
PHYSICAL REVIEW B VOLUME 50, NUMBER 19 15 NOVEMBER 1994-I

EfFects of an impurity on the conductance and thermopovver
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The conductance G and the thermopower S of a saddle-point-potential quantum point contact
in the presence of a b-potential impurity are calculated. For the case when an attractive impurity is
located inside the quantum point contact, there are dips, peaks, and kinks in G. These structures
can be found below and near the band bottom of some transverse subbands, respectively. The
peaks in G give rise to double peaks in S and the dips in G give rise to a shift in the peak positions
of S, towards a smaller chemical potential value. In addition, a broad dip in G is found to give
rise to negative thermopower in regions between the peaks of S. For the case when an attractive
impurity is located in the classical forbidden region for the electrons, we 6nd in G the structures
that correspond to resonance tunneling and resonance reaection. The corresponding S is found to
show large and negative spikes. Our study shows that structures not so transparent in G manifest
unequivocally in S, rendering S a very informative physical quantity to be measured.

I. INTRODUCTION

The quantum transport in quantum point contacts
(QPC) has received a lot of attention, both theoreticali
and experimental, in recent years. These systems are
electrostatically defined narrow constrictions connecting
two high-mobility two-dimensional electron gas. The
width W of a QPC is small (W —Ap) enough to ex-
hibit quantization efFects, and the corresponding length
L is short enough (L « l, the mean free path) to
make possible the study of quantum ballistic transport.
In the absence of defects and impurities, it is found
experimentally ' that the conductance G is quantized,
in units of 2e /h. However, this quantization in G
is vulnerable to the presence of even one impurity in
the constriction, according to recent theoretical and
experimental ' 2 studies. More specifically, theoretical
studies show that the conductance G can exhibit dip
structures just below the threshold of a transverse sub-
band both in the case of a weak attractive short-range
scatterer present in the constriction and in the case of
attractive long-range scatterers separated from the QPC
by a spacer layer. These dip structures in G are observed
in recent experiments. ' Thus dip structures in G can
be used to distinguish an attractive scatterer from a re-
pulsive scatterer but cannot be used to tell an in-plane
scatterer from an off-plane scatterer.

Besides the conductance G, thermopower S is another
physical property of QPC systems in which quantization
efFect manifests unequivocally. It was first shown theoret-
ically by Streda that in a narrow constriction the ther-
mopower S exhibits peak structures. His calculation in-
volved an ideal narrow constriction of which the longitu-

dinal transmission coefficient through the constriction is
a step function of energy, and he concluded that the peak
values of 8 are quantized, given by (ks/e) ln 2/(i + 1/2).
These peaks occur when the Fermi energy p equals the
threshold of the (i + l)th transverse subband, starting
from i = 1. Later theoretical studies ' show similar os-
cillations in S except that these peak values are modified
when the longitudinal transmission coefficient through
the constriction is no longer a step function of energy,
which corresponds to the case when the width of the con-
striction is changing, either adiabatically or in a saddle-
point-potential QPC. is The aforementioned quantum os-
cillations are demonstrated in recent experiments.
These peak features render S potentially very sensitive to
the configuration of the QPC systems, especially when p
is in the vicinity of a transverse subband threshold. %e
expect that both G and S can be used to explore the
configuration of QPC systems and that they play com-
plementary roles in such regard. Hence we consider, in
this paper, the effect of impurity on 8 in QPC systems.

Our purposes in this work are to study and to compare
the efFect of impurity on the thermopower S and the con-
ductance G in QPC systems. The QPC is modeled by a
saddle-point potential which is simple and quite realistic,
giving no sharp corners and containing the essential fea-
tures of the electrostatically induced QPC bottleneck.
The impurity is taken to be short range which, in the
case of a saddle-point potential QPC, is appropriately
described by a b potential. The efFect of the impurity
location on G and S is studied by considering the im-

purity to be located in the central cross section of the
QPC. Similar study has been carried out by Levinson
et al. for G using a confinement-potential Green's func-
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tion method. In this work, we propose to apply another
method, a mode-matching method, to the QPC systems.
This method can be easily extended to other situations
such as applying an external magnetic field to the QPC
systems. In addition, new insights are obtained when our
analysis includes both the cases for an impurity present
inside and outside the QPC. An impurity is outside the
QPC when it is located in the classical forbidden region
for the electrons.

For an attractive impurity located inside the QPC, our
results show dips and peaks in G which occur below and
near the threshold of some transverse subbands, respec-
tively. Sometimes, when p is at the threshold of a trans-
verse subband, the peaks are so small that they appear
more like kinks in G. In addition, there is a resonance
tunneling peak in G in the pinchoK region. The kinks
in G give rise to double peaks in S and the dips in G
give rise to a shift in the peak positions of S, towards
a smaller chemical potential value. A broad dip in G is
found to give negative thermopower, in regions between
the peaks of S. The resonance tunneling in the pinchofI'
region results in S a large peak followed by a large neg-
ative dip. Our study shows that, near the threshold of a
subband, S exhibits a relatively large double peak struc-
ture even in the case when G has only a small kink. This
corroborates our intuition that S is sensitive to the QPC
con6guration near the threshold of a transverse subband.

For a not-too-weak attractive impurity located outaide
the QPC, our results show both additional peak and dip
which corresponds to resonance tunneling and resonance
refiection occurring outside the QPC. In such a regime,
the thermopower S of the QPC deviates far &om that
of its impurity-free counterparts, exhibiting a large neg-
ative dip followed by a large positive spike. On the other
hand, if the impurity outside the constriction is strongly
attractive, the above resonant features of S disappear.

In Sec. II we develop a mode-matching method for the
electron scattering in the saddle-point potential QPC.
The thermopower is, within the Landauer multichannel
approach, ' ' related to the current transmission coef-
6cients. In Sec. III we present some numerical examples
to illustrate that S is very sensitive to the con6guration
of the QPC in the threshold region of a transverse sub-
band. Finally, Sec. IV presents a conclusion.

transmission coefficient. There is transmission coefficient

~t„„~ (Ref. 21) where t„„ is the coefficient appearing in
the scattered wave function and is associated with the
nth transmitted state. There is also a current trans-
mission coefficient T which is the ratio between the
transmitted current in the nth channel and the incident
current in the nth channel. These two transmission co-
efBcients are difFerent when n is difI'erent &om n'. So
far, this difl'erence has not been emphasized enough and
many papers use the term trunsmission coeQcient when
they actually are referring to current transmission coef-
6cient.

In the following, the total transmitted current is ex-
pressed in terms of the current transmission coefficient
T„„.is'2o We take the left (right) reservoir to have chem-
ical potential p (p —b, y, ) and temperature T + b,T (T).
The total transmitted current, from the left to the right
reservoir, is given by

J = —— dE [n~ (E,p, T + b,T)
h

n(E, IJ, ——b,p, T)]) T„„.,
n, n'

where n~(E, p, T) is the Fermi-Dirac distribution func-
tion and —e is the charge of an electron. In choosing the
lower limit of the energy integration, we have assumed
that p —E && k~T, where E is the lowest electron
energy in the reservoir.

Within the linear response regime, the conductance G
is obtained &om Eq. (1) by taking AT = 0, and we have20

2 2 oo

dE ~- I)h g dE)

where Ap = —eLV.
Similarly, within the linear response regime, the ther-

mopower S is obtained &om Eq. (1) by taking J = 0,
such that20

d E—
dE —

i ) T„„dE ) kgT

) TdE)

II. IMPURITY SCATTERING IN
SADDLE-POINT POTENTIAL

In this section, we consider a saddle-point potential
QPC which connects two particle and energy reservoirs.
The quant»m transport phenomena are related to the
quantum mechanical scattering in the QPC. is' 0 Incident
electron in the nth transverse subband of the left reser-
voir is scattered in the QPC and gives rise to transmitted
currents in all the propagating channels in the right reser-
voir. We stress that in the case of multichannel quantum
scattering, we should be more speci6c when referring to

The current transmission coefficients T „t depend on the
configuration of the QPC. In the following, we consider
a saddle-point potential V,z(2:,y), given by

V.p(x, y) = U —U x + U„y, (4)

V'-&(* y) = V- ~(*)~(y —y-).

where the electrostatic potential at the saddle U is taken
to be zero. An impurity located in the central cross sec-
tion of the saddle-point potential, with the impurity po-
tential V; ~ given by
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assin that the numerical results ob-
tained using a b potential V; p(z y) as iii q aie
essentially t e same as usi

'
l f V as long as the potential range is s or etentia or zmp,

than all other relevant length scales. n suc ca
constant V in Eq. (5) is given by

function

V = V; p xydxdy.

E' = /i2k2/2m and theChoosing the energy unit E' —1&~ where kg is a typical Fermi wavelength unit a = ( ~, w
~ ~ ~

v
'

the two-dimensional Schrodingervector of the reservoir, e wo- '

equation becomes

[-V —(u z +(u„y +u b(z)8(y —y ) 4'(z, y)

=E~(z y) (6)

re (u = /2mU //iks2, , ~„= /2mU„/hk~~, and eHere, ~ = m
C is characterizedV //i~. The con6guration of the /PC is2m (' . e

su u e, andy. Inb the dimensionless parameters u, ~~,
particular, the ratio (u„/u~) =

I W,

The unperturbed transverse motion is quantize in o
~2n + 1~&u and normalized wavesubbands, with energy ~ n

where H is the Hermite polynomial and n starts kom
zero.

'on z along the /PCThe unperturbed wave function x
or

'
h th subband satisfies the equationfor an electron in t e n su a

+ (d z + 6~ %jan~(z) = 0,
Bx

4= E —(2n+ l)~ is the energy for the motionwhere e„= — n
along z iree ion.u' t n. The dependence of „z

there are two g„(z)'s,implied. For every value of e„, there are wo

given by 22
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FIG. 1. (a) Conductance G of thof the PC
v = 0.0 case cor-as a function of x„. T e vo =

responds to an ideal QPC. Four other im-
= —0.1 —0.3, —0.4, andpurity strengths: v = —. , —. , —. , d

—0.7 are s own.h . The impurity is located at
the center of the +PC. (b) Thermopower S
of the /PC as a function of z„ for the same
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(—im xl
@„(x)= xg(u exp

~

xMi —+i ",—,mu x
(4 4~ 2 )

(10)

Here, Q, (@ ) is an even (odd) function of z and
M(a, b, z) is Kummer's function.

Using g„, and Q„, we construct a state Q„;„(z)
[tp„,„f(x)j which has only positive (negative) current den-
sity in the asymptotic region (x ~ —oo). Similarly, we
construct a state g„„twhich has only positive current
density in the asymptotic region z ~ +oo. The results
are

where

4-,'-(*) = 4-(*)+ ~- @-(*)
@-,-~(*)= 0-o(*) +&-@.(&)

4e.,ref(+) = 4rao(+) + 7' Wne(+) &

i —i (ere„l . . f xe„'t
cosh —s sznh

4~ &4~.) &4~.&
2(i

&4+ '4~. )
and 'Yn = Pn =—o'~.

With an impurity located at (z, y) = (0, y ), the scat-
tering wave function of an nth subband electron with
total energy E and incident from the left-hand side can
be written in the form

y)y„; (&)+) & „y (y)@ „f(x), &&0,
~.'(* y) =

& ) t„,„y„,(y)y„, .„,(*), *&0.

atching the wave function 4+ at x = 0 and integrating the Schrodinger equation across x = 0 leads to two matrix
equations

0
Ol
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& (b)
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FIG. 1. (Continued).
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where

cx+ pK = PT,
1+R=JT,

(n) „=n„h
(P) =P ~.,

(&)- = ~-~-,
(R) „=r

(T) - =&-,
2v~(&)- = ~- — 4 (u-) 4-(u-)P-.

(14)
(»)

forward to show from Eq. (17) that, in the case of no
impurity (v = 0), t = b [1 + exp (—me /w )j
which is the well-known result for a perfect saddle-point
potential. '

The incident current J;„,is given by

8J nine = hm &o(~n one + 4 no) (~n One + /no)K~—OO Ox

and the transmitted current J„ t, „ in the nth channel
is given by

From Eq. (14) and Eq. (15), we obtain the transmission
coefficients t „,which is the matrix element of T and is
given by

&=(&—») '(~ —~)

The matrix T is symmetric because both (P —p J) and
(n —p) are symmetric. In deriving the above ma-
trix equations, we have used the relations Q„,(0) = 1,
g„',(0) = g„(0) = 0, and @„' (0) = +id, where the
prime means derivative with respect to z. It is straight-

g„,„.„= hm C. i
t„„~'(P. y. .+ 0..)

X~OO

x —(P- 0- ~ + &- -) '

Here, C is a dimensionless constant.
The current transmission coefficient T„„ is given by

(19)

Jn', tran

Jn, inc
(20)

Finally, substituting Eqs. (18) and (19) into Eq. (20), and
taking the required asymptotic limit, we have
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FIG. 2. (a) Conductance i of the +PC
as a function of x„. The impurity is at the

edge of the +PC when z„=2.1. The dotted
curve corresponds to the ideal +PC results
and four other impurity strengths are shown.

(b) Thermopower 8 of the +PC as a function
of z„. The conBguration is the same as in (a).
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T„„=(t „~ exp (n —n')

2r!"
(4 4u

X 2

t, 4+'4~. )

2 4)~

(2' ) (21)

In the case when there is no impurity, it is obvious that
t„„ is diagonal and that T „=

~

t „~ .

III. NUMERICAL EXAMPLES

In this section, we present in three different situations
the G and S of a /PC as a function of the chemical
potential p of the reservoir. The effective width of the
/PC is increased as y, increases. In the first situation, an
attractive impurity is fixed in its location, closer to the
symmetry axis, such that the impurity is always inaide
the /PC. In the second situation, an attractive impurity
is, again, fixed in its position but is at a greater distance
from the symmetry axis such that it is outside the /PC
in the lower p, regime and is inside the system in the
higher p regime. The effect of the impurity strength is
also examined in the above two situations. Finally, in

the third situation, the strength of the impurity is fixed
while its transverse location is changing.

We take the /PC to be that in a high-mobility GaAs-
Al Gaq As with typical electron density n 2.5 x
10~~ cm, m' = 0.067 m„and A» = 500 A. Thus
our choice of length scale a' = k& ——79.6 A, and energy
scale E' = 5~k&s/2m' = 9 meV = 104 K. In all the fol-

lowing numerical examples, we have chosen k~T = 0.01
(T 1K), u = 0.125, andw„= 0.5. Withsuchchoice
of parameters, the /PC's effective length to width ratio
I/W = 4. In the following numerical examples, the im-

purity potentials v were, in fact, rescaled and became

vo cue

In Figs. 1(a) and 1(b), we plot the variation of G and

S, respectively, of a /PC as a function of the chemi-

cal potential p, . For convenient purposes, the abscissa is

given by z„

z„=-!—+1 /,
1 (p,

&~s )
(22)

which truncated integer value is the number of propa-
gating channels below p, . The effective half-width of the
/PC is given by y g(2z„—1)/u& for z„)0.5. An
attractive impurity is located at (z, y ) = (0, 0). Our
results include cases of five impurity strengths: v
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0.0, —0.1, —0.3, —0.4, and —0.7. Except in the pinchoK
region (x„(1), the impurity remains inside the QPC.

There is, in the pinchoK region, no propagating chan-
nel in the QPC so that transmission occurs only through
tunneling which gives rise to a peak in G, as is shown
in Fig. 1(a). For a more attractive impurity, this peak
in G occurs at a lower x„and with a lower peak height.
These features are consistent with the interpretation of
such a peak in terms of resonant tunneling transmission.
In the case of a more attractive impurity, the resonant
peak in G occurs at a lower x„because p, has to line

up with a lower quasibound state. On the other hand,
in the saddle-point potential configuration, the effective
tunneling distance is increased, rendering the peak height
in G to be lowered. For an even more attractive impu-
rity, such as v & —0.7 in Fig. 1(a), there is no resonant
peak because the impurity quasibound state is too deep
to allow resonant tunneling to occur. For the case of
thermopower, in this pinchoK region, the resonant tun-
neling gives rise to a pair of positive peak and negative
dip structures, with the peak locating on the lower x„
side. We Gnd that this peak-dip structure can be under-
stood qualitatively by noting firstly in Eq. (3) that S is
zero when P„„,T„„ is a constant near p and, secondly,
that if P„„,T„„were to depend linearly on energy near

p, , S would be proportional to the slope of P„,T „.In
the low temperature regime, as we consider here, we have

, T„„G,and the peak-dip structure in S is found
to reflect qualitatively the slope of the peak in G. %ith
this insight, we point out in particular that for the cases
v = —0.3, and —0.4, the former case has a larger peak
in G but a smaller peak-dip magnitude. This is related
to the fact that the former peak has a slower rate of rise
and drop. This result demonstrates clearly the G prof-ile

sensitive feature of S in the low temperature regime.
In the region when there are propagating channels,

there are dip structures in G just below x„= 3 for the
cases v = —0.3 and —0.4. Following a dip structure.
on the larger x„side, G rises more rapidly and has a
greater slope than the case for an ideal QPC. Thus, ap-
plying our G profile -sensiti-ve analysis for S, the effect of
the dip structure in G is to give rise to a larger peak as
well as a shift in the peak location of S towards a lower
x„value. This feature is demonstrated in Fig. 1(b) near
x„=3. Furthermore, a broad dip, such as the case for
v = —0.4, gives rise to negative S in the region when x„
is between 2 and 3. Besides dip structure in G, there is a
kink in G at x„=2. Similar structures have been found

by Levinson et a/. These kinks in G are not found in nar-

row constrictions of which the con6nement potentials are

3.0
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I
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FIG. 3. (a) G vs z„. The location of the

impurity is the same as in 2(a). The figure

shows that a more attractive impurity gives
rise to resonant reBection and transmission
when it is still outside (z„(2.1) the QPC.
(b) S vs x„. Same configuration as in (a).
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independent of the longitudinal coordinates. The kink in
G is shown, in Fig. 1(b), to give rise to a double-peak
structure in S. This can be explained with our G pr-ofile

sensitive analysis. We point out that for v = —0.7, the
kink in G is barely recognizable while the corresponding
double peak in S is quite spectacular, with the higher
peak height almost double that of the ideal QPC.

Figures 2(a), 2(b), 3(a), and 3(b) show the G and S,
respectively, for the case when the impurity is located at
y = 2.5. The impurity strength varies &om v = 0.0
to v = —0.9. As the chemical potential p, increases,
the effective width of the QPC is increasing and the im-

purity location changes &om eR'ectively outside to inside
the QPC. In particular, the impurity is at the edge of the
QPC when x„= (u„y + 1)/2. We take u„= 0.5 so that
the critical z„ is about 2.1. One main purpose of plotting
Figs. 2(a) and 2(b) is to show that, for a not-so-attractive
impurity (v ( —0.55), the impurity effect only becomes
evident when it is electively inside the QPC. Figures
3(a) and 3(b) show, however, that a more attractive im-

purity has its effect felt even when it is still electively
outside the QPC.

From Fig. 2(a), we see that for v = —0.1 and v

—0.3, a signi6cant eKect of the impurity comes in when

x& ) 2.1. This is reasonable because the impurity sects
the transport when it is efFectively inside the QPC. The
latter impurity gives a dip and a small peak in G near
x„=3. The dip-and-peak structure in G (x„3and
v = —0.3) gives rise in S to a positive peak in between
two negative dips, as shown in Fig. 2(b). As shown in
Figs. 2(a) and 2(b), the G plateaus as well as the dip
structures in region x~ ) 2 are destroyed when the im-

purity becomes more attractive. Thus the rising in G
for x& —3 becomes less abrupt. The corresponding fea-
ture in S is a gradual shift in the peak of S, away &om
the ideal QPC peak at x„= 3 and towards a smaller
z„value. Following the shifting of peak positions in S,
these peaks are broadened and their peak height lowered.
In addition, there is a peak in G, near x„=2, which is
associated with resonance tunneling occurring near the
edge of the QPC. This peak becomes more pronounced
for a more attractive impurity and the corresponding S
exhibits a peak followed by a large negative spike. For
the case v = —0.5, the magnitude of the negative S spike
is even greater than the magnitude of the ideal peak in
S. This is a signature of a pronounced peak in G.
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As the impurity becomes even more attractive, as
shown in Figs. 3(a) and 3(b), new G and S structures
are developed in the region x„&2, which corresponds to
resonant reflection and resonant transmission when the
impurity is quite outside the QPC. Corresponding to the
resonant reflection dip in G, there is a large negative spike
following by a large positive peak structure in S. Note,
in particular, that the magnitudes of both the spike and
the peak can be up to five to six times that of the ideal
S peak at x„= 1. This demonstrates that S is very
sensitive to resonant processes in the QPC systems.

Finally, in Figs. 4(a) and 4(b), we plot G and S
for a v = —0.3 impurity in various positions: x
0.5, 1.0, 1.5, and 2.0. The impurity is at the edge of the
QPC when x„=x, . From the results in previous figures,
we see that this impurity is a weak attractive scatterer.
In the pinchofF region, the x = 0.5 and 1.0 impurities
give rise to a resonant tunneling peak in G. The x = 2.0
impurity gives rise to a peak in G due to resonant tunnel-
ing outside the QPC. However, it is interesting to note
that the x = 1.0, 1.5 impurities contribute to peaks in G
near x„=2 where the impurities are already inside the
QPC. Our results show that the impurity with x, = 2.0
gives rise to a larger G peak at x„=2 while it gives rise

only to a kink in G at integer x„=3. The corresponding
structure in S for this peak consists of a negative dip, as
shown in Fig. 4(b) .

IV. CONCLUSION

A mode-matching technique has been applied to study
the eKect of an impurity on the conductance and the ther-
mopower of a saddle-point-potential QPC. Our analysis
demonstrates the correlation between the conductance
and the thermopower in the low temperature regime.
The correlation is established qualitatively using a G-
profile serisitive analys-is. We show that S is very sensi-
tive to the impurity near the threshold of a transverse
subband. In fact, our results show that S is closely re-
lated to the slope of G. At integral x„values, kinks in G
which are not so transparent can give rise to large dou-
ble peaks in S. Large negative spikes in S arise due to
the presence of sharper peaks and dips in G. Thus S
is sensitive to the resonant tunneling peak and resonant
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re6ection dip in G.
Besides, we have studied the cases when the impurity

is outside and inside the /PC and have demonstrated the
resonant tunneling and the resonant re8ection occurring
outside the /PC. Our results show in detail the effect
on S and G when a short-range impurity is around the
edge of the /PC. Finally, this study shows that both G
and 8 can be used to explore the con6guration of /PC

systems and that they play complementary roles in such
regard.
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