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Single-cell level measurements are necessary to characterize the
intrinsic biological variability in a population of cells. In this study,
we demonstrate that, with the microarrays for mass spectrometry
platform, we are able to observe this variability. We monitor
environmentally (2-deoxy-D-glucose) and genetically (ΔPFK2) per-
turbed Saccharomyces cerevisiae cells at the single-cell, few-cell,
and population levels. Correlation plots between metabolites from
the glycolytic pathway, as well as with the observed ATP/ADP
ratio as a measure of cellular energy charge, give biological insight
that is not accessible from population-level metabolomic data.

single-cell measurements | MALDI mass spectrometry | baker’s yeast

Even genetically identical cells present in the same microen-
vironment can express different phenotypes, for a number of

reasons: cell-to-cell heterogeneity can stem from differences in
the cell age and differences in the cell cycle stage, and stochastic
effects together with feedback mechanisms can lead to distinc-
tively different phenotypes, too (1–6). As population-level mea-
surement techniques inherently average out such cell-to-cell
differences, biochemical mechanisms underlying a studied system
cannot be deduced from such measurements. Thus, to detect and
exploit this heterogeneity, new analytical platforms with a sensi-
tivity at the single-cell level and the ability to perform quantitative
analyses must be developed and validated.
Motivated by advances of mass spectrometry (MS) in meta-

bolomics, the analytical chemistry community has stepped up its
efforts toward realizing MS-based single-cell metabolomics (1,
2). A number of analytical approaches were developed with
detection limits low enough for single-cell metabolite analyses
[e.g., nanostructured surfaces (7, 8), postionization techniques
(9, 10), modified laser optics (11), the use of microsampling tools
(12, 13), microarrays for MS measurements (14, 15), etc.]. Until
now, however, most MS studies targeting single-cell metabolite
analysis have only shown the analytical capabilities, but have not
demonstrated that true biological information can be retrieved
from studying the metabolism of single cells.
Here, using the unicellular eukaryotic model organism Sac-

charomyces cerevisiae, we present an analytical validation of
a single-cell metabolite analysis using the microarrays for mass
spectrometry (MAMS) platform. This validation concerns both
the analytical methodology and the biological information, by
monitoring expected cellular responses upon an environmental
and a genetic perturbation. Furthermore, we present examples of
biological insight that are only accessible with a platform such as
MAMS. Specifically, we unravel metabolite–metabolite correla-
tions, and visualize coexisting subpopulations in an isogenic cell
culture. This technology can now be used to reveal metabolic
differences in cells of isogenic cell populations, such as differ-
ences caused by cell cycles stages, cell ages, or stochastically
induced phenotypic differences.

Results and Discussion
MAMS represent a type of substrate for matrix-assisted laser
desorption/ionization–mass spectrometry (MALDI-MS) recently
introduced by our group (14, 15). MAMS uses a combination of
hydrophilic reservoirs surrounded by an omniphobic surface (SI
Text) for massively parallel, automated sample spotting.
Briefly, cells are taken from a liquid culture, quenched using

cold solvents (to stop any metabolic activity), after which the
supernatant is removed and cells are washed to remove salts.
The cell suspension is then spread onto the MAMS substrate
(Fig. 1). Applying the cell suspension onto the MAMS surface
will result in an automated aliquoting of the cell suspension into
the hydrophilic reservoirs, without the need for a microspotter.
Dependent on the cell concentration used, the number of cells
on each hydrophilic reservoir can be between zero and hundreds.
The transparency of the MAMS substrate allows for microscopic
analysis to determine the number of cells in each reservoir while
the cellular metabolism remains quenched because the entire
MAMS chip is kept cold in a cryochamber.
The MALDI matrix used (9-aminoacridine) and the possibility

of cocrystallizing cells with the matrix within the defined reser-
voirs allow us to boost the sensitivity beyond that of traditional
MALDI mass spectrometry (SI Text). Using the MAMS plat-
form, we can reach the level of 100 amol to 10 fmol—a range on
the order of the metabolite levels in a single yeast cell (14, 15).

MAMS Is Capable to Detect Biological Information from Single/Few
Cells. In principle, the MAMS platform is ready to be used to
resolve cell-to-cell metabolic heterogeneity. However, because
MS-based methods are destructive, we cannot make multiple
measurements of the same sample to assess the measurement
uncertainty. However, our samples (i.e., the S. cerevisiae cells)
have an intrinsic biological variability. Thus, replicate measure-
ments on different cells will inherently result in variable meta-
bolite levels, although it is expected that the overall metabolism
would present certain similarities. Therefore, for validating our
single-cell metabolomics platform, we need to show that the signals
acquired represent the biological variability and not just mea-
surement noise (i.e., instrumental variability).
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To demonstrate that MAMS is indeed able to retrieve bi-
ological information from a single or a small ensemble of yeast
cells positioned in the MAMS reservoirs, we perturbed them
with 2-deoxy-D-glucose (2DG), a drug that blocks glycolysis (16,
17). We dynamically monitored the response both with MAMS
on the single-cell and near–single-cell level, and with traditional
MALDI-MS on the population level, and compared the response
of the two measurements. We indeed found that the addition of
2% (wt/vol) 2DG to the growth medium generates similar trends

in both the population-level as well as in few-cell level analyses
made using the MAMS platform (Fig. 2). Specifically, the quan-
titative change in glycolytic metabolites and the drop in the energy
charge (represented by the observed ATP/ADP ratio) 1 min after
the addition of 2DG to the growth medium is consistent with
earlier findings on the population level (Fig. 2A) (18, 19). Fur-
thermore, we found that, in both 2DG-treated samples (i.e.,
MAMS and population-level samples), we can detect 2-deoxy-
D-glucose-6-phosphate (2DG6P). 2DG6P, the product of the
uptake and metabolism of 2DG, could not be detected in sam-
ples that were not drug treated (Fig. 2B). Together, this is a
first indication that MAMS is actually monitoring biological
processes.
Focusing in on the metabolite signals that we retrieved from

individual MAMS reservoirs (containing between 1 and 15 cells),
we sought further evidence that the different signals reflect the
biological variability rather than just the technical or analytical
variability. Before drawing any correlation plots, the metabolite
signals were normalized by a nonsaturated matrix signal and by
the number of cells found in the respective reservoir (SI Text);
then, we plotted the metabolite data retrieved from single res-
ervoirs against each other. We observed a number of correlations
between different metabolite signals (Fig. 3). Specifically, we
found that fructose-1,6-bisphosphate (F16BP) and the observed
ATP/ADP ratio are correlated for cells treated with water but
not with 2DG (Fig. 3 A and B). This is expected, because 2DG6P
inhibits the glycolysis pathway upstream of the phosphofructo-
kinase (Pfk) enzyme, which generates F16BP (16, 17), rendering
the production of ATP (and thus the observed ATP/ADP ratio)
independent of the amount of F16BP present in the cell.
To further validate that our observations are of biological

origin, we generated a deletion mutant of the gene pfk2, which
encodes an isoenzyme of Pfk. This mutant has reduced phos-
phofructokinase activity and is known to partially mimic the ef-
fect of 2DG (20). We also found a correlation between the
observed ATP/ADP ratio and F16BP (Fig. 3C) that resembled
the wild type treated with 2DG (Fig. 3B) rather than the wild-
type control (Fig. 3A). Together, these findings indicate that
MAMS is indeed able to retrieve signals from individual and
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Fig. 1. Graphical summary of the work flow used to prepare the samples
for single-cell MALDI-MS analysis. Cellular metabolism is quenched by add-
ing cold solvent. After centrifugation and discarding the supernatant, the
pellet is reconstituted, and the cell suspension is spread onto a cold MAMS
chip. This generates many uniform, liquid droplets trapped in the hydro-
philic reservoirs on the MAMS chip that each contain ensemble of cells. The
exact number of cells within a reservoir is given by a Poisson distribution and
depends on the density of the cell suspension. After counting the cells under
a microscope, a MALDI matrix (9-aminoacridine) is applied with an airbrush,
and each reservoir on the plate is analyzed with MALDI-MS. Signals of
metabolites from a reservoir are normalized by a unsaturated matrix back-
ground signal and by the number of cells found in the respective reservoir
(containing between 1 and 15 cells) to reduce artifacts associated with dif-
ferences in the cell size (biomass) and obtain the equivalent of a single-cell
signal. See SI Text for details.
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Fig. 2. (A) Dynamic population-level measurements
with a traditional bulk-level MALDI-MS metabolomic
study and an average of multiple single-cell level
metabolomic measurements with MAMS after ap-
plying 2DG. Reference, untreated cells; control, cells
treated with doubly deionized water; treated, cells
treated with 2DG. The spike of water and 2DG
occurs at time = 0 min. (B) Metabolite time study for
2DG-treated samples. Here, we present the changes
observed in time for selected metabolites of the
glycolytic pathway. Some of the assayed glycolytic
metabolites are isobaric (i.e., they have the same
molecular weight); thus, they cannot be differenti-
ated using mass spectrometry alone. For example,
glucose-6-phosphate (G6P) and fructose-6-phosphate
(F6P) are therefore summarized as hexose phosphate.
*The relative ion signal intensity for each plot metab-
olite is additionally normalized, in the case of the sin-
gle-cell level measurement (alone), by the number of
cells found in the MAMS reservoir (SI Text). The cell
number distributions for the MAMS samples are as
follows: (i) reference = 62 measurements (1.694 ±
1.521); (ii) control (t = 1 min) = 77 measurements
(2.364 ± 1.356); (iii) control (t = 1 min) = 77 measure-
ments (2.364 ± 1.356); (iv) control (t = 5min)= 38measurements (1.763 ± 1.651); (v) control (t = 10min) = 76measurements (4.500± 3.048); (vi) treated (t = 1min) = 94
measurements (2.500 ± 1.435); (vii) treated (t = 5 min) = 24 measurements (10.542 ± 2.843); (viii) treated (t = 10 min) = 23 measurements (1.763 ± 1.651). The
population-level data are as follows (cell number = ±20): (i) reference = 110 measurements; (ii) control (t = 1 min) = 8 measurements; (iii) control (t = 5 min) = 8
measurements; (iv) control (t = 10 min) = 8 measurements; (v) treated (t = 1 min) = 119 measurements; (vi) treated (t = 5 min) = 132 measurements; (vii) treated
(t = 10 min) = 132 measurements. For detailed analytical instrumental conditions, see SI Text.
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small ensemble of cells, and that the data contain valid biological
information, because averaged correlation plots made from
random data would not show any significant biological trend.
Thus, this is clearly not a measurement artifact.

MAMS Uncovers Metabolite–Metabolite Correlations. Next, equip-
ped with this confidence, we used MAMS to gain insight into the
yeast metabolism. Above, we have shown a metabolite–metabolite
correlation between hexose bisphosphate (most probably F16BP)
and the observed ATP/ADP ratio (Fig. 3). Such a correlation is
a consequence of the underlying metabolic and regulatory mech-
anisms, reflecting the system’s properties (21). Previously, meta-
bolite–metabolite correlations have been reported with population-
level measurements on samples that had quite different origin, i.e.,
different plant tissues (21–24). Unlike what was done with tissues,
we exploit the intrinsic biological variability on the single-cell level
to uncover such metabolite–metabolite correlations.
Correlations (and in particular positive correlations), however,

could simply also emerge from variability in cell size, with larger
cells generating higher metabolite signals. If this would be the
case, then all metabolite–metabolite correlations would show the
same profile. That this is not the case becomes obvious when
comparing metabolite–metabolite correlations obtained after
different environmental perturbations: although control samples
and 2DG-treated samples show differences in some correlations,
others are identical (Fig. 4), indicating that the correlations must
report on metabolic system properties, because if it were a mere
cell size effect, the effect of the perturbation would have been
the same for all pairs.
One prominent correlation is the one between glyceraldehyde-

3-phosphate and sedoheptulose-7-phosphate (Fig. 4A). Glycer-
aldehyde-3-phosphate is produced via the glycolysis or via the
pentose phosphate pathway (PPP), to which the metabolite
sedoheptulose-7-phosphate belongs. After blocking the glycoly-
sis-related synthesis of glyceraldehyde-3-phosphate with 2DG,
the correlation between sedoheptulose-7-phosphate and glycer-
aldehyde-3-phosphate becomes more obvious (Fig. 4A), in-
dicating that the synthesis of glyceraldehyde-3-phosphate is
dependent of sedoheptulose-7-phosphate and the PPP. Another
correlation is found between phosphoenolpyruvate (PEP) and
pyruvate (PYR) (Fig. 4B)—two intermediates of glycolysis.

Although PYR and PEP have a linear relationship for the con-
trol samples, the 2DG-treated samples show that the amount of
PEP present seems to level off at higher PYR concentrations
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Fig. 3. Relationship between the abundance of hex-
ose bisphosphate and observed cellular ATP/ADP ratio.
The correlation between the abundance of hexose
bisphosphate [most probable fructose-1,6-bisphos-
phate (F16BP)] vs. the observed cellular ATP/ADP ratio
is shown 1 min after applying two different stress
conditions to the growth media: (A) plus doubly
deionized water (control); (B) plus 2-deoxy-D-glucose
(treated) (SI Text). In C, a different perturbation (ge-
netic) is used to simulate part of the effects of 2DG
on the S. cerevisiae wild-type cells. The metabolite
abundance is based on the value of the relative signal
intensity of the metabolite in the MS spectra divided
by an unsaturated matrix background signal and the
number of cells in the respective MAMS reservoir (see
SI Text for more details). Changes in the slope of the
linear regression (red line) between the ”control” and
”treated” MAMS samples is due to the glycolytic in-
hibitor action of 2-deoxy-D-glucose in the yeast cells
(for more details, see text). The cell number dis-
tributions for the MAMS samples are as follows: (i)
wild type plus water (t = 1 min) = 77 measurements
(2.364 ± 1.356); (ii) wild type plus 2DG (t = 1 min) = 94
measurements (2.5 ± 1.435); (iii) ΔPFK2 deletion mu-
tant = 73 measurements (2.836 ± 2.255).
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(Fig. 4B). Finally, we found a strong correlation between glutamic
acid and aspartic acid (Fig. 4C). This correlation can be considered
as an analytical/biological control for the previous presented cor-
relations, because neither the addition of 2DG nor water affected
the correlation between these metabolites during the time frame
covered in our experiments (10 min), because these two meta-
bolites are too far away from the entry point of the added 2DG.

MAMS Uncovers Different Phenotypes. Next, we focused on the
glycolytic metabolite F16BP. The MAMS platform revealed ev-
idence for the presence of two different phenotypes present in
the cell population: one phenotype characterized by low levels of
F16BP and one with high levels (Fig. 5). Independent replicate
experiments demonstrated that this bimodal distribution is not
a measurement artifact (Fig. 5, left panels), but rather a robust
feature of heterogeneous single-cell behavior that is now un-
covered with the MAMS platform.
Measurements on the population level revealed that F16BP

levels correlate with the magnitude of glycolytic flux (25). Using
this information, we speculated that the two populations found
here are characterized by glycolytic fluxes of two distinct mag-
nitudes. Indeed, when we followed the F16BP levels upon the
addition of 2DG—a treatment blocking glycolysis upstream of

F16BP—the phenotype with the high F16BP levels (high flux,
population B) disappears. Consistently, the phenotype at high
F16BP levels is also not present in the ΔPFK2 deletion mutant
(Fig. 5), which is a mutation that only realizes a low glycolytic flux.
We do not know the cause for the presence of these two dis-

tinct phenotypes. Although it is tempting to speculate that it
might be cell cycle related, with cells in the G1 phase having high
and cells in the S phase, low F16BP levels (26), only future
studies on the metabolism of single cells—now enabled by the
MAMS platform—will reveal the true cause.

Conclusions
In this work, we addressed one of the most difficult challenges
associated with single-cell level analysis of metabolites, valida-
tion. We reduced the technical (or analytical) variability to be
able to observe the naturally occurring cell-to-cell heterogeneity.
Furthermore, we presented a qualitative biological study based
on a comprehensive dataset that shows the feasibility of moni-
toring Saccharomyces cerevisiae metabolism at the single-cell and
few-cell level.
These advances were feasible thanks to the use of the MAMS

platform. The possibility of carrying out a single-cell level metabolic
analysis, which takes advantage of the naturally occurring cell-to-cell
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Fig. 5. The F16BP signal intensity frequency dis-
tributions using an equal number of bins (between
0.0083 and 0.01439) for S. cerevisiae cells detected
using the MAMS platform at the ”single-cell” level
under different environmental conditions (refer-
ence, treated samples with 2DG, and the ΔPFK2
deletion mutant). The histogram of the latter is
blown as an Inset (using the same number of bins as
in the other histograms between the values of
0.0006 and 0.0186). The cell number distributions
for the MAMS samples are as follows: (i) reference
(1) = 62 measurements (1.694 ± 1.521); (ii) reference
(2) = 83 measurements (1.337 ± 0.859); (iii) refer-
ence (3) = 42 measurements (1.452 ± 0.942); (iv)
ΔPFK2 deletion mutant = 73 measurements (2.836 ±
2.255); (v) treated (t = 1 min) = 94 measurements
(2.500 ± 1.435); (vi) treated (t = 5 min) = 24 meas-
urements (10.542 ± 2.843); (vii) treated (t = 10 min) =
23 measurements (1.763 ± 1.651). For detailed ana-
lytical instrumental conditions, see SI Text.
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variability and exploits it to directly visualize two different pheno-
types (both phenotypes characterized by different levels of F16BP),
gives us insight into metabolic networks as well as regulation pro-
cesses without the need of applying a nonnatural perturbation (e.g.,
genetic modification that favors one particular phenotype).
We believe that in the near future the use of the MAMS plat-

form will allow us to isolate data from subgroups of cells to in-
vestigate, in more depth, either bistability or metabolite/pathway
interactions. The analytical variability that is still present in our
measurements should still be further decreased. An increase in the
number of data points for more extensive statistical studies of one
particular subpopulation (e.g., multivariate data processing of meta-
bolic profiles) would also be highly desirable. The number of res-
ervoirs on the MAMS chips used here was limited to 160 per time
point. However, available microfabrication techniques allow us to
increase the density of the array to 250,000 wells on a single glass
slide. This will be relevant for visualizing system-level interactions

of metabolic pathways by observing metabolites that show a bi-
modal or higher order distribution.

Materials and Methods
All raw MS data collected for this publication have been uploaded to a Euro-
pean Molecular Biology Organization database. The MS data and metadata
are available to the reader at MetaboLights (www.ebi.ac.uk/metabolights/),
under the study identifier MTBLS29. The reader may also contact the corre-
sponding authors for additional details of the experiments presented here.

Additional information, such as MAMS chip fabrication, cell culture and
handling conditions, MALDI-MS measurement parameters, and data treat-
ment can be found in SI Text.
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