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This paper describes a modal separation model that improves the performance of wedge wave

ultrasonic motors (WW-USMs) using the bi-dimensional finite element analysis (Bi-d FEA) method.

Most USMs operate near the resonant frequency of a specific vibration mode, which must be well

separated from the resonant frequencies of other modes. In the current prototype, unexpected

disturbance induced at the instant of switching on/off or changing direction of the motor appeared

in simulations and actual measurements. These fluctuations are due to vibration modes other than the

driving mode occurring around the operating frequency. Bi-d FEA numerical simulation results indicate

that selecting an appropriate height for the upper base under the piezoelectric tube achieves excellent

modal separation. Measurements of the traveling wave taken by modal sensors show that the proposed

motor performs better than traditional motors, offering a faster transient response in revolution speed

and a more stable design. Suppressing the unexpected modes in excitation of the WW-USM increased

the maximum output torque by 50% and the efficiency of mechanical/electrical transformation by 50%.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Lagasse [1] and Lagasse et al. [2] were the first to discover
acoustic wedge waves in 1972. Wedge waves carry most of their
elastic energy within the area of about one wavelength from the
wedge tip. The phase velocity of the acoustic wedge waveguide is
slower than its material Rayleigh wave, and dispersion free under
no truncation situation. In 1994 and 2007, Krylov [3] and Krylov
and Pritchard [4,5] proposed a geometrical acoustics theory to
test the guided wave propagation speed on a wedge tip under the
water. Analysis results show that the phase velocity under the
water is slower than that in the air due to the coupling effect of
the water. Hladky-Hennion [6] developed a bi-dimensional math-
ematical model in 1996 to study the propagation of acoustic
waves in waveguides. The problem is reduced to a 2-dimensional
problem, where only the cross-section of the guide is mesh using
finite elements. They presented a theoretical formulation for the
cases of the linear and circular waveguide neglected the piezo-
electric effects. This paper adds the piezoelectric effect into the bi-
dimensional mathematical model to develop a circular cylindrical
WW-USM and improve the performance of ultrasonic motors.

Ultrasonic motors (USMs) are called piezoelectric motors
because they are driven by piezoelectric actuators. Ultrasonic
All rights reserved.

in).
mechanical vibrations induce traveling waves around the motor
stator and frictional force between the contact surfaces that push
the rotor or slider. Compared with electro-magnetic motors,
USMs have superior characteristics in several aspects, including
a simple structure, high torque at low revolution speed, freedom
from electro-magnetic interference and high controllability.
Researchers have developed various types of USM over the past
four decades. Existing designs generally fall into several geo-
metric types of piezoceramic ultrasonic actuators: ring-type
[7,8], cylinder-type [9–11], disk-type [12–16], hollow cylinder-
type [17–21], etc. Most studies on this topic focus on the steady
state response and performance, and relatively few researchers
have investigated the transient response of the USM. The tran-
sient response reflects the participation of resonant modes near
the driving mode.

Fig. 1 shows the schematic view of a WW-USM. The fourth
fundamental flexural mode F(1, 4), traveling circumferentially
around the wedge, drives the motor in this. However, several
unexpected modes near the operating frequency accompany the
flexural mode. Uncertain transient disturbances appear at the
instant of switching on/off or changing motor direction. Adjusting
the upper segment height of the stepped base achieves excellent
modal separation near the driving frequency.

This study improves the performance of the WW-USM using
the bi-dimensional finite element analysis (Bi-d FEA) method.
Structural vibration analysis reveals the entire frequency
response function of the stator. The response corresponding to
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Fig. 1. Exploded view of the WW-USM.
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each vibration mode must be compared through modal analysis
of the commercial code ANSYS. Experimental results show that
good modal separation achieves a faster response and stable
revolution speed.
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Fig. 2. The Bi-d FEA of the WW-USM stator.
2. Bi-dimensional finite element analysis (Bi-d FEA)

2.1. Piezoelectric constitutive equation

The piezoelectric ceramic material used in this paper is PZT-4,
which is a 6-mm crystal system and transversely isotropic
material. Under an electric field and mechanical force load, the
piezoelectric constitutive equation is

T¼ cES�eT E

D¼ eSþeSE ð2:1Þ

where T and S are the stress matrix and strain matrix, respectively,
cE is the elastic stiffness matrix, e is the piezoelectric constant
matrix, D is the electric displacement, E is the electric field
intensity and eS is the dielectric constant matrix under constant
strain. This study assumes that the cylindrical coordinate (r, z, y)
and the piezoelectric tube is polarized in a radial direction.

The elastic stiffness matrix is

c¼

C33 C13 C13 0 0 0

C13 C11 C12 0 0 0

C13 C12 C11 0 0 0

0 0 0 C66 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

2
6666666664

3
7777777775

ð2:2Þ

The piezoelectric constant matrix is

e¼

e33 e31 e31 0 0 0

0 0 0 0 0 e15

0 0 0 0 e15 0

2
64

3
75 ð2:3Þ

The dielectric constant matrix is

eS ¼

eS
33 0 0

0 eS
11 0

0 0 eS
11

2
64

3
75 ð2:4Þ

The following equations define the stress matrix T, strain
matrix S, displacement vector u, electric displacement D, electric
field density E and electric potential U

T¼ srr szz syy szy sry srz
� �T

ð2:5Þ

S¼ err ezz eyy 2ezy 2ery 2erz
� �T

ð2:6Þ

u¼ ur uz uy
� �T

ð2:7Þ

D¼ Dr Dz Dy
� �T

ð2:8Þ

E¼ Er Ez Ey
� �T

ð2:9Þ

U¼ Ff g ð2:10Þ

2.2. Hamilton’s principle

The surface traction and surface charge of a guided wave tube
may be zero at any part. In classical mechanics, the Lagrangian
function L of all the pertinent variables (the independent coordi-
nates and velocities) is

L¼ T�H ð2:11Þ

where T is the kinetic energy and H is the enthalpy. The internal
kinetic energy is

T ¼
1

2

Z
y

Z
z

Z
r

_uHq _ur dr dzdy ð2:12Þ

The enthalpy is the difference between the strain energy and
the electric potential

H¼
1

2

Z
y

Z
z

Z
r
ðSHcS�SHeHE�EHeS�EHeSEÞr dr dzdy ð2:13Þ

where q is the density of the elastic wave guided and is a (3�3)
diagonal matrix, the over dot represents the partial differential of
the time and the upper H is a Hermitian matrix. If the material
stiffness matrix c and density matrix q both are real symmetric
matrices, the strain energy and the kinetic energy are positive
definite. The Lagrangian function of the wave guided is then

L¼
1

2

Z
y

Z
z

Z
r
ð _uHq _u�SHcSþSHeHEþEHeSþEHeSEÞr dr dzdy ð2:14Þ

Hamilton’s principle indicates that under the conditions of no
external force and surface electric charge, integrating the Lagran-
gian function with time leads toZ t2

t1

dðT�HÞdt¼ d
Z t2

t1

Ldt ¼ 0 ð2:15Þ

In the interval (t1, t2), the first derivative of all field variables
is zero.

2.3. Dispersion equation

This study adopts the Bi-d FEA method to determine the
resonant vibration modes and phase velocities of circumferen-
tially flexural waves. The structure of the motor stator includes
several 2-dimensional discrete four-node isoparametric (Q4) ele-
ments, as Fig. 2 shows. The elastic displacements u and electric
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potential U are

u¼

ur

uz

uy

8><
>:

9>=
>;¼

urðr,z,tÞÞ

uzðr,z,tÞ

juyðr,z,tÞ

8><
>:

9>=
>;e jny ð2:16Þ

U¼j¼jðr,z,tÞe jny ð2:17Þ

where the circumferential mode number n¼kR, k is a wave
number, j¼

ffiffiffiffiffiffiffi
�1
p

and ejny is the wave propagation factor. The
number n is a non-integer for traveling waves, but may be an
integer for a standing wave. The matrices Nu, Nf consist of the
interpolation functions corresponding to nodal displacements and
electric potential.

The elastic displacements u and electric potential U at a point
inside each element can be interpolated by the nodal displace-
ment d and nodal electric potential u in the form

u¼Nud ð2:18Þ

U¼Nfu ð2:19Þ

where

u¼ ur uz uy
� �T

ð2:20Þ

U¼ Ff g ð2:21Þ

Nu ¼ N1 N2 N3 N4
� �

ð2:22Þ

Ni ¼

Ni 0 0

0 Ni 0

0 0 jNi

2
64

3
75e jny ð2:23Þ

Nf ¼Nie
jny ð2:24Þ

Ni ¼
1

4
ð1þxxiÞð1þZZiÞ ð2:25Þ

d¼ d1 d2 d3 d4
� �T

ð2:26Þ

di ¼ ui
r ui

z ui
y

h i
ð2:27Þ

u¼ f1 f2 f3 f4
h iT

ð2:28Þ

The matrix forms of the element stress S and the element
electric field intensity E are

S¼ Bud ð2:29Þ

E¼�Bju ð2:30Þ

where

Bu ¼ Bu1 Bu2 Bu3 Bu4
� �

ð2:31Þ

Bui ¼

@Ni=@r 0 0

0 @Ni=@z 0

Ni=r 0 �nðNi=rÞ

0 jnðNi=rÞ jð@Ni=@zÞ

jnðNi=rÞ 0 jð@Ni=@r�Ni=rÞ

@Ni=@z @Ni=@r 0

2
6666666664

3
7777777775

e jny ð2:32Þ

Bj ¼ Bj1 Bj2 Bj3 Bj4

h i
ð2:33Þ

Bji ¼

@Ni=@r

@Ni=@z

jnðNi=rÞ

2
64

3
75e jny ð2:34Þ
Note that uy has a 901 phase lag to the other two elastic
displacement components. The total kinetic energy T, the
enthalpy H and the Lagrangian function L are

T ¼
1

2

X
_dHm _d ð2:35Þ

H¼
1

2

X
ðdHkuudþdHkujuþuHkjud�uHkjjuÞ ð2:36Þ

L¼ T�H¼
1

2

X
ð _dHm _d�dHkuud�dHkuju�uHkjudþuHkjjuÞ

ð2:37Þ

Using Hamilton’s principle and substituting Eqs. (2.35)–(2.37)
into Eq. (2.15) leads to

d
XZ t2

t1

1

2
ð _dHm _d�dHkuud�dHkuju�uHkjudþuHkjjuÞ

)
dt¼ 0

(

ð2:38Þ

Consider from t1 to t2, set ddH
¼dd¼0 and integration by part,

from Eq. (2.38) the variational principle takes the form

1

2

X
ddH

Z t2

t1

ðm €dþkuudþkujuÞdtþduH

Z t2

t1

ðkjudþkjjuÞdt

�

þ

Z t2

t1

ð €dHmþdHkuuþuHkjuÞdtdd

þ

Z t2

t1

ðdHkujþuHkjjÞdtdu
�
¼ 0 ð2:39Þ

Hence, the motion equations of the guided wave areX
m €dþkuudþkuju
n o

¼ 0 ð2:40Þ

X
kjudþkjju
� �

¼ 0 ð2:41Þ

X
€dT mþdT kuuþuT kju

n o
¼ 0 ð2:42Þ

X
dT kujþuT kjj

n o
¼ 0 ð2:43Þ

where the element mass matrix m, the element stiffness matrices
kuu, kuj, kju and kjj are symmetry matrices. Thus, Eq. (2.40)
equals Eq. (2.42), and Eq. (2.41) equals Eq. (2.43). Then, we obtain
the element’s equation of motion in matrix form is

X m 0

0 0

	 
 €d

€u

( )
þ

kuu kuj

kju kjj

" #
d

u

( ) !
¼ 0 ð2:44Þ

Finally, a global system of motion equations for wedge waves
traveling along the circular cylindrical stator is as follows:

M 0

0 0

	 
 €D
€U

( )
þ

Kuu Kuj

Kju Kjj

" #
D

U

� �
¼

0

0

� �
ð2:45Þ

where M, Kuu, Kuj, Kjj are the global mass matrix, global elastic,
elasto-piezoelectric and piezoelectric stiffness matrices. Assuming
that all the field quantities are time-harmonic and e�iot is the time-
harmonic factor. Let D¼De�iot , €D ¼�o2De�iot , U¼Ue�iot and
€U ¼�o2Ue�iot substitute into Eq. (2.45) to obtain

Kuu Kuj

Kju Kjj

" #
�o2 M 0

0 0

	 
 !
D

U

( )
¼ 0 ð2:46Þ

The existence of the nontrivial solution to Eq. (2.46) produces
the following the dispersion equation or frequency equation:

det
Kuu Kuj

Kju Kjj

" #
�o2 M 0

0 0

	 
 !
¼ 0 ð2:47Þ

It is possible to calculate the resonant modes of flexural waves
using the angular frequency o¼ 2pf and the circumferential wave
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number k¼n/R in Eq. (2.47). The term R represents the radius of a
circular wedge.
3. Simulation results

Fig. 3 shows the structure and sizes of the original motor
stator. The motor stator consists of a cylindrical metal wedge, a
piezoelectric tube and a two-segment stepped metal base. The
piezoelectric tube has an inner diameter, outer diameter and
height of 21.9, 25.9 and 12.5 mm, respectively. The piezoelectric
tube in this study is made of PZT-4 supplied by Eleceram Inc. in
Taiwan, and has the following charge coefficients: d33¼289 pC/N
and d31¼�123 pC/N. The height of the circular wedge is 9.44 mm
and the wedge angle is 151. The height of the lower-segment base
is 10 mm. Both the circular wedge and the two-segment base are
made of stainless steel (mass density r¼7.82 g/cm3, Young
modulus E¼201.25 GPa and Poisson ratio s¼0.29). All compo-
nents are adhered together. The flexural mode of interest in this
WW-USM drives the ultrasonic motor. The term F (m, n) repre-
sents the flexural mode, where m and n are the numbers of the
radial modes and circumference modes on the stator, respec-
tively. The elastic waves traveling along the circumference of the
motor stator consist of the interference of the two flexural
vibrations of the same modes. In the prototype manufactured
for the performance test, fourth fundamental flexural mode
F (1,4) traveling circumferentially around the wedge drove the
motor. The piezoelectric tube was poled radially through its
thickness from the inside to the outside. The electrodes were
placed over one half of each wavelength circumferentially around
the tube, as Fig. 4 shows. Modal sensors were employed to
measure the driving frequencies and dynamic response of the
WW-USM during operation.

The Bi-d FEA method allows precise and efficient numerical
calculation for waveguide propagation of the motor stator for
both the traveling wave (n is a non-integer) and the standing
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Fig. 3. Sectional view of the WW-USM stator.
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phase alternating voltages and integrated modal sensors (MS) placed on the outer

surface of the PZT tube (the arrow indicates the poling direction).
wave (n is an integer). The program used in this study was
written in the FORTRAN computer language. The motor stator
of the upper-segment base height H¼0 was meshed by 1900
elements, 2081 nodes and 26 nodes constrained on the bottom, as
Fig. 5(a) shows. The motor stator of the upper-segment base
height H¼12.5 mm was meshed by 2050 elements, 2241 nodes
and 26 nodes constrained on the bottom, as Fig. 5(b) shows.

Comparative numerical calculations for vibration of the motor
stator were carried out using commercial code ANSYS 10.0 (ANSYS
Inc., Canonsburg, PA, USA). An element type of SOLID 5 was selected.
The motor stator of H¼0 contains 60,440 elements and 73,200
nodes, with 420 fixed nodes on the bottom of the stepped base, as
Fig. 6(a) shows. The motor stator of H¼12.5 mm contains 80,440
elements and 89,200 nodes, with 420 fixed nodes on the bottom of
the stepped base, as Fig. 6(b) shows.

Fig. 7 shows the dispersion curve of the two type motor stator by
Bi-d FEA and ANSYS. The Bi-d FEA result indicates that the frequency
difference between the flexural mode F (1,4) (fr¼36.099) and F (2,2)
Fig. 5. Resonant modes of the WW-USM stator by the Bi-d FEA (a) flexural mode

F (1,4) for H¼0 (fr¼36.099 kHz) (b) flexural mode F (1,4) for H¼12.5 mm

(fr¼36.008 kHz).

Fig. 6. Resonant modes of the WW-USM stator by the ANSYS (a) flexural mode

F (1,4) for H¼0 (fr¼36.095 kHz) (b) flexural mode F (1,4) for H¼12.5 mm

(fr¼36.058 kHz).
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Table 1
Resonant frequencies of the WW-USM stator by Bi-d FEA simulation with an

upper segment base height H¼12.5 mm (the values enclosed in parentheses are

those for H¼0).

Resonant frequency (kHz)

n m¼1 m¼2 m¼3

1 11.138 (17.146) 32.308 (43.118) 51.940 (66.441)

2 9.849 (13.492) 24.142 (35.742) 41.813 (62.234)

3 21.448 (22.780) 29.140 (39.139) 45.174 (66.711)

4 36.008 (36.099) 43.084 (50.617) 58.193 (75.798)

5 48.559 (49.169) 62.442 (68.442) 78.227 (90.492)

Fig. 8. The prototypes for WW-USM (a) H¼0 (b) H¼12.5 mm.
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(fr¼35.742 kHz) is only 357 Hz if the upper base height H¼0. Both
modes were stimulated simultaneously very easily if H¼0, inducing
disturbance at the instant of switching on/off or changing the
direction of the motor. On the other hand, if the upper base height
H¼12.5 mm, the frequency difference between the F (1,4) mode
(fr¼36.008 kHz) and the nearest F (2,1) mode (fr¼32.308 kHz) was
3.7 kHz. The mode F (2,2) resonant frequency became 24.142 kHz,
which is far from the mode F (1,4). This is the best modal separation
available in the WW-USM structure design.

Table 1 shows the resonant frequencies of the WW-USM stator
with base height H¼12.5 mm and H¼0 according to the Bi-d FEA
method. The following experiments selected H¼0 and
H¼12.5 mm to fabricate two prototypes of the WW-USM and
measure its performance around the operation frequency. The
rotor was made of Nary Brass (mass density r¼8.47 g/cm3, Young
modulus E¼105.46 GPa and Poisson ratio s¼0.34). The rotor
border was embossed with teeth-like structures on the contact
point to increase contact and friction force.
4. Experimental results

Two prototypes of the WW-USM were fabricated and Fig. 8
presents their photos. Dynamic displacements of the motor stator
were measured by a laser Doppler vibrometer (LDV) system ONO
SOKKI LV-1720A (ONO SOKKI Corp., Tokyo, Japan), as Fig. 9 shows.
the thin solid line in this figure indicates the spectrum of WW-
USM in H¼0, while the thick dashed line represents the spectrum
of WW-USM in H¼12.5 mm. Experimental measurement results
show that if H¼0, the frequency difference between the flexural
mode F (1,4) (fr¼36.108 kHz) and F (2,2) (fr¼35.784 kHz) is only
324 Hz. In this case, the two modes are very close, but also
interfere with each other. The resonant frequency of the flexural
mode F (1,4) is fr¼36.056 kHz if the H¼12.5 mm and no other
neighbor modes exist in the frequency ranges of 3.7 kHz.

Fig. 10 shows the schematic setup for measuring the dynamic
performance of the proposed WW-USM. A waveform generator
Agilent 33250 A (Agilent Technologies, Santa Clara, CA, USA)
generated a sine wave of driving frequency and amplitude
20 Vp-p. A phase shifter circuit separated the sine wave signal
into dual-phase sine waves (+10 sin(ot), +10 cos(ot)). Both
signals were magnified up to 20 times the amplitude by two high
voltage power operational amplifiers Apex PA90 (Cirrus Logic Inc.,
Austin, Texas, USA). Under a pre-load of 100 gW (include the rotor
and spring) and a driving frequency of 36.108 kHz (H¼0) or
36.056 kHz (H¼12.5 mm), the dual-phase amplified AC signals
were applied to the electrodes of the motor stator to induce the
traveling wave on the wedge tip. The dual-phase driving signals
and the reactive signals from modal sensors were simultaneously
measured using a digital storage Oscilloscope LeCroy WS42Xs
(LeCroy Corp., New York, USA), as Fig. 11 shows. The waveform
was pure and stable if H¼12.5 mm, but the waveform amplitude
was small and exhibited a little noise and distortion if H¼0.

During motor operation by friction force, the motor shaft
coupling connection rotary axis drove the encoder (HRT-3A/
1000 ppr, Hontko Inc., Taiwan) and determined the revolution
speed. A load cell (LSM400, Futek Co., Taiwan) detected the rotary
torque signal, while a Vishay 2210B signal conditioner (Vishay
Micro-Measurement, Inc., Munich, Germany) amplified and fil-
tered the signals. A NI-DAQ-PXI-6251 (National Instrument Co.,
Austin, Texas, USA) data acquisition interface recorded data
on the revolution speed, rotary torque and reactive signal using



Fig. 10. Experimental setup of the WW-USM performance test.
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modal sensors. The NI-LabVIEW V8.5 package functioned as a
supervisor program for the automatic measurement system,
immediately measuring and presenting data in the monitor.
Fig. 12 shows the performance of the WW-USM. This figure
indicates that the maximum revolution speed was 155 rpm and
the maximum rotary torque was 0.93 kg mm when the
upper segment base height of the stator was H¼0. In contrast,
the maximum revolution speed was 220 rpm and the maximum
rotary torque was 1.62 kg mm when H¼12.5 mm. Fig. 13 shows
the transient response of the WW-USM. When H¼0, the rise time
of revolution speed was 89 ms and unstable chattering appeared
in the steady state. However, the rise time decreased to 45 ms
when H¼12.5 mm. This indicates that the proposed structural
design achieved quicker response and more stable steady state
with excellent modal separation in the vicinity of the driving
frequency.
5. Discussion

Because the analysis of the acoustic guide wave is one kinds of
complex boundary value problem, the exact analytic solution of
the wedge waveguide is not proposed yet. Only the simple
experience formula by Lagasse et al. [2] and geometric acoustic
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approximate solution by Krylov and Pritchard [4] were presented.
The ideal linear wedge waveguide is infinite long base, but the
actual circular wedge waveguide is impossible to have infinite
long base. However, the generally commercial finite element
package does not have the efficient and lack the precision in the
analysis of linear or circular wedge waveguide. Therefore, in the
design and application of the circular acoustic waveguide,
the development of a numerical analysis method for calculated
the phase velocity and dispersion curve of the flexural wave is
absolutely necessary.

The Bi-d FEA method is a type of reduction process based on
the finite element method. By reducing a 3-dimensional problem
into a 2-dimensional problem, the Bi-d FEA method allows faster
calculations while retaining 3-dimensional data. This is why this
method is called bi-dimensional, and not 2-dimensional. This
study uses the Bi-d FEA method to calculate the dispersion
curve of the WW-USM stator including the data of phase speed
c (mm/ms), resonant frequency f (kHz) and wave number k

(1/mm). Numerical simulation results show that this method
can calculate the 2D resonant mode shape, including the standing
wave mode shape, if the circumferential mode number n is an
integer and the traveling wave mode shape if n is a non-integer.
However, the commercial codes ANSYS can only calculate the
standing wave if n is integer. Clearly, the Bi-d FEA method has an
advantage over the ANSYS package in terms of time and computer
memory required.

The WW-USM is a motor driven by traveling wave and the
friction force between the rotor and the stator. Therefore, con-
firming the resonant mode and its corresponding resonant fre-
quency is an important task. The concept of modal separation
changes the structure of the WW-USM, distancing the driving
frequency from its neighboring resonant frequencies. This guar-
antees that other modes do not interfere with the traveling wave
mode. The motor stator designed in this study consisted of a
stainless wedge, a piezoelectric tube and a stainless steel base.
The piezoelectric tube was made by the powder metallurgy
method, as it is not suitable to alter the structure using secondary
machining processing. Because the piezoelectric tube supplier
could not meet our design needs, we adjusted the upper segment
height H of the stainless base to achieve acceptable modal
separation.

In the structure design stage, a USM designer usually judges
the quality of modal separation based on the structural frequency
response function. Structural adjustment occasionally causes a
significant change in a specific mode’s resonance frequency.
Intersections of different modes appear in the frequency range
of interest. However, it is not possible to guarantee which mode
the neighboring resonance frequency belongs to. The dispersion
curve in Fig. 7 provides a two dimensional view of the modal
separation between the mode shape and the resonance frequency.
This view is better than the spectrum of the frequency response
because the latter is an one-dimensional observation. Let us
clearly search the neighboring resonance frequency respective
modes, and suitably correct the adjustment of the structure. This
is the most important aspect of this study, as it effectively
promotes the motor’s efficiency.

Most manufacturers of commercial piezoelectric products
provide data sheets listing the fundamental resonant frequencies
of their products. However, the products might not satisfy the
demand for clear modal separation between the resonant fre-
quencies near the driving frequency of the WW-USM. In addition,
the resonant frequencies do not appear monotonically in the
sequence of resonant vibration modes. Trimming the modal
separation between resonant frequencies is therefore a critical
issue in designing this type of motor stator. Changing the
upper segment height H of the base structure significantly
influences modal separation.

For longitudinal modes, torsional modes and flexural modes
alike, resonant frequencies decrease as the upper segment base
height H increases. However, the fundamental flexural modes
with an axial mode number m¼1 are only slightly influenced by
the increased H. Since the energy carried by the fundamental
flexural wave concentrates in the area near wedge tip, increasing
the base height does not significantly change the resonant
frequencies. For modes with an axial mode number greater than
one, the wave energy widely distributes over top and underneath
the stator. Heat generation induced damages will happen to the
piezoelectric tube in the stator if wave energy spreads under-
neath. This is why the fundamental flexural mode F(1, 4) was
selected to drive the WW-USM in this study.
6. Conclusion

The proposed WW-USM is driven by a traveling wave consist-
ing of two standing waves of equal amplitude and a phase
difference of 901. If the unexpected modes existence or the modes
near F (1,4) are excited, the WW-USM performance is not satis-
factory. This causes the output torque and efficiency of the
mechanical/electrical energy transformation to be lower than
predicted.

The Bi-d FEA method successfully improves the performance
of a WW-USM by adjusting the upper segment height H on the
stainless base. Increasing the upper segment base height H from
0 to 12.5 mm effectively decreases the unexpected disturbance
due to F (2,2) mode by about 11.6 kHz. Simulation results show
that the disturbance caused by the F (2,2) mode gradually
vanishes as the upper segment height H increases. The proposed
design with H¼12.5 mm has twice the rotary torque for H¼0,
and the rise time to steady state is 40% faster than the prototype
with H¼0. The rotary torque, output power and mechanical/
electrical transform efficiency all improve by 50%. The design
clearly represents the optimum structure of a WW-USM stator.

Experimental results indicate the motor operates as expected.
However, the output torque remains too small. From the view-
point of the performance of the flexural vibrator, increasing the
pre-load and the driving voltage of the WW-USM can increase the
output torque. To conserve power and improve the overall
performance of the actuator, future research should identify a
more suitable friction material between the rotor and the stator.
This topic remains a significant future challenge for WW-USM
design, as in other types of ultrasonic motors.
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