higher electromechanical coupling and minimal propagation loss in crystal cuts such as
40�–42� YX-LiTaO3 [8]. Searching for a better crystal cut among various piezoelectric substrates (PZT) to increase the LSAW
velocity has become one of the major issues in high frequency filter design. For each crystal cut, one must solve many eigen-
value problems to plot the dispersion diagram. An efficient and accurate algorithm for solving eigenvalue problems resulting
from the mathematical model of an LSAW resonator is desirable.

The eigenvalue problem [13] obtained from the finite element modeling of the SAW or LSAW resonance can be repre-
sented as a T-palindromic quadratic eigenvalue problem (TPQEP) of the form
k2ðF>M�1
1 GÞ>w‘ þ kðG>M�1

1 Gþ F>M�1
1 F �M2Þw‘ þ ðF>M�1

1 GÞw‘ ¼ 0; ð1Þ
or a generalized eigenvalue problem (GEP) of the form
M1 G

F> 0

� �
wi

w‘

� �
þ k

0 F

G> M2

� �
wi

w‘

� �
¼ 0; ð2Þ
where M>
1 ¼ M1 2 Cn�n, M>

2 ¼ M2 2 Cm�m, F and G 2 Cn�m with m� n, and the superscript ‘‘>’’ denotes the complex trans-
pose. The scalar k 2 C is called the eigenvalue of (1) and (2), and the nonzero vectors w‘ and w>i w>‘

� �> are the associated
eigenvectors of (1) and (2), respectively. It is easily seen from (1) that the eigenvalues appear in reciprocal pairs ðk;1=kÞ
(including 0 and 1).

The TPQEP (1) can be linearized as a GEP. The linearized GEP, as well as the GEP (2), is then solved by traditional methods
such as the QZ algorithm [13] or Arnoldi method. However, the reciprocal property of the eigenvalues can be easily de-
stroyed, and large numerical errors can be generated during the computation [15]. To preserve the reciprocal property of
the eigenvalues, a structure-preserving doubling algorithm for solving the TPQEP was developed in [11] via the computation
of a solvent of a nonlinear matrix equation. Another structure-preserving algorithm based on the ðS þ S�1Þ-transform [19]
and Patel’s approach [24] was developed in [14]. The drawback of solving (1) by using these structure-preserving algorithms
is that they need to explicitly compute the coefficient matrices in (1) which require large computational costs. To remedy
these drawbacks, we transform the GEP (2) into a new TPQEP of the form
PðkÞwi � ðk2A>1 þ kA0 þ A1Þwi ¼ 0 ð3aÞ
with
A>1 ¼ FM�1
2 G>; A0 ¼ FM�1

2 F> þ GM�1
2 G> �M1 ð3bÞ
so that the structure-preserving algorithm [14] using the ðS þ S�1Þ-transform and the generalized T-skew-Hamiltonian
implicitly restarted Arnoldi method (GTSHIRA) can be applied to search eigenvalues in a specified region of interest. On
the basis of the shift-and-invert technique, the desired eigenpairs can be easily extracted. For giving a shift value s, in each
iteration of GTSHIRA, the shift-and-invert technique leads to solve a linear system ðs2A>1 þ sA0 þ A1Þx ¼ b. From (3b),
although the coefficient matrices A0 and A1 are large, they are not sparse. In order to avoid the computations of A0 and A1

in (3b), we apply the Sherman–Morrison–Woodbury formula to directly solve the linear system. Compared with the tradi-
tional Arnoldi method for solving GEP (2), our proposed structure-preserving method not only preserves the reciprocal prop-
erty but also possesses a high efficiency and accuracy.

This paper is organized as follows. We first introduce finite element modeling for a simple resonator in Section 2. In Sec-
tion 3, we introduce the efficient structure-preserving algorithm to solve the large and sparse generalized eigenvalue prob-
lems resulting from our FEM model. Our numerical experiments in Section 4 show that the proposed structure-preserving
algorithm for solving the GEP in (2) is efficient and accurate. Finally, we conclude this paper in Section 5.

2. Finite element model for SAW

In contrast to the well-known Rayleigh waves, which consist of partial longitudinal waves and shear waves, the LSAW
propagates mainly in the shear direction on the sagittal plane and is trapped at the substrate surface and satisfies the
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stress-free boundary condition on the surface. These properties allow one to reduce the general mode analysis in 3D to a 2D
problem, as shown in Fig. 1(b) [25]. Furthermore, the boundary conditions for displacement can naturally be set to be rigid
on the bottom boundary and stress-free on the top surface, and the boundary conditions for the electric potential can be set
to be short-circuited for the electrodes on the top boundary and open-circuited elsewhere [10]. As proved in Auld’s book [4],
these boundary conditions guarantee mode orthogonality and further ensure that the mode excitation is determined by the
applied traction force and the potential on the free surface. Therefore, on the sagittal plane, the usual 2D mode analysis can
be applied to analyze the LSAW on the resonators with IDTs. In the following, we consider only the LSAW resonator on a 2D
plane (the sagittal plane associated with the crystal cuts).

To model the wave propagation in an infinite domain with periodically arranged electrodes because of the Floquet–Bloch
Theorem, we can reduce the problem to a single cell domain with one IDT by assuming that the wave w is quasi-periodic of
the form wðx1; x2Þ ¼ wpðx1; x2ÞeðaþibÞx1 , where x1 is the wave propagation direction, p is the length of the unit cell (i.e., the peri-
odic interval), a and b are the attenuation and phase shifts along the wave propagation direction, respectively, and wp sat-
isfies wpðx1 þ p; x2Þ ¼ wpðx1; x2Þ. Let X denote the piezoelectric transducer with a single IDT as shown in Fig. 2, and let Cl and
Cr denote the left and right boundary segments of X. For the general anisotropic PZT substrates, under the assumption of
linear piezoelectric coupling, the elastic and electric fields interact following the general material constitutions below:
Fig. 2.
PZT sub
T ¼ cES� e>E;

D ¼ eSþ eSE;
ð4Þ
where vectors T; S;D and E are the mechanical stress, strain, dielectric displacement and electric field, respectively, and the
matrices cE; eS and e are the elasticity constant, the dielectric constant and the piezoelectric constant matrices, respectively,
measured at constant electric and constant strain fields at a constant temperature. For various crystal cut of the PZT, the
material constant matrices cE; eS and e depend on the Euler angle h of the cut. By applying the Bond strain transformation
matrix Nh [5] and the usual coordinates transformation matrix Mh to the strain field and electric field, respectively, the mate-
rial constant matrices for the cut angle h can be obtained by
cE :¼ ½Nh�>cE
0½Nh�; e :¼ ½Mh�>e0½Nh�; and eS :¼ ½Mh�>eS

0½Mh�;
here cE
0; e0, and eS

0 denote the material constant matrices of the crystal cut at Euler angle h ¼ ½0�;0�;0��.
By applying the virtual work principle to Eq. (4), the equilibrium state under the external body force f, the electrical field g

and the above mentioned boundary conditions of the LSAW resonator, we have
Z
X
½dS�>CE½S�dV þ

Z
X
½dS�>e>½r/�dV þ

Z
X
½rd/�>e½S�dV �

Z
X
½rd/�>eS½r/�dV þ

Z
X

dq>q€qdV

¼
Z

X
dq>f dV þ

Z
X
½rd/�>g dV þ

Z
Cl[Cr

dq>ðT �~nÞdAþ
Z

Cl[Cr

d/>ðD �~nÞdA: ð5Þ
Here, q is the mass density,~n is the boundary normal, q ¼ ½u;v ;w�> is the displacement vector, / is the electric potential
that satisfies r/ ¼ E, S ¼ ½@u

@x ;
@v
@y ;

@w
@z ;

@v
@z þ @w

@y ;
@w
@x þ @u

@z ;
@u
@y þ @v

@x �
>, and dq, d/ and dS are the corresponding virtual displacement,

potential and strain vectors, respectively. The equation can then be discretized by finite element method [1,10]. Following
the usual free mode analysis, we consider f ¼ 0, g ¼ 0 and a time harmonic quasi periodic solution vector wxðx; tÞ ¼ wðxÞeixt .
The spatial function wðxÞ ¼ ½qðxÞ;/ðxÞ� satisfies the boundary conditions shown in Fig. 2 in which the periodic boundary con-
ditions, proposed by Buchner [6],
wr ¼ wðx1 þ p; x2Þ ¼ cwðx1; x2Þ ¼ cwl; ð6Þ
Tr � nr ¼ TðwrÞ � nr ¼ �cTðwlÞ � nl ¼ �cTl � nl; ð7Þ
Dr � nr ¼ DðwrÞ � nr ¼ �cDðwlÞ � nl ¼ �cDl � nl; ð8Þ
are enforced on the left and right boundaries, Cl and Cr , here nl and nr are the normal vector of Cl and Cr respectively and
c ¼ e�ðaþibÞ. By plugging ww into (5), the equation can be rewritten in the following matrix form:
A 2D single cell domain of a LSAW resonator and boundary conditions where the region DEFG is a aluminium electrode and the region ACHB is the
strate.
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Kqq �x2Mqq Kq/

K/q �K//

" #
q

/

� �
¼

Fl þ Fr

Ql þ Qr

� �
; ð9Þ
where Z Z Z

Kqq ¼

X
dq>B>S CEBSqdV ; Mqq ¼

X
dq>qqdV ; and K// ¼

X
d/>B>/ eBSqdV ;

Kq/ ¼
Z

X
dq>B>S e>B//dV and K/q ¼

Z
X

d/>B>/ eBSqdV ;

Fl ¼
Z

Cl

dq>Tl~nl dA and Fr ¼
Z

Cr

dq>Tr~nr dA;

Q l ¼
Z

Cl

d/>Dl~nl dA and Q r ¼
Z

Cr

d/>Dr~nr dA;
and the matrices BS ¼

@
@x 0 0 0 @

@z
@
@y

0 @
@y 0 @

@z 0 @
@x

0 0 @
@z

@
@y

@
@x 0

264
375
>

and B/ ¼ @
@x

@
@y

@
@z

h i>
. Mechanical damping effects can also be considered

by using the Rayleigh damping assumption in which the matrix Kqq �x2Mqq in (9) are modified into
Kqq þ ixðj1Kqq þ j2MqqÞ �x2Mqq. Here j1 and j2 are coefficients associated with the viscous damping and mass damping,
respectively.

To obtain the generalized eigenvalue problem that is associated with the propagation parameter c, following Hofer’s ap-
proach [13], the nodal unknowns are split into the inner nodes wi ¼ ½qi;/i�, the left boundary nodes wl ¼ ½ql;/l� and the right
boundary nodes wr ¼ ½qr;/r �. The matrix Eq. (9) can be recast into the following form:
Kii Kil Kir

Kli Kll Klr

Kri Krl Krr

264
375 wi

wl

wr

264
375 ¼ 0

Rl

Rr

264
375; ð10Þ
where Rl and Rr are vectors obtained from the discretization of the terms Fl þ Q l and Fr þ Qr , respectively. From the periodic
boundary conditions (6), (7) and (8), (10) becomes the following:
Kii Kil Kir

Kli Kll Klr

Kri Krl Krr

264
375 Ii 0

0 Il

0 cIl

264
375 wi

wl

� �
¼

0
Il

�cIl

264
375Rl: ð11Þ
Furthermore, by multiplying the matrix

Ii 0 0
0 cIl Il

� �

with (11), the GEP associated with the propagation parameter c is obtained:
Kii Kil

K>ir 0

� �
þ c

0 Kir

K>il Kll þ Krr

� �� �
wi

wl

� �
¼ 0: ð12Þ
Because the viscosity is small for most crystalline solids, the attenuation factor a is close to zero. As a result, the propa-
gation factors k near the unit circle, denoted by U, are desired. Moreover, for the frequency x in the stopping band, the fre-
quency shift parameter b will be close to p when the periodic interval p (i.e., the domain width here) equals half of the
incident wave length k0. Therefore, for the eigenvalue problem (12), we are interested in finding the eigenvalues k that
are close to U, especially, those that are near �1 on the complex plane.

Note that it is well known that the solution of a general elliptic problem has singularities near to corners [12], and in addi-
tion, the solution can become less regular near the interface between the electrode and the PZT substrate. It is inevitable that
the error from discretization could be amplified when the reciprocal pairs of eigenvalues are computed. Therefore, it is
important to minimize the accuracy deterioration from singularities and low regularity in finite element solutions. One
can resolve the singularity by constructing the singular elements in which the mesh points are clustered to the singular
source according to the order of the singularity [3]. In our calculation, we simply employ locally refined meshes. An addi-
tional benefit from using locally refined meshes is that we can discretize Eq. (9) using linear elements instead of using high
order finite element discretization [6]. Due to the simple discretization scheme on locally refined meshes, the GEP becomes
very large sparse, an accurate and robust eigensolver for preserving the reciprocal eigenpair structure is needed. We present
our algorithm and numerical results in the following sections.

3. Structure-preserving Arnoldi-type algorithm

Observing that the imaginary part of Kll þ Krr in (12) is symmetric and positive definite, by the Bendixson Theorem,
Kll þ Krr is invertible. The second equation of (12) gives
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wl ¼ �
1
c
ðKll þ KrrÞ�1K>ir wi � ðKll þ KrrÞ�1K>il wi: ð13Þ
Letting
M1 ¼ Kii; M2 ¼ Kll þ Krr ; F ¼ Kir ; G ¼ Kil; x ¼ wi; k ¼ c; ð14Þ
and substituting (13) into the first equation of (12), we obtain the TPQEP in (3). To solve (3) in a structure-preserving way, we
first transform the TPQEP in (3a) into a >-skew-Hamiltonian pencil ðbK;cN Þ through the following procedure:

1. The TPQEP is linearized into a special GEP [14],� �

ðM� kLÞ

x

y
¼ 0; ð15Þ
where ky ¼ A1x, and� � � �

M¼

A1 0
�A0 �I

; L ¼
0 I

A>1 0
: ð16Þ

The reciprocal eigenpairs ðk;1=kÞ are kept in the matrix pencil ðM;LÞ because the matrix pencilM� kL is >-symplectic,

i.e., it satisfies MJM> ¼ LJL> where J ¼ 0 In

�In 0

� �
.

2. Using the ðS þ S�1Þ-transform, the matrix pencilM� kL is further transformed to a >-skew-Hamiltonian pencilK� lN ,
i.e., ðKJ Þ> ¼ �KJ , ðNJ Þ> ¼ �NJ and l is the eigenvalue of the pencil:
K� lN � ½ðLJM> þMJL>Þ � lLJL>�J >: ð17Þ

From the relationship l ¼ kþ 1=k , one can relate the two eigenvalues k and l and further implies that the multiplicity of
the eigenvalue l is even.

3. Let s be a shift value and s R rðM;LÞ where rðA;BÞ denotes the set of all eigenvalues of any matrix pair ðA;BÞ.
Since l0 � sþ 1=s R rðK;NÞ, one can define the shift–invert transformation bK � blcN for K� lN withbl ¼ ðl� l0Þ

�1 where
bK � �sN ¼ s A>1 0
0 A1

" #
; ð18aÞ

cN � �sðK � l0NÞ ¼ ðM� sLÞJ ðM> � sL>ÞJ >; ð18bÞ

and bK and cN are >-skew-Hamiltonian.

The relationship between eigenpairs of the TPQEP in (3) and the>-skew-Hamiltonian pencil ðbK;cN Þ in (18) is stated in the
following theorem.

Theorem 3.1 [14]. Let ðbK;cN Þ be defined in (3) and s be a shift value with s R rðM;LÞ. If ðbl; ½z>1 ; z>2 �>Þ with z1; z2 2 Cn is an
eigenpair of ðbK;cN Þ and m satisfies sþ 1

sþ 1bl ¼ mþ 1
m, then z1 þ 1

m z2 and z1 þ mz2 are eigenvectors of the TPQEP in (3) corresponding
to eigenvalues m and 1

m, respectively.

From the definition of cN in (18b), cN can be factorized as cN ¼ N 1N 2, where
N 1 ¼M� sL; N 2 ¼ J ðM> � sL>ÞJ > ð19Þ
are nonsingular and satisfy N>2J ¼ JN 1.Let B � N�1
1
bKN�1

2 and u1 be an initial vector. Define the Krylov matrix with respect
to u1 by
Kn � Kn½B;u1� ¼ ½u1;Bu1; . . . ;Bn�1u1�:
Theorem 3.2 guarantees that the Arnoldi process can be executed in a way that the >-skew-Hamiltonian structure of the
matrix pencil is preserved. As a result, a generalized >-skew-Hamiltonian implicitly restarted Arnoldi (GTSHIRA) algorithm
proposed in [14] can be employed to solve the eigenvalue problem bKz ¼ blcN z.

Theorem 3.2 [14]. Let B ¼ N�1
1
bKN�1

2 with cN ¼ N 1N 2 be >-skew-Hamiltonian and Kn � Kn½B;u1� be the Krylov matrix with
rankðKnÞ ¼ n. Then there are unitary matrices U and V satisfying V ¼ J>UJ , Ue1 ¼ u1 and Ve1 ¼ N 1u1=kN 1u1k2 such that
V> bKU ¼ bHn
bSn

0 bH>n
" #

; V>cNU ¼ bRn
bT n

0 bR>n
" #

; ð20Þ
where bHn is unreduced upper Hessenberg, bRn is nonsingular upper triangular and bSn; bT n are >-skew-symmetric.
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The unitary matrices U and V in Theorem 3.2 can be generated in a structure-preserving way (GTSHIRA) as follows. Recall
that the >-bi-isotropic orthonormal matrices bZj; bY j 2 C2n�j are computed iteratively according to the following structure-
preserving Arnoldi process:
bKbZj ¼ bY j

bHj þ bhjþ1;jbyjþ1e>j ð21Þ
and
 cN bZj ¼ bY j
bRj ð22Þ
with
 bY H
j
byjþ1 ¼ 0 and bZ>j J byjþ1 ¼ 0; ð23Þ
where bHj; bRj 2 Cj�j are unreduced upper Hessenberg and nonsingular upper triangular, respectively. By defining

U j � ½bZj;�J
�bY j� and V j � ½

�bY j;�J bZj� where �bY j denotes the conjugate matrices of bY j, it is easily seen that
V>j bKU j ¼
bHj �bY H

j
bKJ �bY j

0 bH>j
24 35; V>j cNU j ¼

bRj �bY H
j
cNJ �bY j

0 bR>j
24 35
which implies that the >-skew-Hamiltonian property is preserved in each iteration step.
Note that Theorem 3.1 indicates that although the number of the eigenvectors associated with the eigenvalue l is even,

only half of the eigenvectors are needed to extract all the eigenvectors corresponding to the eigenvalues m and 1
m. Further-

more, through the above mentioned structure-preserving Arnoldi process, the >-skew-Hamiltonian structure of the matrix
pencil in Theorem 3.2 is preserved and the even multiplicity of the eigenvalue l is automatically obtained. Therefore, the
required halves of the eigenvectors associated with the eigenvalue l can be easily computed when the desired eigenpairs
are convergent. In fact, the desired eigenpairs ðbli; ziÞ of ðbK;cN Þ can be computed from the matrix pair ðbHj; bRjÞ withbHjŝi ¼ bli

bRjŝi and zi ¼ bZjŝi. From Theorem 3.1, one can compute the desired eigenpairs of ðM;LÞ from ðbli; ziÞ and preserve
the reciprocal relationship of the eigenvalues of the GEP algebraically.

We summarize the above procedures for computing the reciprocal eigenpairs of the GEP (12) in Algorithm 1. Note that, in
step 1 of Algorithm 1, the linear systems
N 1v1 ¼ b1; N 2v2 ¼ b2; ð24Þ
have to be solved in order to obtain bZj from (22). This is indeed the most time-consuming step in the proposed structure-
preserving algorithm. In the following, we discuss how to solve (24) efficiently.
Algorithm 1. Structure-preserving algorithm for solving GEP (12)

Input: matrices F;G;M2 and M1, shift value s and the number m of desired eigenvalues.

Output: eigenpairs fðcj; ½ðw
ð1Þ
i;j Þ
>; ðwð1Þl;j Þ

>�>Þ, ðc�1
j ; ½ðwð2Þi;j Þ

>; ðwð2Þl;j Þ
>�>Þgmj¼1 of the GEP in (12) where

cj þ c�1
j for j ¼ 1; . . . ;m are the closest to shift value sþ s�1.

1: Compute eigenpairs fðblj; zj � ½z>j1; z>j2�
>Þgmj¼1 of ðbK;cN Þ by using GTSHIRA.

2: Compute eigenvalues cj and 1
cj

of TPQEP in (3) by solving

c2 � ðsþ s�1 þ bl�1
j Þcþ 1 ¼ 0;

Compute eigenvectors

wð1Þi;j �
1
cj

zj1 � zj2; wð2Þi;j � cjzj1 � zj2

corresponding to cj;
1
cj

, respectively, for j ¼ 1;2; . . . ;m.

3: Compute

wð1Þl;j ¼ �M�1
2 ðc�1

j F>wð1Þi;j þ G>wð1Þi;j Þ; wð2Þl;j ¼ �M�1
2 ðcjF

>wð2Þi;j þ G>wð2Þi;j Þ

for j ¼ 1; . . . ;m.
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By the definitions of M and L in (16), we have
I �sI

0 I

� �
ðM� sLÞ ¼

s2A>1 þ sA0 þ A1 0

�A0 � sA>1 �I

" #
ð25aÞ
and
I �A0 � sA1

0 I

� �
ðM> � sL>Þ ¼ s2A1 þ sA0 þ A>1 0

�sI �I

" #
: ð25bÞ
From (19) and (25), we see that solving (24) is equivalent to solving
ðs2A>1 þ sA0 þ A1Þv11 ¼ b11 � sb12; ð26Þ
v12 ¼ �b12 � ðA0 þ sA>1 Þv11;
and
ðs2A1 þ sA0 þ A>1 Þv22 ¼ b22 þ ðA0 þ sA1Þb21; ð27Þ
v21 ¼ sv22 � b21;
where v1 ¼ ½v>11;v>12�
>
;v2 ¼ ½v>21;v>22�

>
; b1 ¼ ½b>11; b

>
12�
> and b2 ¼ ½b>21; b

>
22�
>. By the definitions of A0 and A1, it holds that
s2A>1 þ sA0 þ A1 ¼ ðGþ sFÞM�1
2 ðF

> þ sG>Þ � sM1 ð28Þ
and
s2A1 þ sA0 þ A>1 ¼ ðF þ sGÞM�1
2 ðG

> þ sF>Þ � sM1: ð29Þ
Let M1 ¼ LU be the LU factorization of M1. Set
E1 ¼ L�1 1
s

Gþ F
� �

; E2 ¼ U�>ðF þ sGÞ:
By the Sherman–Morrison–Woodbury formula, (28) and (29) can be further factorized as following,
ðs2A>1 þ sA0 þ A1Þ�1 ¼ �1
s

U�1½I � E1M�1
2 E>2 �

�1L�1 ¼ �1
s

U�1½I þ E1ðM2 � E>2 E1Þ�1E>2 �L
�1; ð30Þ
and
ðs2A1 þ sA0 þ A>1 Þ
�1 ¼ �1

s
L�>½I þ E2ðM2 � E>1 E2Þ�1E>1 �U

�>: ð31Þ
Now, obviously, the solutions of (26) and (27) can be obtained by two forward substitutions (L�1), two backward substitu-
tions (U�1) and solving small linear systems ðM2 � E>2 E1Þ�1 and ðM2 � E>1 E2Þ�1. As a result, Algorithm 1 is very efficient.
4. Numerical results

In this section, we first conduct numerical results to validate the convergence of our finite element model. Second, we
report numerical comparisons with our structure-preserving method and the traditional Arnoldi method for solving the
GEP (12) to demonstrate the accuracy and efficiency of the proposed eigenvalue solver. All of the computations are per-
formed in MATLAB 2010b on an HP workstation with an Intel Quad-Core Xeon X5570 2.93 GHz and 60 GB of main memory,
using IEEE double-precision floating-point arithmetic.

The configuration of our computational domain, shown in Fig. 2, is as follows. The domain width AB and the height CD are
set to be 10�6 and 3� 10�6, respectively. The ratio of the electrode width EF versus the domain width is set to be 1

2 and the
ratio of the electrode thickness DE versus the domain height is 1

15. The material constants of LiTaO3 and LiNbO3 are taken from
the measurements obtained by Kushibiki, Takanaga and Sannomiya [17]. Additionally, the viscous damping coefficient
j1 	 Oð10�8Þ in the 10 KHZ operation range and j1 	 Oð10�10Þ in the MHZ operation range for a family of PZT materials
has been shown in [20,23]. In general, j1 depends on the operation frequency x. The viscous damping coefficient is extrap-
olated to the GHz operation range according to the reciprocal rule j1 / 1

x [7]. In our numerical studies, the viscous damping
coefficient j1 is set to be 10�14, and the mass damping coefficient j2 is taken as 1� j1 to account for the effect of the elec-
trode weight.
4.1. Accuracy and convergence of finite element approximation

First, we show that our finite element model gives accurate results when predicting the center of the stopping band of
LSAW on the filters with aluminum electrodes on top of the piezoelectric substrates 36� YX-LiTaO3 and 64�
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YX-LiNbO3. The dispersion diagrams of the attenuation constant a and the propagation constant b associated with the eigen-
value kðxÞ, which is the closest to �1 on the complex plane for the frequency x around the stopping bands, are shown in
Fig. 3(a) and (b) for the crystals 36� YX-LiTaO3 and 64� YX-LiNbO3, respectively. A typical shear wave displacement associ-
ated with the eigenvector of the computed eigenvalue is shown in Fig. 4 which mesh is locally refined twice near the inter-
face over a uniform mesh.

To measure the convergence of the eigenvalues, tests over three successively refined meshes with an initial mesh length
of h ¼ p

20 are performed. The dimensions of matrices M1 and M2 associated with uniform meshes and locally refined meshes
are listed in the second and third columns of Table 1, respectively. We set k½i;n� to be the eigenvalue obtained from the meshes
with a mesh length of p=ð10� iÞ. Here, the index n ¼ u and n ¼ ‘ denote that the mesh is uniform without and with local
refinement, respectively. Using k½16;u� as an exact value, the convergence of the eigenvalues can be verified from
jk½16;u� � k½2i ;u�j and jk½16;u� � k½2i ;‘�j for i ¼ 1;2;3. The values of jk½16;u� � k½2i ;u�j and jk½16;u� � k½2i ;‘� j ði ¼ 1;2;3Þ for 36� YX-LiTaO3

and 64� YX-LiNbO3 at xs and xe are shown in Table 2, where xs and xe are the frequencies for which the stopping band
starts and ends, respectively. From Table 2, it can be seen that the accuracy of the eigenvalue is increased as the mesh length
is reduced and is improved with locally refined meshes. The average of the error reduction rate is about 3.68 which is cal-

culated by averaging the ratio
jk½16;u��k½2i ;u� j
jk½16;u��k½2iþ1 ;u� j

, for i ¼ 1;2, over both cases. Moreover, it is known that the wave propagation veloc-

ity is approximately 4112 m/s for 36� YX-LiTaO3 and approximately 4478 m/s for 64� YX-LiNbO3. It is clear that because the
domain width p ¼ 1� 10�6, the center of the stopping band is approximately 2.056 GHz and 2.239 GHz for 36� YX-LiTaO3

and 64� YX-LiNbO3, respectively. We compute the center of the stopping band by averaging xs and xe on different mesh
lengths and show the computational results in Table 3. Obviously, one can see that the central frequency monotonically con-
verges to a constant when the mesh length is reduced. The numerical error from our finite element simulations is less than
0.2% and 1.2% for 36� YX-LiTaO3 and 64� YX-LiNbO3, respectively.

4.2. Comparison of Algorithm 1 and traditional Arnoldi method

From Tables 2 and 3, we have already shown that the accuracy of the computed eigenvalues and the central frequency of
the stopping band obtained from the locally refined mesh with a mesh length of p=80 is almost the same as the values ob-
tained from a uniform mesh with a mesh length of p=160. Therefore, in the following numerical computations, we consider
only the coefficient matrices in the GEP (12) that are generated by the finite element discretization on the mesh that is lo-
cally refined twice over the uniform mesh with a mesh length of p=80.

Let the pair ðkk;I; kk;OÞ, k ¼ 1; . . . ;N, denote the reciprocal pairs of eigenvalues of (12), where kk;I and kk;O lie inside and out-
side of U, respectively. Fig. 5 displays the eigenvalues fk1;I; . . . ; k9;I; k1;O; . . . ; k5;Og of the LiNbO3 at a frequency of
x ¼ 2:180 GHz in which reciprocal pairs ðkk;I; kk;OÞ for k ¼ 1; . . . ;5 close to U may be of interest. The notation OðkÞ represents
the set of all of the eigenvalues that cluster at the origin of the complex plane. Suppose that 2N eigenvalues near U are de-
sired. The Arnoldi process in (21) and (22) for GTSHIRA is set to restart if the desired eigenpairs are not convergent when the
dimension j of the subspace spanfbY jg grows more than 5N. The number for restarting the Arnoldi process is denoted by
‘‘#Iter’’ in the following.

A standard iterative approach for solving the GEP (12) is to apply the Arnoldi method on the equation directly. However,
the reciprocal property of the eigenvalues is not guaranteed to be preserved in the computation. For Algorithm 1, based on
the ðS þ S�1Þ-transform, if k and l are the eigenvalues of (12) and (17), respectively, then k and l satisfy the relationship
l ¼ kþ k�1. As a result, we can obtain the k-th reciprocal pair ðkk;I; kk;O � 1=kk;IÞ by solving the algebraic equation
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Fig. 3. Dispersion diagrams.



Fig. 4. A shear wave displacement.

Table 1
Dimension information of matrices M1 and M2 obtained from FEM discretization.

Mesh length Uniform Local refine

M1 M2 M1 M2

p=20 3554 183 4968 183
p=40 14,548 363 17,192 363
p=80 58,856 723 63,960 723
p=160 236,752 1443

Table 2
The values of jk½16;u� � k½2i ;n� j for different mesh lengths at frequencies xs and xe .

x (GHz) 36� YX-LiTaO3 64� YX-LiNbO3

xs ¼ 2:028 xe ¼ 2:075 xs ¼ 2:177 xe ¼ 2:257

jk½16;u� � k½2;u� j 0.0222 0.0161 0.0955 0.0797
jk½16;u� � k½2;‘� j 0.0178 0.0141 0.0857 0.0751
jk½16;u� � k½4;u� j 0.0076 0.0056 0.0299 0.0458
jk½16;u� � k½4;‘� j 0.0036 0.0042 0.0166 0.0329
jk½16;u� � k½8;u� j 0.0016 0.0015 0.0060 0.0087
jk½16;u� � k½8;‘� j 0.0001 0.0006 0.0007 0.0016

Table 3
Computed center frequency fc (GHz) of stopping bands of LSAW on various meshes. Here, hu and h‘ denote the mesh length of meshes without and with local
refinement, respectively.

Mesh length hu ¼ p
40 h‘ ¼ p

40 hu ¼ p
80 h‘ ¼ p

80 hu ¼ p
160

fc LiTaO3 2.05246 2.05222 2.05206 2.05191 2.05183
LiNbO3 2.21623 2.21464 2.21385 2.21305 2.21305
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lk ¼ kk;I þ k�1
k;I after the k-th eigenvalue lk of Kz ¼ lN z is computed. Hence, the reciprocity is automatically preserved. Two

numerical comparisons on preserving the reciprocal property, between Algorithm 1 and the traditional Arnoldi method, are
listed in the following, where the eigenvalues of 64� YX-LiNbO3 at a frequency of x ¼ 2:180 GHz are computed.


 The traditional Arnoldi method does not guarantee that half of the computed eigenvalues lie inside of the unit circle and
the others lie outside. For example, when we use the Arnoldi method to compute four eigenvalues (i.e., 2N ¼ 4) of (12)
that are near to �1, the four convergent eigenvalues are k1;I; k1;O; k2;I and k3;I . Clearly, the reciprocal property of the
eigenvalues is lost.
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 Suppose that one wants to compute the five reciprocal pairs ðkk;I; kk;OÞ for k ¼ 1; . . . ;5 and takes a shift value s ¼ �2:89.
The eigenvalues in OðkÞ are closer to s than the eigenvalues k5;I and k5;O. As a result, the desired reciprocal pair ðk5;I; k5;OÞ
near U cannot be discovered by the Arnoldi method. In contrast, in Algorithm 1, according to the relationship l ¼ kþ k�1,
the eigenvalue l of Kz ¼ lN z is far away from the shift value sþ 1=s when k is close to the origin. Naturally, Algorithm 1
will not converge to those unwanted eigenvalues in OðkÞ. As a result, all of the desired eigenvalues can be discovered
more easily by Algorithm 1 than with the traditional Arnoldi method. Our numerical results in Table 4 show that not only
all of the desired eigenvalues are found by Algorithm 1, even when the number of desired eigenvalues is set to 2N ¼ 18,
but Algorithm 1 also converges much faster than the traditional Arnoldi method. In fact, only two restarting steps are
needed for Algorithm 1 to converge for all of the cases shown in Table 4. In addition, from the rightmost column of Table 4,
one can see that all of the computed eigenvalues indeed preserve the reciprocal property. In contrast, the reciprocity of
the convergent eigenvalues obtained by the Arnoldi method are diminished by approximately 3 significant digits.

From the above comparison, Algorithm 1 preserves the reciprocal property of the eigenvalues of the GEP (12) effectively.
For measuring the accuracy of Algorithm 1, let us define the relative residual of an eigenpair ðk;uÞ of (12), where u ¼ ½wi;wl�

>,
as the following:
Table 4
Converg
which d

Meth

Arno

Algo
M1 G
F> 0

� �
u� k

0 F
G> M2

� �
u

���� ����
F

M1 G

F> 0

� ����� ����
F

kukF þ jkj
0 F

G> M2

� ����� ����
F

kukF

;

where k � kF is the Frobenius matrix norm. The maximal relative residuals of the 10 desired eigenpairs for 64� YX-LiNbO3,
with various frequencies, are shown in Fig. 6. From these numerical results, one can see that the eigenpairs produced by
Algorithm 1 possess high accuracy in terms of the relative residual error.
ent reciprocal pairs and the associated errors of reciprocity for 64� YX-LiNbO3 at frequency 2.180 GHz versus different eigensolvers with various ‘‘2N’’
enotes the number of interested eigenvalues. Here, ~kk 2 OðkÞ for k ¼ 1; . . . ;4.

od 2N Computed eigenvalues #Iter maxfjkk;Ikk;O � 1jg

ldi 8 fðkk;I ; kk;OÞg4
k¼1

2 1:7� 10�13

10 fðkk;I ; kk;OÞg4
k¼1, f~kkg2

k¼1
5 1:7� 10�13

12 fðkk;I ; kk;OÞg4
k¼1, f~kkg4

k¼1
4 1:7� 10�13

rithm 1 8 fðkk;I ; kk;OÞg4
k¼1

2 1:1� 10�16

10 fðkk;I ; kk;OÞg5
k¼1

2 1:1� 10�16

12 fðkk;I ; kk;OÞg6
k¼1

2 1:1� 10�16

18 fðkk;I ; kk;OÞg9
k¼1

2 2:2� 10�16
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Next, let us compare the efficiency of Algorithm 1 and the traditional Arnoldi method. The CPU times for computing 10
desired eigenpairs (i.e., 2N ¼ 10) for 64� YX-LiNbO3 with various frequencies with Algorithm 1 and the traditional Arnoldi
method are shown in Fig. 7. On average, Algorithm 1 takes only 476 s of CPU time to compute the desired eigenpairs for
all of the frequencies x in the search range. Obviously, the proposed algorithm is more efficient compared with the tradi-
tional Arnoldi method, which takes 527 s of CPU time to obtain all of the desired eigenpairs.

5. Conclusions

In this paper, we have modeled leaky surface acoustic wave propagation on a simple resonator with an interdigital trans-
ducer (IDT), where electrodes are arranged periodically on piezoelectric substrates (PZT) such as 64� YX-LiNbO3 and 36� YX-
LiTaO3. The energy conservation Eq. (5) is discretized by a finite element method (FEM) applied to a single cell domain with
proper periodic boundary conditions, as shown in Fig. 2. Eq. (5) is discretized on locally refined meshes to increase the accu-
racy of our numerical solutions. Our FEM simulation for predicting the center frequency of the stopping bands of the reso-
nator is convergent and accurate with an error of approximately 1% compared with experimental data, as shown in Tables 2
and 3. For computing the dispersion diagram near the center of the stopping band of the resonator, we transform the GEP
(12) into the TPQEP (3) to reveal the important reciprocal relationship of the eigenvalues in which the eigenvalues appear in
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reciprocal pairs ðk;1=kÞ. The TPQEP (3) is then solved by GTSHIRA so that the reciprocal relationship of the eigenvalues can be
automatically preserved. Our numerical results show that the traditional Arnoldi method converges slowly and fails to pre-
serve the reciprocal property of the eigenvalues near the unit circle. In constrast, the proposed structure-preserving method
in Algorithm 1 not only converges to those eigenpairs faster than does the traditional Arnoldi method, but it also possesses
high accuracy in terms of the relative residual error. Furthermore, the reciprocal property of the eigenpairs is kept nicely
under machine precision. Recently, some studies have been shown that the wave propagation speed in PZT can be affected
by stress [26,27] and temperature [28]. With the proposed structure-preserving algorithm, we would like to investigate how
the center and range of the SAW frequency changes under initial stress and thermal effect in our future studies.
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