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Beam propagation in two-dimensional media with spatial dispersion
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We theoretically investigate the propagation of a paraxial beam in two-dimensional media with spatial
dispersion. Based on the spatial dispersion theory and the (1 + 1)-dimensional paraxial wave equation, we get
an expression which determines the diffraction of the beam. By fitting the dispersion surface of a typical spatial
dispersion medium (a photonic crystal) calculated by the plane-wave-expansion method, the value of the diffrac-
tion term is determined, with which one can predict the diffraction of the paraxial beam that propagates in such
media. Numerical simulations based on the finite-difference time-domain method confirm the theoretical results.
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I. INTRODUCTION

Spatial dispersion (SD), first quantitatively described by
Ginzburg more than 50 years ago [1], arises from the
dependence of the permittivity on the wave vector k at a
fixed frequency of light. Media exhibiting this behavior are
also termed “(linearly) nonlocal” due to the fact that the
linear polarization at a given spatial location r depends on
the electric field over a finite volume surrounding that point.
Linear nonlocality and SD are two terms for the same physical
phenomenon, referring to direct r space and reciprocal k space,
respectively [2,3].

With the explosive development of artificial materials in
recent years, SD becomes a common phenomenon since one
can construct a material with periods and features comparable
to the interest wavelength [4]. In particular, it has been shown
that a thin-wire metamaterial exhibits strong SD even in the
quasistatic limit for the incident wave that the electric field is
not exactly parallel to the wires [5,6]. A cubic crystal with SD
could mimic such a wire-mesh metamaterial [7]. In principle,
the structures of the artificial materials have an effect on the
properties of SD. Even small features in the unit cell could
produce a SD effect [8,9].

At the same time, diffraction management is an active area
of research since it enables the realization of all-optical circuits
and the efficient implementation of high-resolution imaging,
which requires precise control of the beam size. It is well
known that an electromagnetic beam suffers from diffraction
when it propagates in homogeneous and linear dielectric
materials. No material can preserve the size of a beam unless
a specific structure or nonlinearity is employed. As we know,
diffraction would reduce the power efficiency when we use
light as the carrier to realize information exchange between
two optical circuits [10]. Specifically, in linear media, the
simplest way of diffraction suppression is to use a waveguide,
whose refractive index spatial profile is used to trap a beam and
thereby halt its spreading. Controllable diffraction of optical
beams has been predicted and experimentally demonstrated
in one-dimensional arrays of the waveguides [11,12]. Another
well-known material to manage the beam diffraction is the
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photonic crystal (PhC), in which the nondiffractive propa-
gation [13] and spatial filtering [14] of optical beams have
been considered. Recently, a study of media with gain-loss
modulation (GLM) in two dimensions (one longitudinal and
one transverse direction) predicted interesting properties of
beam propagation [15]. Although the evanescent coupling
between adjacent waveguides (formed by the modulation
of the refractive index) contributes to the modification of
the propagation properties, it is the SD effect supported by
the periodic structure that leads to the dependence of the
diffraction on the k vector of the beam from a physical point
of view. Therefore, exploring the physical mechanism of the
geometry-induced SD and providing an effective theoretical
model for the paraxial beam propagating in artificial materials
are crucial and of great significance.

In this work, we theoretically study the propagation of a
paraxial beam in two-dimensional (2D) media with SD. A
diffraction expression of the paraxial beam is derived. By
fitting the dispersion surface of a typical SD medium (a 2D
square PhC), the value of the expression is obtained, which
determines the beam diffraction. Such a semianalytical method
could help us understand and predict the diffraction of the beam
that propagates in a SD medium. To confirm our theoretical
prediction, we numerically simulate the propagation of a
Gaussian beam in the 2-D PhC and compare it with our
semianalytical results. It is proved that one can predict the
diffraction of a paraxial beam based on the SD theory.

II. THEORETICAL ANALYSIS

The macroscopic Maxwell equations form the basis of
the electrodynamics of continuous media [16], and they have
to be supplemented by the constitutive equations, which are
determined by the response of the medium to the external
fields. To quantitatively study the SD, we now consider a
time-harmonic field without sources. Under such conditions,
the macroscopic Maxwell equations take the form [17]

∇ × Ê = iωB̂, (1a)

∇ × Ĥ = −iωD̂, (1b)

∇ · D̂ = 0, (1c)

∇ · B̂ = 0, (1d)
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while the constitutive equations in the nonmagnetic dielectric
are given by

D̂ =
∫

ε̂(ω,r − r′)Ê(ω,r′)d3r′, (2a)

B̂ = μ0Ĥ. (2b)

For the plane waves, the Maxwell equations become [17,18]

k × E = ωB, (3a)

k × H = −ωD, (3b)

k · D = 0, (3c)

k · B = 0, (3d)

and the corresponding constitutive equations are of the form

D = ε(ω,k)E, (4a)

B = μ0H, (4b)

which is equivalent to working with spatial Fourier transforms.
In Eq. (4a), the permittivity ε depends on the wave vector k,
implying that the SD is taken into account.

For 2D media, we have ∂/∂y = 0 (here the k vector is
assumed to be in the x-z plane, i.e., ky = 0); then the Maxwell
equations are decomposed into transverse electric (TE) and
transverse magnetic (TM) components, i.e.,

kzEx − kxEz = ωμ0Hy, (5a)

kzHy = ωε(ω,k)Ex, (5b)

kxHy = −ωε(ω,k)Ez (5c)

for TE waves and

kzEy = −ωμ0Hx, (6a)

kxEy = ωμ0Hz, (6b)

kzHx − kxHz = −ωε(ω,k)Ey (6c)

for TM waves. From Eqs. (5) and (6), one can readily get the
following equations:[

k2
x + k2

z − ω2μ0ε(ω,k)
]
Hy = 0, (7a)[

k2
x + k2

z − ω2μ0ε(ω,k)
]
Ey = 0. (7b)

The above algebraic equations have nontrivial solutions only
if their coefficients vanish, i.e.,

k2
x + k2

z − ω2μ0ε(ω,k) = 0. (8)

In general, the SD effect is relatively weak [2,16]; therefore, we
expand the permittivity ε(ω,k) in a Taylor series with respect
to k around k0 = (kx0,kz0) and keep the low-order terms (linear
and quadratic)

ε(ω,k) = ε0[εc + α1(kx − kx0) + α2(kz − kz0)

+ α3(kx − kx0)2 + α4(kx − kx0)(kz − kz0)

+ α5(kz − kz0)2]. (9)

Substitution of Eq. (9) into Eq. (8) yields

k2
x + k2

z −ω2

c2
[εc + α1(kx − kx0) + α2(kz − kz0)

+ α3(kx − kx0)2 + α4(kx − kx0)(kz − kz0)

+ α5(kz − kz0)2] = 0, (10)

where c(=1/
√

μ0ε0) is the speed of light in a vacuum.
Equation (10) is the dispersion equation of TE and TM waves.

Without loss of generality, we consider the TE case and
discuss the propagation of a paraxial beam, which is a group
of TE waves with the same frequency but slightly different
propagation directions. The wave vectors of the constituting
waves fill a small angle around the central wave vector k0.
It has been shown that if the central wave vector coincides
with the z axis of the coordinate system, the evolution of the
amplitude envelope A(x,z) of the beam is described by the
paraxial wave equation [12,19]

i

(
∂A

∂z
− γ

∂A

∂x

)
− δ

2

∂2A

∂x2
= 0, (11)

where γ = ∂kx
kz(kx)|kx=0 and δ = ∂2

kx
kz(kx)|kx=0.

Applying the substitution x ′ = x + γ z, the second term of
Eq. (11) disappears, which means that γ represents a transverse
velocity of the beam. Moreover, the parameter δ determines the
beam diffraction, which is well known in propagation optics
[20,21]. Given a Gaussian beam, where the amplitude in its
focus is proportional to exp(−x2/W 2), with the focus situated
at the entrance facet, the width W will evolve according to [22]

W (z) = W0

√
1 +

(
2δ

W 2
0

z

)2

. (12)

In order to determine the expressions of γ and δ, in general,
one should first find the function kz(kx) from the dispersion
equation and then obtain its derivation with respect to kx , which
is difficult to realize. Fortunately, we can alternatively get it in
an indirect way by differentiating Eq. (10) with respect to kx ,
during which kz is considered an implicit function of kx . Thus,
the following expressions are obtained:

γ =
ω2

c2 α1

2k − ω2

c2 α2

, (13a)

δ = −2 − 2γ 2 + 2ω2

c2 (α3 + α4γ + α5γ
2)

2k − ω2

c2 α2

, (13b)

where ω is the frequency of the incident beam, αi is the
expansion coefficient of the permittivity, and k is the magnitude
of the incident central wave vector. Without taking the
SD into account, the permittivity is not dependent on the
wave vector, so we have αi = 0; then γ = 0 and δ = −1/k

according to Eq. (13). As a result, Eq. (11) is reduced to the
paraxial wave equation in isotropic media. However, when
the operating wavelength is not sufficiently large compared to
the characteristic length of the media, this assumption fails to
work, and the SD should be taken into account, as mentioned
previously. Intuitively, the propagation of a paraxial beam in
such media will be different.

It is well known that PhCs exhibit strong SD as their
characteristic length (the lattice constant) is comparable to
the operating wavelength. To show our motivation, we now
calculate the values of γ and δ for the beam propagating in a
2D square PhC. The basic structure of the PhC is constructed
by arranging square air holes in a silicon slab (n = 3.5) with
the period a = 1 μm and the hole radius r = 0.3a. Using
the plane-wave method (PWM) [23], we obtain the dispersion
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FIG. 1. (Color online) The dispersion surface for the second band
of the square PhC.

surface of the PhC and plot its second band in Fig. 1 (TE
wave; band 1 is not shown here). To utilize the data of
the dispersion surface calculated numerically, we make the
following transformation:

K = a

2π
k, (14a)

	 = ωa

2πc
, (14b)

βi =
(

2π

a

)
αi (i = 1,2), (14c)

βi =
(

2π

a

)2

αi (i = 3,4,5). (14d)

As a result, the dispersion equation (10) turns into

K2
x + K2

z − 	2[εc + β1(Kx − Kx0) + β2(Kz − Kz0)

+ β3(Kx − Kx0)2 + β4(Kx − Kx0)(Kz − Kz0)

+ β5(Kz − Kz0)2] = 0, (15)

and Eq. (13) is transformed to

γ = 	2β1

2K − 	2β2
, (16a)

δ = a

2π

−2 − 2γ 2 + 2	2(β3 + β4γ + β5γ
2)

2K − 	2β2
. (16b)

We discuss the beam propagation in two cases with the
same width-wavelength ratio RWW but different working
frequencies. In the first case, the incident beam with RWW = 5
and ω = 0.28 × 2πc/a (in band 2) is propagating in the
PhC along the �-Z direction (see Fig. 1) for 140.2 μm.
We have K0 = (Kx0,Kz0) = (0,0.212), 	 = 0.28, and K =
0.212 according to the dispersion surface for this case. By
fitting the dispersion surface to Eq. (15) around K0, the
coefficients βi are obtained as follows: β1 = 0,β2 = 6.60,

β3 = 12.93, β4 = 0, and β5 = 25.24. To show the fitting
effect, we cut the dispersion surface along the transverse,
longitudinal, and diagonal directions at the point K0 and depict
the corresponding curves in Fig. 2, where the fitting curves are
plotted as dashed red lines. Substituting the above values for
the variables in Eq. (16) yields

γ = 0, (17a)

δ = a

2π
(−0.293) = −0.047 μm. (17b)

By making use of Eqs. (12) and (17b), we obtain the width of
the output beam as follows:

W (z) = W0

√
1 +

(
2δ

W 2
0

z

)2

= 9.05 μm, (18)

where the incident beam width W0 = 8.93 μm and the
propagation distance z = 140.2 μm.

In the second case, the incident beam with RWW = 5
and ω = 0.14 × 2πc/a (in band 1) is propagating in the
PhC along �-Z for 140.2 μm. Similarly, we have K0 =
(Kx0,Kz0) = (0,0.410), 	 = 0.14, and K = 0.410 according
to the dispersion surface. By fitting the dispersion surface to
Eq. (15) around K0, the coefficients βi are obtained, which
read as follows: β1 = 0, β2 = 20.96, β3 = −25.71, β4 = 0,
and β5 = 55.32. Substituting the above values for the variables
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FIG. 2. (Color online) Comparison of the dispersion curves of the square PhC (solid lines) and the fitting curves (dashed red lines) near
K0. (a)–(c) correspond to lines a, b, and c in Fig. 1, respectively.
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FIG. 3. (Color online) Intensity profile of the beam with RWW = 5 and ω = 0.28 × 2πc/a. (a) Comparison of the input intensity profile
(solid blue line) and the output intensity profile (dashed red line) based on the theoretical result. (b) Comparison of the numerical simulation
[blue (dark gray) line] and the theoretical result [red (light gray) line] of the output intensity profile. (c) Comparison of the output intensity
profiles with [blue (dark gray) line, numerical simulation] and without [red (light gray) line] SD.

in Eq. (16) yields

γ = 0, (19a)

δ = a

2π
(−7.351) = −1.17 μm. (19b)

As a result, the width of the output beam

W (z) = W0

√
1 +

(
2δ

W 2
0

z

)2

= 25.62 μm, (20)

where the incident beam width W0 = 17.86 μm and the
propagation distance z = 140.2 μm.

III. NUMERICAL SIMULATION

To confirm our theoretical results, we now demonstrate the
propagation of a Gaussian beam in the 2D square PhC using
the finite-difference time-domain (FDTD) method [24], which
is an intuitive and accurate tool to test the theoretical results
in PhCs. The calculation area is 200 × 400a with a grid size
of 1/25a. A Gaussian beam with magnetic field parallel to the
holes (TE waves) is launched into the PhC at the focus along
�-Z.

We simulate the beam propagation in two situations
corresponding to the cases discussed in Sec. II. The results
are presented in Figs. 3 and 4 . As shown in Fig. 3(a), the case

of RWW = 5 and ω = 0.28 × 2πc/a does not show significant
variation after propagating 140.2 μm, while Fig. 4(a) indicates
that the beam with the same RWW and propagation distance
except for ω = 0.14 × 2πc/a expands. To show the consis-
tence between the theoretical prediction and the numerical
simulations, we plot the intensity profiles of the output beam
based on the theoretical results and the numerical simulations
in Figs. 3(b) and 4(b) for comparison, where we normalized
their maximums to the same value. To show the SD effect,
we add Figs. 3(c) and 4(c) to compare the output intensity
profiles with and without SD [25]. The results show that the
SD produces an opposite effect to the beam that propagates in
media without SD. The reason is that the SD effect is strongly
dependent on the dimensionless parameter a/λ, as previously
mentioned. A change of the frequency (or, equivalently, the
wavelength) leads to a change of SD, which alters the beam
propagation property. Unlike the isotropic uniform media,
the SD media can reduce, increase, and even cancel the
beam diffraction (well known). To quantitatively compare
the theoretical prediction and the numerical simulations, we
calculate the statistical widths (defined as the second-order
moment widths [26]) of the output beam in the numerical
simulations. After a simple calculation, it is found that the
statistical widths of the output beam are 9.16 and 26.25 μm,
respectively, which are close to the theoretical results.

−80 −40 0  40 80
x (μm)

(a)

−80 −40 0 40 80
x (μm)

(b)

−80 −40 0 40 80
x (μm)

(c)

FIG. 4. (Color online) Intensity profile of the beam with RWW = 5 and ω = 0.14 × 2πc/a. (a) Comparison of the input intensity profile
[blue (dark gray) line] and the output intensity profile [red (light gray) line] based on the theoretical result. (b) Comparison of the numerical
simulation [blue (dark gray) line] and the theoretical result [red (light gray) line] of the output intensity profile. (c) Comparison of the output
intensity profiles with [blue (dark gray) line, numerical simulation] and without [red (light gray) line] SD.
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IV. CONCLUSION

In conclusion, the theory of a paraxial beam propagating
in 2D media with SD is discussed. We address the idea that
the SD, which leads to the dependence of the propagation
properties of a beam on its k vector, originates from the de-
pendence of the permittivity on the wave vector. By expanding
the permittivity ε(ω,k) with respect to k, we get a dispersion
equation of waves containing the expansion coefficients.
Furthermore, based on the dispersion equation and the paraxial
condition, we obtain a diffraction expression of the paraxial
beam. By fitting the dispersion surface of a typical SD medium
(a 2D PhC, for example), the value of the expression is
determined, with which one can predict the diffraction of a
paraxial beam. Numerical simulations confirm the theoretical
prediction. The presented analysis, which considers 2D media
with SD, could be also extended to the three-dimensional
(3D) case. For the 3D case, the dispersion equation obtained
by Taylor expansion includes three components of the wave
vector, which is fit to the dispersion surface of a 3D medium
with SD. At the same time, the longitudinal wave vector kz is
a function of two transverse wave vectors, kx and ky , so one
needs to differentiate the dispersion equation with respect to
kx and ky to obtain the diffraction expression [19]. We expect
that our results would pave the way for advanced manipulation
of optical beams in artificial SD media.

It is worth stressing that the discussions put forward here
are different from previous studies on this topic [13–15], which
considered several specific beam propagation phenomena (not
quantitative), such as self-collimation (diffraction-free propa-
gation) [13,15] and spatial filtering (superdiffusion) [14,15],
in PhCs and in media with GLM. In contrast, our results are
more general, and the semianalytical method can be applied
to normal, canceled, and anomalous diffraction. Especially,
one can quantitatively determine the beam diffraction and get
the output beam profile based on our theoretical prediction.
Furthermore, the semianalytical approach here is independent
of the type of modulation. The effect of modulation is included
in the diffraction expression, whose value can be obtained by
fitting the exact dispersion surface.
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