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ABSTRACT

In classical group testing, one is given a population N and an unknown subset D � N of
positive items, and the goal is to determine D by testing subsets of N . Threshold group
testing is a generalization of classical group testing, where the outcome of a group test is
determined by the number of positive items in the test. In group testing on inhibitor model,
inhibitors are the third type of item that dictate the test outcome to be negative regardless of
how many positives are in the test. The threshold group testing on k-inhibitor model is a
natural combination of threshold group testing and inhibitor model. In this article, we
provide nonadaptive algorithms to conquer the threshold group testing on k-inhibitor model
where error-tolerance is considered. Furthermore, we provide a two-stage algorithm to
identify all inhibitors and find a g-approximate set.

Key words: group testing, inhibitor, nonadaptive algorithm, pooling design, threshold group

testing.

1. INTRODUCTION

Group testing was originally proposed to reduce the number of blood tests required to detect

syphilis in soldiers during World War II (Dorfman, 1943). The idea of group testing is to group blood

samples and then apply a test to the group. Group testing has been well known for its applications in various

fields, including communication networking, image compression, and molecular biology. Group testing also

has strong relationships with several disciplines, such as coding theory, information theory, and computa-

tional learning theory. We refer readers to the books by Du and Hwang (2000, 2006) for a comprehensive

review of the development and the major results in this area.

In the classical group testing, we have a set N of n items, each of which is either positive or negative. A

group test, also called a pool, is a subset of items that yields a positive outcome if it contains at least one

positive item. The task of group testing is to determine the positive items in N using as few group tests as

possible. Conventionally, the positive items stand for those of interest, and their number is assumed to be at

most d, which is much smaller than n. In the early stages of group-testing research, minimizing the number

of tests required to identify positives is the main objective and thus most algorithms are sequential (tests are

performed one by one and the outcomes of previous tests are known at the time of preparing the current

test). The new applications of group testing to biological screening lead to a distinctive scenario. In the

biological test, a test takes much time, and screening one pool at a time is far more expensive than
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screening many pools in parallel. These new challenges motivate the use of nonadaptive algorithms (also

called pooling designs), where all tests are specified in advance without knowing their outcomes, and the

use of multistage algorithms, where stages are sequential and tests in a stage are parallel.

Threshold group testing, introduced by Damaschke (2006), is a natural generalization of classical group

testing, where a group test yields a positive outcome if it contains at least u positive items. Besides, a group

test is negative if it contains at most l positive items, and otherwise the outcome is arbitrary. In addition to

the theoretical interest, threshold group testing has wide applications, particularly in biology and chemistry

where a testing outcome is determined by various factors such as the concentration of positive samples. The

difference g : = u - l - 1 between the thresholds is known as the gap parameter. Let D denote the set of

positive items throughout the article. Damaschke (2006) showed that the identification of D is possible only

when jDj ‡ u; moreover, in general the set D can only be approximately identified within up to g false

positives and g false negatives. A set S is called g-approximate if jSyDj £ g and jDySj £ g. Chen and Fu

(2009) provided a nonadaptive algorithm to find a g-approximate set in O(du + 1 log(n/d)) tests, and its

corresponding decoding procedure takes O(nudu + 1 log(n/d)) computational time, where u is treated as a

constant.

In some biological or chemical applications, there is a third type of item called inhibitors whose

existence may cancel the effect of positives. Farach et al. (1997) first proposed the 1-inhibitor model in

which a single inhibitor dictates the test outcome to be negative regardless of how many positives are in the

test. De Bonis and Vacarro (2003) extended the above model to k-inhibitor model in which k inhibitors

dictate the test outcome to be negative. Chang and Hwang (2007) proposed the general inhibitor model in

which the exact cancellation effect of inhibitors on positive items is not specified. Recently, Chang et al.

(2010) provided a pooling design to solve the general inhibitor model in O((d + h)2 log n) tests and

O((d + h)2n log n) decoding time.

The threshold group testing on inhibitor model (introduced by He et al., 2012) is a natural combination of

threshold group testing and inhibitor model. A group test yields a positive outcome if it contains at least u

positive items and less than k inhibitors and a negative outcome whenever it contains at most l positive

items or at least k inhibitors; otherwise, the outcome is arbitrary. He et al. (2012) extended the pooling

designs used to solve the threshold group testing in Chen and Fu (2009) to solve the threshold group testing

on inhibitor model; however, it is not working well and further adjustment is needed.

In this study, we provide nonadaptive algorithms to conquer the threshold group testing on k-inhibitor

model where error-tolerance is considered. The rest of the article is organized as follows. In Section 2, we

introduce preliminary notions and combinatorial structures. For the threshold group testing on inhibitor

model, we first deal with the gap-free case (Section 3) and then extend our results to the case g > 0 (Section

4). Furthermore, we provide a two-stage algorithm to identify all inhibitors and find a g-approximate set

(Section 5).

Notation: Throughout the article, N , D, and I represent the set of items, the set of positives, and the set

of inhibitors, respectively. Furthermore, jN j = n, u £ jDj £ d, and jI j £ h are known information and the

number of errors in testing outcomes is assumed to be at most e. In the literature, e, l, u, and k are assumed

to be constants.

2. PRELIMINARIES

A nonadaptive algorithm can be represented by a 0-1 matrix, where columns are indexed by items, rows

are indexed by tests, and cell (i, j) = 1 if and only if the test i contains the item j. For a 0-1 matrix, we can

view a column C as a set of row indices each intersecting column C (or having a 1-entry in column C);

henceforth, we can take the union and intersection actions on columns. The main tool we use to solve the

threshold group testing on the inhibitor model is as follows.

Definition 1. A matrix is (d, u; z]-disjunct if for any d + u columns C1‚ � � � ‚ Cd + u, there exist z rows

interesting C1‚ � � �Cu but none of Cu + 1‚ � � � ‚ Cu + d‚ i.e.,

\u
i = 1

Ciy
[u + d

i = u + 1

Ci

�����
�����qz:
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In the literature, this generalized notion is referred to as strongly disjunct matrices. Cover-free families

first introduced by Kautz and Singleton (1964) in the context of superimposed binary codes are equivalent

to (d, 1; 1]-disjunct matrices. Stinson and Wei (2004) studied the generalized cover-free families that have

the same structure as (d, u; z]-disjunct matrices. Besides applications in group testing, these structures have

been applied to cryptography and communications (Stinson and Wei, 2004). Let t(n, d, u; z] denote the

minimum number of rows among all (d, u; z]-disjunct matrices with n columns. A recent upper bound

provided by Chen et al. (2008) is that t(n, d, u; z] < z(k/u)u(k/d)d[1 + k(1 + ln(n/k + 1))], where k = d + u.

3. GAP-FREE THRESHOLD GROUP TESTING

First, we consider that g = 0; that is, a pool is positive if and only if it contains at least u positive items

and at most k - 1 inhibitors. In this case, a complete identification of positive items is possible.

Whenever we apply a pooling design to a group-testing problem, let s0(X, S) denote the number of

negative pools that contain X and none of the items in S. Let us temporarily put aside the occurrence of

errors. A set X of u positive items would not appear in a negative pool except that the pool also contains k

inhibitors; thus s0(X, S) = 0 if jSj = h - k + 1 and S � NyX contains the most number of inhibitors. This

idea is also employed by He et al. (2012); however, what they enumerate is the number of negative pools

that contain X and at most k - 1 items from a given set R of k inhibitors. Nevertheless, such number is not

necessarily zero since X could belong to a negative pool due to the appearance of k inhibitors not in R.

Next, we attempt to create a design such that s0(X, S) > 0 for any (h - k + 1)-subset S of NyX if X contains

less than u positive items. Let sh - k + 1
0 (X) : = min

S�NyX
jSj = h - k + 1

s0(X‚ S). We use this counter along with the following

design to distinguish sets of u items.

Lemma 2. Apply (d + h - u - k + 2,u; 2e + 1]-disjunct matrix as a pooling design to the threshold group

testing on k-inhibitor model with error-tolerance e. Then for a u-subset X of N , sh - k + 1
0 (X)pe if and only if

X is a set of positive items.

Proof. We have observed that sh - k + 1
0 (X)pe if X is a set of u positive items. On the other hand, let X be

a u-set containing not only positive items. For any (h - k + 1)-set S � NyX, let Y be a (d - u + 1)-subset of

Ny(X W S) that contains the most number of positive items. By the (d + h - u - k + 2, u; 2e + 1]-

disjunctness, there are 2e + 1 pools containing X and none in S and Y. Thus each of these pools contains at

most u - 1 positive items and is counted in s0(X, S), implying s0(X, S) ‡ 2e + 1 - e = e + 1 (the possibility of

up to e errors is considered). Hence sh - k + 1
0 (X)>e. -

Remark 3. A decoding algorithm associated with the design in Lemma 2 is as follows: Compute

sh - k + 1
0 (X) for each u-set X and output the union of all u-sets X satisfying sh - k + 1

0 (X)pe: Since

t : = t(d + h - u - k + 2‚ u; 2e + 1] = O((d + h)u + 1 log ( n
d + h

)). The decoding complexity is O t n
u

� �
n - u

h - k + 1

� �� �
=

O(nh + u - k + 1(d + h)u + 1 log ( n
d + h

)).
The above is an extension of strategies provided in Chen and Fu (2009) and is also a remedy of results in

He et al. (2012). In the following, we provide another decoding algorithm that is advantageous and beats

the previous one when d < h.

Let s1(X, l) be the number of positive pools containing at most l elements in X. Then s1(D, l) = 0 (if no

error occurs) since every positive pool must contain more than l elements in D. We now apply the design in

Lemma 2 and take this counter as a fundamental step in our decoding algorithm (Algorithm 1) to identify D.

Lemma 4. Algorithm 1 outputs D in O(nd(d + h)u + 1 log ( n
d + h

)) computational time.

Proof. For the gap-free case, l = u - 1. Then as we have observed, s1(D, u - 1) £ e if there are at most

e errors. Let P be the set returned by the algorithm. Then jPj £ jDj since the size of the candidate set

X scanned by the algorithm is from u up to d (see Line 2). Suppose that a positive item x is absent from P.

Let A be a set of u positives including x, and I be an (h - k + 1)-subset of NyA containing the most number

of inhibitors (namely, all inhibitors except at most k - 1 are in I). Let S be a (d - u + 1)-subset of

Ny(A W I ) containing the most number of items in P. Then all elements in P except at most u - 1 are in

I W S. Since the design is (d + h - u - k + 2, u; 2e + 1]-disjunct, there are 2e + 1 tests, each containing all
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items in A and none in I W S. Then each of these 2e + 1 tests has at least u positives and at most k - 1

inhibitors and thus yields a positive outcome; further, it is counted in s1(P, u - 1) since it contains at most

u - 1 elements in P. It follows that s1(P, u - 1) ‡ 2e + 1 - e = e + 1, a contradiction. We obtain that D 4 P

and thus P = D since jPj £ jDj. -

Algorithm 1: FIND-POSITIVES

1: Apply a (d + h - u - k + 2, u; 2e + 1]-disjunct matrix of n columns as a pooling design.

2: for i = u, i £ d, i + + do

3: for each i-set X do

4: Compute s1(X, u - 1)

5: if s1(X, u - 1) £ e then

6: return X

7: end if

8: end for

9: end for

The computation of each s1(X, u - 1) takes O(td) time where t = O((d + h)u + 1 log ( n
d + h

)), and thus Al-

gorithm 1 takes O
�
td
�

n
u

� �
+ n

u + 1

� �
+ � � � + n

d

� ���
= O(tnd) = O(nd(d + h)u + 1 log ( n

d + h
)) time. -

Theorem 5. For the error-tolerant threshold group testing on k-inhibitor model, there exists a non-

adaptive algorithm to identify all positives in O((d + h)u + 1 log ( n
d + h

)) tests. Furthermore, its decoding

complexity is O(min (nd‚ nh + u - k + 1)(d + h)u + 1 log ( n
d + h

)).

Proof. Concluded from Lemma 2, Remark 3, and Lemma 4. -

4. THRESHOLD GROUP TESTING WITH A GAP

In this section, we deal with the case where g = u - l - 1 > 0. The techniques that we have developed in

Section 3 can be extended here.

Again, s0(X, S) £ e if X is a set of u positive items and S is a set of h - k + 1 items containing the most

number of inhibitors.

Lemma 6. Apply (d + h - l - k + 1, u; 2e + 1]-disjunct matrix as a pooling design to the threshold group

testing on k-inhibitor model with error-tolerance e. Then for any u-subset X of N ,

sh - k + 1
0 (X)pe if X is a set of positive items‚

sh - k + 1
0 (X)qe + 1 if jXyDjqg + 1:

�

Proof. We have sh - k + 1
0 (X)pe if X is a set of u positive items. Let X be a u-set satisfying jXyDj ‡

g + 1. Thus jX X Dj £ l. For any (h - k + 1)-set S 4NyX, let Y be a (d - l)-subset of Ny(X W S) that

contains the most number of positive items. This implies that S W Y contains all positives except at most l.

By the (d + h - l - k + 1, u; 2e + 1]-disjunctness of the design, there are at least 2e + 1 pools each containing X

and none of the elements in S W Y. Thus each of these pools contains at most l positive items and is counted

in s0(X, S), implying s0(X, S) £ 2e + 1 - e. Hence sh - k + 1
0 (X) � e + 1. -

Now, a cutoff function s0(h - k + 1)(X) is prepared, and we build an algorithm to find a g-approximate set

according to the function. A set P is called affirmative if each of its u-subset X satisfies sh - k + 1
0 (X)pe (this is

different from the setting in Damaschke (2006) where a set is affirmative if each of its u-subsets yields a positive

outcome). We can easily obtain that for any affirmative set P with jPj ‡ u, jPyDj £ g. An approach of finding

a g-approximate set employed by Damaschke (2006) and described in Chen and Fu (2009) and He et al. (2012)

is to establish a sequence of increasing affirmative sets until jDyPj £ g is satisfied. Cooperating with the

strongly disjunct design in Lemma 6, we develop it as Algorithm 2 in the following.

THRESHOLD GROUP TESTING ON INHIBITOR MODEL 467



Lemma 7. Algorithm 2 outputs a g-approximate set in O(nh + u - k + 1(d + h)u + 1 log ( n
d + h

)) computational

time.

Proof. It is assumed that jDj ‡ u and by Lemma 6 a set of u positives is affirmative; hence, Line 3

is satisfied. This implies jXyDj £ g. Notice that in the subsequent steps (Lines 4–12) the set X is

expanded and keeps affirmative whenever the algorithm substitutes it by another set.

Let P be the set returned by the algorithm. Then we have the following two cases.

Case 1: P is returned due to the reason that there is no pair (A, B) to expand P. Suppose that jDyPj
> g. Then let A be a (g + 1)-subset of DyP and B be a g-subset of P containing PyD (this is feasible since

jPyDj £ g according to the affirmativeness of P). Then (P W A)yB is a subset of D and thus affirmative,

contradicting the nonexistence of (A, B). Hence jDyPj £ g.

Algorithm 2: FIND-g-APPROXIMATE-SET(I)

1: Apply a (d + h - l - k + 1, u; 2e + 1]-disjunct matrix of n columns as a pooling design

2: Compute s0(X, S) for each u-subset X of N and (h - k + 1)-subset S of NyX, and compute sh - k + 1
0 (X) for

each u-subset X of N
3: Choose an affirmative set X

4: while jXj < d do

5: Flag ) 0

6: for each (g + 1)-subset A�NyX and g-subset B 4 X do
7: if (X W A)yB is affirmative then Flag ) 1 and go to Line 9

8: end for

9: if Flag = 1 then X ) (X W A)yB

10: else return X

11: end while

12: return X

Case 2: The algorithm terminates at jXj ‡ d, that is jPj ‡ d. Since P is affirmative, jPyDj £ g and thus

jDyPj = jDj - jD X Pj £ d - jPy(PyD)j £ d - (d - jPyDj) £ g.

Hence P is g-approximate. On the other hand, Line 2 takes O
�
t n

u

� �
n - u

h - k + 1

� ��
= O(tnh + u - k + 1) time where

t = O((d + h)u + 1 log
�

n
d + h

��
. Each round of the while-loop takes O

�
n - u
g + 1

� �
d
g

� �
d
u

� ��
time and the set X is

expanded by at most d - u times. Hence, Lines 3–12 take O(dg + u + 1ng + 1) time. Therefore, the computa-

tional complexity of Algorithm 2 is O(nh + u - k + 1(d + h)u + 1 log
�

n
d + h

��
. -

In the following, we provide another decoding algorithm (Algorithm 3), which is an extension of

Algorithm 1 and improves Algorithm 2 when d < h.

Lemma 8. Algorithm 3 outputs a g-approximate set in O(nd(d + h)u + 1 log ( n
d + h

)) computational

time.

Proof. We have observed that s1(D, l) £ e if there are at most e errors. Again, the set P returned by the

algorithm satisfies jPj £ jDj. Suppose that jDyPj ‡ g + 1. Let A be a set of u positives including g + 1

positives in DyP and I be an (h - k + 1)-subset of NyA containing the most number of inhibitors. Let S be

a (d - l)-subset of Ny(A W I) containing the most number of items in P. Thus all elements in P belong to

I W S except at most l. Since the design is (d + h - l - k + 1, u; 2e + 1]-disjunct, there are 2e + 1 tests, each

containing A and none in I W S. Then each of these 2e + 1 tests yields a positive outcome; further, it is

counted in s1(P, l) since it contains at most l elements in P. This implies that s1(P, l) ‡ 2e + 1 - e = e + 1, a

contradiction. Hence jDyPj £ g; further, jPyDj £ g since jPj £ jDj.
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Algorithm 3: FIND-g-APPROXIMATE-SET(II)

1: Apply a (d + h - l - k + 1, u; 2e + 1]-disjunct matrix of n columns as a pooling design.

2: for i = u, i £ d, i + + do

3: for each i-set X do

4: Compute s1(X, l)

5: if s1(X, l) £ e then

6: return X

7: end if

8: end for

9: end for

On the other hand, the computation of each s1(X, l) takes O(td) time, where t = O((d + h)u + 1 log
�

n
d + h

��
and thus Algorithm 3 takes O td n

u

� �
+ n

u + 1

� �
+ � � � + n

d

� �� �� �
= O(tnd) = O nd(d + h)u + 1 log n

d + h

� �� �
time. -

Theorem 9. For the error-tolerant threshold group testing on k-inhibitor model, there exists a non-

adaptive algorithm to identify a g-approximate set in O((d + h)u + 1 log
�

n
d + h

��
tests. Furthermore, the

decoding complexity is O( min (nd‚ nh + u - k + 1)(d + h)u + 1 log
�

n
d + h

��
.

Proof. Concluded from Lemma 6, Lemma 7, and Lemma 8. -

5. TWO-STAGE ALGORITHM

The idea of our two-stage algorithm is to identify all inhibitors nonadaptively and eliminate them, and

then go back to the threshold group testing. Let s1(X) be the number of positive tests containing X.

Lemma 10. An (h - k + 1, u + k; 2e + 1]-disjunct matrix can be used to identify all inhibitors in

threshold group testing on k-inhibitor model with at most e erroneous outcomes.

Proof. Let X be a set of k items. If X 4 I , then s1(X) £ e since a test containing k inhibitors must yield

a negative outcome, except the occurrence of an error. On the other hand, suppose that X?I. Let S be a

set of u positive items and Y 4Ny(X W S) be an (h - k + 1)-set containing the most number of inhibitors.

By the (h - k + 1, u + k; 2e + 1]-disjunctness of the pooling design, there are at least 2e + 1 tests each

containing X W S and none of the items in Y. Then each of these tests contains at least u positive items and at

most k - 1 inhibitors; thus, it yields a positive outcome except an error. Hence s1(X) ‡ 2e + 1 - e = e + 1.

Accordingly, the union of k-subsets, each matching the criteria s1($) £ e, is the set of inhibitors. -

Now, we can remove all inhibitors and apply a pooling design to threshold group testing. As provided by

Chen and Fu (2009), a g-approximate set can be nonadaptively identified in O(du + 1 log(n/d )) tests, and its

corresponding decoding procedure takes O(nudu + 1 log(n/d)) computational time. Therefore, we have

Theorem 11. For the error-tolerant threshold group testing on k-inhibitor model, there exists a two-

stage algorithm to identify all inhibitors and a g-approximate set in O(hu + k + 1 log(n/h) + du + 1 log(n/d))

tests. Furthermore, the decoding complexity is O(nkhu + k + 1 log(n/h) + nudu + 1 log(n/d)).

Proof. Each computation of s1(X) takes O(tk) time, where t := t(h - k + 1, u + k; 2e + 1) = O(hu + k + 1

log(n/h)). A decoding algorithm associated with the design in Lemma 10 has computational complexity

O
�
tk n

k

� ��
= O(nkhu + k + 1 log (n=h)). -

6. CONCLUSION

Chang et al. (2010) provided a pooling design to identify all inhibitors, and our result (Lemma 10) is its

extension to threshold group testing on inhibitor models. On the other hand, Theorem 9 is also an extension

of the result provided by Chen and Fu (2009) to solve the threshold group testing.
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