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Rapid Surface-Wave Dispersion and Plane-Wave
Reflection Analyses of Planar Corrugated Surfaces
by Asymptotic Corrugations Boundary Conditions

Even for Oblique Azimuth Planes
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Abstract—The asymptotic corrugations boundary condition
(ACBC) is used together with classical theory of vector potentials
to analyze planar corrugations. A transcendental characteristic
equation is derived, from which the dispersion diagram can be
obtained, thereby conveying surface wave passband and stopband
properties, even for propagation within oblique azimuth planes
as well as both principal TE and TM polarizations. From the
formulation, field distributions for the regions within the grooves
and above the corrugations can also be generated. When com-
pared with the dispersion graphs obtained from characteristic
equations derived by the classical transverse resonance technique
(TRT), the newly presented ACBC method provides superior
accuracy. Explicit formulas for the complex reflection coefficient
(amplitude and phase) for both TE and TM polarized plane-wave
incidences are also derived as closed-form analytic functions of
all parameters (especially the azimuth phi angle of incidence)
using a novel concept of unusual transversely phased plane-waves.
These proposed approaches are massively more efficient than
full-wave solvers, providing unparalleled speedup of computation
by thousands of times. The surface-wave and reflection properties
of planar corrugations are thus herein analyzed in a unified,
complete, and elegant manner that is also highly efficient but yet
accurate. This thorough work is thus a great boost to the con-
tinued use of corrugated surfaces as artificial magnetic conductors
(AMC), electromagnetic bandgap (EBG) structures, and soft/hard
surfaces in all walks of antenna design, especially in terms of speed
and accuracy.

Index Terms—Asymptotic corrugations boundary condition
(ACBC), corrugations, dispersion diagram, electromagnetic
bandgap (EBG) surfaces.

I. INTRODUCTION

P LANAR corrugated surfaces have been a subject of keen
interest amongst purists in electromagnetic theory for

many decades [1]–[7]. With the advent of the digital computer,
traditional analysis work was extended to include numerical
treatments of plane-wave scattering from corrugations [8]–[10].
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Theoreticians and computational enthusiasts were not the only
ones captivated by this structure. Experimentalists and practical
engineers have, likewise for the past many years, been making
use of corrugations to develop improved microwave devices
such as waveguides and antennas. Possibly the most distinct
and important utility of corrugated surfaces is in realizing soft
and hard surfaces [11], which provide bountiful applications
[12], [13].
By providing an approximate relationship between the

electric and magnetic field on a chosen surface, approxi-
mate boundary conditions (ABC) have proven effective for
simplifying both analytical and numerical solutions of electro-
magnetic wave problems [14], [15]. Among the simplest kind is
the standard impedance boundary condition (IBC), whose accu-
racy was improved by the extension to generalized impedance
boundary conditions (GIBC). The works of [16]–[18] used
such approximate impedance boundary conditions to study
corrugated surfaces. In a related way, the asymptotic strip and
corrugations boundary conditions (ASBC and ACBC) were in-
troduced in [19] to treat strip-gratings and corrugations rapidly,
which provide exact solutions as the periods tend to zero.
Despite these cited works, none has studied corrugated sur-

faces in terms of the dispersion diagram conveying the sur-
face-wave properties especially for oblique azimuth propaga-
tion directions, or presented accurate characteristic equations
from which such a diagram is obtained. Field distributions of
the surface wave modes supported by the corrugations are also
nowhere to be found. To the author’s knowledge, neither are
there publications on investigations into the reflection proper-
ties of planar corrugations, not even for the principal azimuth
planes of incidences, let alone oblique ones. To conduct such
studies would prove essential for a more thorough characteri-
zation of high-impedance surfaces (HIS) and artificial magnetic
conductors (AMC) composed of such corrugated surfaces as op-
posed to just reflection studies of only the two principal azimuth
planes.
In this work, planar corrugations of infinite extent shall be

analyzed using the ACBC in conjunction with classical vector
potential analysis, leading to the derivation of a transcendental
characteristic equation, from which the surface-wave band
diagrams can be generated for the principal direction (per-
pendicular to the grooves/ridges) as well as oblique azimuth
angles of propagation. Surface-wave modal field distributions
of the corrugated surface obtainable by the formulation shall
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Fig. 1. Infinitely long corrugations of infinite expanse.

also be presented. The transverse resonance technique (TRT) is
an alternative for deriving the characteristic equations for TM
modes of the planar corrugated structure for the principal (per-
pendicular to the ridges) and oblique directions of surface-wave
propagation, solving of which also generates the dispersion
diagram. It will however be demonstrated that the accuracy
of this TRT for oblique azimuth directions of surface-wave
propagation is poor. We shall herein show that our new method
based on ACBC overcomes this inadequacy and provides
extremely accurate dispersion diagrams. In addition, by using
a novel concept of considering unusual transversely phased
plane-waves, closed-form analytic expressions for the complex
reflection coefficient of both TM and TE polarized plane-wave
incidence shall be derived as functions of all parameters,
especially the azimuth (incidence angle as well. Numerical
results computed for both the dispersion and reflection-phase
diagrams will be presented, all of which are validated by two
full-wave solvers: 1) commercial software CST Microwave
Studio, and 2) a self-developed moment-method code [20].
It will also be shown that this ACBC method is innumerably
faster in computation speed than these full-wave solvers, by
thousands of times.

II. THEORY AND FORMULATION

Consider the planar corrugated surface of Fig. 1, which is par-
allel to the plane with periodicity along and perpendic-
ular direction along . The period and depth of the corrugations
are and , respectively. The width of each groove along is
. The permittivity and permeability of the material filling the
groove are and , whereas and represent
the parameters of the upper half-space above the corrugations.
In the following field expressions, a universal
term has been included to represent the component of surface
wave propagation along the direction, where is the phase
constant along , parallel to the grooves and ridges. This term
applies also to the fields within the grooves of the corrugations
for phase continuity with the upper half-space region.

A. Groove Fields of Corrugations

The fields within the corrugation grooves are derived by clas-
sical vector potential analyses for and modes and the
enforcement of appropriate boundary conditions requiring the

vanishing of tangential electric field components on the metallic
walls of the grooves [21]. Doing so, the , and components
of the and fields of the and modal fields within
the groove are stated as follows:

(1)

and (2)

(3)

(4)

(5)

(6)

where

and

in which may be or . The wavenumber of the medium
filling the groove is , with

being the angular frequency [rad/s]. represents the
amplitude coefficient of the mode within the groove, and is
an integer symbolizing themodal index representing the number
of half-cycle variations along .With phase continuity being the
reason, is the universal wavenumber along shared by both
the presently considered groove region as well as the upper-half
space above the corrugations (the latter as elaborated in the next
subsection). is the wavenumber along in the groove for
the mode. Obviously, all subscripts or superscripts “groove”
signify that their associated quantities pertain to the groove re-
gion. The symbols and are introduced to abbreviate the
notation.

B. Modal Fields Within Upper Half-Space Above Corrugations

Likewise, by vector potential analysis as well, the various
components of the and fields of the and modal
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fields in the upper half-space region above the corrugations are
stated as follows:

(7)

and (8)

(9)

(10)

(11)

where and represent the amplitude coefficients
of the TE and TM modes, respectively, in the upper half-space
above the corrugated surface. Similar to the groove region,

and are the wavenumbers along in the upper
half-space region for the TE and TMmodes, respectively. Like-
wise, and are the corresponding wavenumbers
along . As obvious as before, all subscripts or superscripts
“above” indicate that their associated quantities pertain to the
upper half-space region above the corrugations.

C. Asymptotic Corrugations Boundary Conditions (ACBC)

Defining first the unit vector parallel and orthogonal to the
corrugations as and , respectively, which for our configura-
tion of Fig. 1 are and , the asymptotic corrugations boundary
conditions (ACBC) are stated as follows:

(12)

(13)

(14)

(15)

where

noting the incorporated subscripts TE and TM to the integer
modal index to distinguish between the mode types. Now,
coming to a crucial step, assume and in the
grooves, i.e., existence of only the dominant (TEM)

mode and absence of all TM modes, thereby having just simply
in place of in (12) and (14).

For (12), it is observed, respectively from the upper equation of
(1) and the lower equation of (4) that

and (16)

are already satisfied by the and conditions
under ACBC. As for (13), we require

(17)

where the upper equation of (7) and the top one of (10) are used.
By perceiving combined modal TE and TM fields as a collective
whole, meaning that each modal group (or type) is regarded as
a superposed entirety already encompassing all its component
fields, but each sharing a common phase
term, the phase constants along the and directions parallel
to the surface are universal, i.e., and

in order for phase continuity across the
interface. Thus,

(18)

Proceeding to (14), we require

(19)

in which the second term on the left-hand side vanishes [lower
of (6)].
Using the upper equation of (3), the lower one of (7), and the

bottom one of (10):

(20)

where is the groove index, noting how the left-hand side quan-
tity varies with in a stepwise manner, with each term of its
summation being a piecewise constant within the groove,
i.e., .
Focusing within the groove only, the summation over the

groove index in (20) is removed, resulting in

(21)

and as the period tends to zero, the factor on the
right-hand side of this (21) becomes approximately ,
which is a constant within (the
groove). This expresses that the continuous variation with can
be approximated as a piecewise discrete constant over the
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groove of nearly zero width. Hence, the resultant
gets canceled out on both sides, leading to

(22)

Moving on to the final (15), we require

(23)

in which again the second term on the left-hand side vanishes
[lower of (1)].
Using the upper equation of (4), the top equation of (9), and

the upper one of (11),

(24)

In the same way as for (20) and (21), we have

(25)

For surface-wave along the -plane surface of the corruga-
tions, and are required to be imaginary, i.e.,

and (26)

The general formula for is given by

(27)

where is the phase constant along in the groove region.
But since within each groove as
under ACBC (presence of only dominant mode assumed), i.e.,

(28)

thus (27) reduces to (under ACBC)

(29)
and due to the reason of collective whole mode sharing a
common pair of surface wavenumber components:
and , which together constituting a certain surface wave
modal wavenumber

(30)

as explained just after (17) earlier, we may equate both modal
(TE and TM) attenuation constants along the vertical direction
(perpendicular to the corrugation surface) for the upper half-
space region above the corrugations, i.e.,

(31)

(32)

where is positive real.

D. Transcendental Characteristic Equations

The three pertinent equations are (18), (22) and (25), and the
three unknowns are , , and , which may
be cast into a 3 3 matrix system. By setting the matrix deter-
minant to zero for nontrivial solutions, we obtain the following
characteristic equation:

(33)

where

(34)
Depending on which two of the following three quantities: 1)

frequency , 2) , and 3) , are a priori pre-
fixed as known values, the third quantity remains as the only un-
known in this (33), which may then be solved for as roots of this
characteristic equation. Doing so yields the required informa-
tion for plotting various path-regions of the dispersion diagram.

E. Solution of Matrix Equation for Amplitude Coefficients

Equations (18), (22), and (25) may be cast into the following
matrix equation:

(35)

where the matrix elements need no further specification.
By performing Gauss elimination, the following is obtained:

(36)

in which is any arbitrary scaling amplitude. All
matrix elements would have become fully evaluatable upon

solving the characteristic equation of (33) for either the phase
constant ( or ) or frequency of interest, and by substi-
tuting these , , and into (1)–(11), the com-
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plete closed-form analytical expressions of the fields in both the
groove region and the half-space above the corrugations may be
obtained as mathematical functions of all geometrical and ma-
terial parameters of the corrugated structure.

F. Consistency With Modal Surface Impedances and Input
Impedance of Shorted Transmission Line

The surface impedance looking down at towards the
PEC floor of the corrugations are defined as follows:

(37)
where is the familiar modal impedance

, therefore yielding the familiar input impedance of
a shorted transmission line of length and characteristic
impedance .
Similarly, the input impedances looking at interface

upwards into the upper half-space region for the two modal
groups are

(38)

being the familiar modal impedance, whereas

(39)

being the familiar modal impedance

G. Refinement Factor via Period to Groove-Width Ratio

From Section II-F, and of (38) and (39) were
the impedances looking upwards into the upper half-space re-
gion above the corrugations. The and in the numerators
of the expressions for these impedances are -field components
that are tangential to the corrugation surface and which vanish
over the top PEC surfaces of the metallic ridges. Before pro-
ceeding further, it is first emphasized that the rightmost sides
of both (38) and (39), being the well-known classical expres-
sions for the TE and TM modal impedances of a medium with
parameters for propagation along , must always
hold and stay unchanged (there is no reason for these imped-
ances to be altered). Hence, it may be hypothesized that the tan-
gential and field components ( either or ),
but only on the corrugation surface: , may be corrected
by an incremental ( 1) factor , where is the corruga-
tion period (see Fig. 1 again) and is the groove-width. In this
way, amultiplication of these correctivelymagnified and

fields on the corrugation surface with the reduction ( 1)
factor (as required by the fractional existence of the upper
region’s tangential -field components over only the apertures
of the grooves, but vanishing over the ridge-tops), neutralizes
that aforementioned incremental factor, therebymaintaining the

TE and TM modal impedances looking upwards into the upper
half-space region above the corrugations, which
must be preserved as explained earlier. However, this correc-
tion factor, applies only to the tangential
components and only just over the surface .
To mathematically convey these textual descriptions, the fol-

lowing corrected tangential field components are defined:

(40)

in which denotes either or . The script correc signifies
corrected and represents E or M as before. The right-side field
quantity is that of the original ones in (7) and the top and bottom
of (10). Notice the explicit evaluation at to stress the
validity of this correction only over the surface. Subsequently,
these corrected tangential electric field components are used
for the numerators of the surface impedance [those of (38) and
(39)]:

(41)

noting the reduction factor as explained. Substituting
in (40) yields back exactly the same ones as (38) and (39),
thereby maintaining their rightmost classical expressions:

and as required. Therefore, what
this (41) says is that the upward-looking surface impedance
involving tangential electric field components at effec-
tively uses the uncorrected tangential -fields also at
given by the original expressions of (7) and the top and bottom
of (10), thus appropriately preserving (38) and (39).
As such, the key concepts are as follow. The upward sur-

face impedance [(38), (39) or (41) combined] involves tangen-
tial fields of the upper half-space region as a collective whole
throughout the entire surface, since indeed the entire upper half-
space may be perceived as a transmission line for propagation
along the vertical direction. The nullification of the tangen-
tial electric field components of the upper half-space across the
metallic ridges through the reduction factor of is thus re-
quired. On the other hand, the four ACBC relations (12)–(15)
are all satisfied individually over each groove aperture, in an
element-by-element fashion [see (20) and (21)]. Hence, the tan-
gential electric field components of the upper half-space region
used in these boundary conditions are exempted from this re-
duction factor. However, they must use the corrected form of
(40) evaluated at . In other words, it is these amended
tangential electric fields over this interface that are used in the
ACBC equations (indeed involving only tangential field com-
ponents parallel to the corrugated surface). Subsequently, since
the ultimate characteristic equation of (33) is derived from these
rectified ACBC relations, the correction factor thus shows up in
this transcendental relation (33), i.e., is translated to it (see the
ultimate corrected version of (44) later).
However, it is noted that no such correction factor is re-

quired of the fields within the grooves. This is because their
constrained existence by mathematical definition of (1) to (6)
already ensures that they prevail just exactly over the aperture
of the grooves. Hence, the groove-aperture fields used in
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(37) for the surface impedance looking downward towards
the PEC-shorted end (floor) of the TEM-type parallel-plate
transmission line modeling the grooves, which also must not be
altered [i.e., the extreme right-hand side of (37)], do not need
any adjustment in amplitude, since no reduction of tangential
electric fields across PEC ridges is entailed, unlike the fields in
the upper-half space above the corrugations.
In order to implement this refinement, the characteristic equa-

tion obtained by equating the system matrix determinant to zero
as done in Section II-D has to be re-derived.
The three pertinent equations (18), (22), and (25) were, re-

spectively, from (17), (19), and (23), of which only the former
two involves terms whereas the latter equation does not
contain any of them. Since the correction factor needs
only be applied to the field terms, only (17) and (19)
require amendment. However, it can be easily seen that this
multiplicative correction factor would get canceled throughout
(17), leaving it unchanged. Therefore, the only change required
would be of (19), which becomes

(42)
Consequently, only (22) needs to be amended to become

(43)

As a result, and have to modified by including now
the multiplicative correction factor to each of them. The
system matrix determinant shall then also be amended, leading
to the following corrected characteristic equation that takes into
account the effects of non-negligible ridge-width to period ratio:

(44)

Hence, note that the correction factor only amends the charac-
teristic equation so that it represents a more accurate dispersion
relation (as will be demonstrated later) and provides a better ma-
trix solution for the modal amplitude coefficients [see (35) and
(36)]. It however should neither appear in (7) nor the top and
bottom relations of (10) representing the tangential -fields as a
function of general spatial coordinates, since this factor is valid
only over the surface but not anywhere else.

III. TRANSVERSE RESONANCE TECHNIQUE

In this section, the transverse resonance technique (TRT) for
deriving the transcendental characteristic equation for the planar
corrugated surface shall be presented.

A. Modes

According to the TRT, the surface impedance “looking”
downwards towards the corrugated surface must equal that
“looking” upwards into the upper half-space, i.e.

(45)

noting the nature of the modal impedance ‘looking’ up-
wards on the right-hand side, whereas the modal type on the
left-hand side is TE since there can only be TE modes within
the grooves under ACBC. Using (37) and (39) for the left and
right hand side quantities, we have

(46)
noticing the averaging factor for the impedance “looking”
down into the grooves on the left-hand side, and where

(47)

since inside the grooves (cavities), and with

and
(48)

The scripts denote “above,” meaning the upper-half free-
space above the corrugations.
Upon squaring both sides of (46), can be expressed as

(49)

which, for a certain pair of fixed values, can be solved
for the frequency as roots, manifested within and
the two wavenumbers and given by (48). As this

in turn pertains to a certain surface-wavenumber:

(50)

meaning that each such has its corresponding resonant
detected as roots, the graph of versus may be generated,
being the dispersion diagram.

B. Modes

In a similar fashion as modes, the surface-wavenumber
for nonzero phi angle of grazing propagation on the corrugated
surface can be derived by the TRT. Doing so, we obtain

which upon using (37) and (38), yields
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(51)

noticing again the averaging factor for the impedance, and
where

(52)

since may be approximated inside the grooves (cavities)
to good accuracy, and with and as of (48).
Hence, in the same way as (49), (51) may be solved for the

frequency as roots for a certain fixed .

IV. NUMERICAL RESULTS AND DISCUSSION

A. Dispersion Diagrams

Here, we shall present the dispersion diagrams for the con-
ventionally named “ ” path of the typical -directed
corrugations having periodicity along (the plane is par-
allel to the corrugated surface), being actually path
here for the present axis configuration with periodicity, as
shown in Fig. 1. For this “ ” case ( here),

is set to zero. Subsequently, the graph of versus
shall be generated, the latter being the solved roots ob-

tained repeatedly for every frequency considered. For this case,
instead of numerical root-solving, the dispersion equation may
be cast into a cubic form, whose roots can then be obtained via
the analytic formulas. The dispersion diagrams generated by the
present ACBC-based method are compared with those obtained
from two full-wave validating tools: a commercial full-wave
simulator software: CST Microwave Studio, as well as an in-
dependent self-developed computer program code [20] based
on full-wave modal analysis with the method of moments using
parallel-plate waveguide (PPW) cavity Green’s functions (GF)
and a numerical Green’s function for stratified media called
G1DMULT. Two arbitrary examples shall be studied as follow.
1) First Arbitrary Example—Comparison with Moment

Method: For this so-called first arbitrary example, the pa-
rameters are as follow: period mm, groove-width

, , depth mm,
; .

The “ ” ( here) dispersion for this case is
shown in Fig. 2, obtained by the present ACBC-based method
(shown as lines with cross-type markers) and compared with
that generated by the moment method code.
As seen, the roots of the characteristic equation (33) produce

a dispersion trace which takes on the form of cyclic “peaking”
of the (horizontal axis) at various resonant frequencies.
Moreover, the trace just “grazes” the light-line, i.e., it is tangent
to it, occurring at frequencies slightly above those whereby the
trace has dropped back to its local minima (of the horizontal
axis value) and begun to rise again. However, as observed, only
the rising parts of the “peaking” trace after the “grazing” are

Fig. 2. “ ” ( here) dispersion for first corrugation ex-
ample—ACBC method compared with full-wave moment method [20].

Fig. 3. “ ” ( here) dispersion for second corrugation ex-
ample—ACBC method (circle markers) compared with commercial solver
CST (all other marker-types).

relevant, for which the agreement with the dispersion trace gen-
erated by the full-wave moment method code is seen to be su-
perb. In fact, they agree so well that the traces are virtually
indistinguishable.
An interesting aspect is now pointed out. The frequencies

at which the peaks occur coincide perfectly with the so-called
“soft” frequencies [11] of the corrugations, defined as

(53)

where is an integer (includes zero) representing the order of
the soft boundary condition, is the speed of light in vacuum,

is the depth of the corrugations at which the soft boundary
condition holds, being simply the groove depth , and
is the relative permittivity of the dielectric filling the grooves.
2) Second Arbitrary Example—CST Comparison: For

this so-called second arbitrary example, the parameters are
as follow: period mm, groove-width ,

, depth mm, ;
.

This time, a comparison is made with the other validator the
commercial full-wave solver: CST, as shown in Fig. 3. Evi-
dently, the agreement is again seen to be excellent.
As additional results and still on this second example, in

order to demonstrate the efficacy of this ACBC method for not
only the principal direction of surface-wave propagation, but
for oblique directions as well, the dispersion graphs for one
other path of the typical “ ” dispersion
diagram typical of two-dimensional periodic electromagnetic
bandgap (EBG) structures is given in Fig. 4 providing the
“ ” portion ( here). However, for the present
case of corrugations, there is actually no periodicity in the
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Fig. 4. “ ” ( here) dispersion for second corrugation ex-
ample—ACBC method (solid traces) compared with commercial solver CST
(markers).

direction ( here) along them. Nonetheless, we shall still set
the Brillouin limit along this direction as divided by the same
period (along ) of the corrugations, thus assuming a square
unit cell (although strictly, the unit cell is an infinitely long
strip in the plane of the corrugations, infinitely long along
, the orientation of the corrugations). Doing this is merely out
of adhering with the procedure in the validating software CST
for treating typically two-dimensionally periodic structures
rather than of any scientific basis. The comparison between the
present ACBC method and CST for Fig. 4 again demonstrates
fine agreement.
3) Refinement Factor for Accuracy Improvement: Especially

for Small Groove-Width to Period Ratios: We now present
the results of including the correction factor in the charac-
teristic equation conveyed by (44), thereby exemplifying its
importance.
“ ” path ( here)
The path of the dispersion diagram is studied first.

A wide assortment of cases spanning over three parameters has
been thoroughly simulated, both by the present ACBC method
[using the uncorrected (33) and corrected (44)] and the self-de-
veloped full-wave moment method code [20], for
(being a particularly small value) and with uni-
versal throughout. The investigated parameters are i) the period
( 1 mm, 2 mm & 3 mm), ii) the groove relative permit-
tivity ( 2 to 7 in unit steps), and iii) the corrugation
depth ( mm to 7 mm in unit mm steps). Due to obvious
space limitations, the dispersion diagram for only one randomly
selected case amongst the large parametric space can
be presented. The sub-case chosen for presentation pertains to

mm, , mm, whose dispersion dia-
gram is given in Fig. 5. As clearly evident, the correction factor

in the characteristic equation of (44) indeed significantly
improves the accuracy of the ACBC method without any cor-
rection factor.
“ ” path ( here)
The results for oblique directions of surface-wave propaga-

tion are now given, i.e., the path of the dispersion
diagram (the “ ” according to usual convention when
the horizontal periodicity is along ). As was for the preceding

path, the solutions for a diverse range of parametric
cases had been generated, by the present ACBC method [using
the uncorrected (33) and corrected (44)] and the full-wave mo-
ment method code, but again due to space constraints, only

Fig. 5. “ ” ( here) dispersion diagram, for . Un-
corrected [eq. (33)] and corrected [eq. (44)] ACBC methods compared with
full-wave moment method [20], for mm, , mm.

Fig. 6. “ ” ( here) dispersion diagram, for . Un-
corrected [eq. (33)] and corrected [eq. (44)] ACBC methods compared with
full-wave moment method [20], for mm, , mm.

TABLE I
CPU TIMES FOR DISPERSION-DIAGRAM PROPERTIES BY THREE METHODS

one dispersion diagram shall be provided by Fig. 6 pertaining
to an arbitrarily chosen case with parameters: ,

mm, , and mm. Evidently, the cor-
rection factor in (44) again considerably enhances the cor-
rectness of the ACBC method for treating oblique surface-wave
propagation as compared with the case without any correction
factor.
4) Comparison of Processor Times Between ACBC and Full-

Wave Solvers (CST and Moment Method): Table I tabulates the
CPU processing times taken up for acquisition of the dispersion
graph for the “ ” path ( here) for that same second
corrugation example (of Section IV-A2) by all three methods: i)
CST, ii) the moment method, and iii) the ACBC method. The
same number of data points in the band-diagram generated by
all three tools is considered for fairness of comparison. As seen,
both CST and the moment method clock over 15 000 seconds
(17 233 and 15 079 seconds, respectively), whereas the ACBC
approach requires only just 2.23 seconds, a 7725-fold reduc-
tion in CPU time compared to CST and a 6760-times mitigation
when up against the moment method code.
Even when the dispersion diagram for oblique azimuth angles

of surface-wave propagation is the subject of comparison, i.e.,
for the “ ” ( here) path, the generation of which
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Fig. 7. Magnitude of -field components plotted against vertical direction,
for several frequencies within the first surface wave passband (0 to 10 GHz).
Upper: and lower: .

by ACBC requiring a numerical search for roots rather than di-
rect evaluation of formulaic roots of cubic equations as would
had been possible with the principal direction (the path),
the CPU time taken by the ACBCmethod is only slightly longer,
being just 4.274 seconds, which is still an immensely shorter du-
ration than either CST or the moment method (also as seen from
Table I).

B. Field Distributions

The mesh-plots of the fields as mentioned at the end of
Section II-E are now provided for the second arbitrary example
of Section IV-A2. Fig. 7 shows the variation of the magnitude
of the -field components with the vertical -direction for
various frequencies within the first surface wave passband
(0 to 10 GHz according to Fig. 3), whereas the graphs of
Fig. 8 are for the -field components within the second sur-
face-wave passband from 22 to 30 GHz. As the frequency
rises and moves deeper into the first surface-wave regime (2.05
through 9.05 GHz in 1-GHz steps, as selected for plotting), the
corresponding increased surface-wave phase constant
beyond and thus strengthened attenu-
ation constant along the vertical direction [see (32),
with ] is indeed demonstrated by the progressively
steepened exponential decay of the various field components
with increasing frequency. In addition, the continuity of the
tangential , and components across the
interface between the corrugations and the upper half region
is observed for all frequencies within both surface-wave pass-
bands, as required.
The closed-form analytical field expressions that yield these

graphs offer important prospects of being used in the modal
analysis of such planar corrugated surfaces in coexistence
with other microwave structures, such as mode-matching with

Fig. 8. Magnitude of -field components plotted against vertical direction,
for several frequencies within the second surface wave passband (22 to
30 GHz).

waveguides, and even facilitate calculations of radiation from
apertures of surface-wave antennas composed of corrugations.
The fact that these field expressions are obtainable by this

ACBC method puts it on par with full-wave solvers known for
this same ability, one which the TRT lacks. Yet, the ACBC
method surpasses full-wave solvers in terms of speed, as the
previous subsection has shown.

V. COMPARISON WITH TRT

A. Modes

By solving (49) for the frequency as roots and then plotting
against the corresponding given by (50) as prescribed
earlier for an arbitrary case of corrugations: mm,

, mm, mm, and for a fixed
oblique azimuth phi angle of surface-wave propagation direc-
tion: (measured from the -axis towards the -axis),
the comparison between the dispersion diagram obtained by
(49) with those generated by our ACBC approach using (44) as
well as the self-developed full-wave moment method code [20]
serving as the supreme check is given in Fig. 9. As observed,
our ACBC method provides higher accuracy than the TRT. It is
noted that both these methods have the correction factor (
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Fig. 9. Comparison between moment method, ACBC approach of (44) and
TRT-derived Eq. (49) for polarization; for fixed oblique angle
of surface-wave propagation direction (measured from toward axis), for

mm, , mm, mm.

Fig. 10. Comparison between moment method, ACBC approach of eq. (44)
and TRT-derived eq. (51) for polarization, for fixed oblique
angle of surface-wave propagation direction (measured from toward axis),
for mm, , mm, mm.

for ACBC, for TRT) incorporated and thus are compared
fairly on a common basis.

B. Modes

Likewise for modes, the efficacy of (51) shall be tested
for the arbitrary case of (as before, measured from
the towards axis) For another random set of parameters:

mm, , mm, mm, and
as stated, Fig. 10 provides a comparison between the

dispersion diagrams obtained by the full-wave moment method
(serving as the check), the ACBCmethod via (44), and the TRT-
derived characteristic equation (51) for mode. Evidently,
the accuracy of the ACBC approach is again seen to be notably
higher than that of the TRT.

Fig. 11. (a) polarized plane wave. (b) polarized plane wave.

VI. REFLECTION ANALYSIS FOR OBLIQUE AZIMUTH PLANES
OF INCIDENCE (NONZERO INCIDENT PHI)

A. Polarized Incidence

Consider now, the -directed corrugations lying in the
plane illuminated by a polarized incident plane wave as
shown in Fig. 11(a). The medium parameters are with
associated wave impedance and wavenumber

.
The fields of this plane wave are stated as

(54)

(55)

where

and
(56)

Extracting just the components in the
plane: , and , we write the following, as shown at
the bottom of the page, noting the appending exponential terms
representing unusual phasing along the -direction, thus being
unlike typical plane-waves propagating within the plane, i.e.,
a -polarized plane-wave ( -directed -field) propagating
in the plane but with an unusual phase variation
along .

(57)

(58)
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The modified wave impedance of this unusually phased plane
wave (along ) is then the ratio of the and field amplitudes

(59)

Subsequently, using the known formula for the reflection co-
efficient of a perpendicularly polarized ( -field orthogonal to
the plane of incidence) plane-wave incident on the planar in-
terface separating two semi-infinite homogeneous media with
parameters and for the incident and transmit
regions, respectively, being [21]

(60)

where and are the angles of the incident and transmitted
wave directions measured from the interface normal, the re-
flection coefficient for the present case of the unusually phased

-polarized plane-wave propagating in the plane
may be written as

(61)

where a zero transmitted angle has been assumed upon
entering the grooves of the corrugations, and where

(62)

obtained from (37), being the familiar input impedance looking
towards a shorted load of a transmission line with length (mod-
eling the groove) and characteristic impedance taking on the
form of a TE wave impedance (since only TE modes assumed
inside the grooves due to ACBC; see earlier sections), and with

(63)
where is the period along of the corrugations, and are
the width and depth of the grooves, and ( ,

) are the medium parameters of the groove-filling.
Results for the phase, real part and imaginary part of the

reflection coefficient produced using (61) for an arbitrary case
of corrugations and incidence angles are given in
Fig. 12(a), (b), and (c), respectively. Corresponding results
generated by the self-developed full-wave moment-method
code [20] are also provided alongside for comparison and as
the supreme check. The parameters for this case are: period

mm, , depth mm,
groove-width mm, , and .
As seen, the agreement with the full-wave approach is excellent.

B. Polarized Incidence

Consider next, the polarized incident plane wave as
shown in Fig. 11(b). The fields of this plane wave are stated as

(64)

Fig. 12. (a) Phase, (b) real part, and (c) imaginary part of the reflection
coefficient obtained by (61) and compared with moment-method code: for

mm, . depth mm, groove-width
mm, , and .

(65)

In a similar procedure, extracting only the components
in the plane: , and , as shown in (66)
and (67) at the bottom of the next page. Again as indicated,
these fields are those of a -polarized plane-wave propa-
gating in the plane but with an unusual phase vari-
ation along . The modified wave impedance of this unusually
phased plane-wave is

(68)
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Fig. 13. (a) Phase, (b) real part, and (c) imaginary part of the reflection
coefficient obtained by (70) and compared with moment-method code: for

mm, . depth mm, groove-width
mm, , and .

Using this time the known formula for the reflection coefficient
of a parallel-polarized plane-wave incident on the planar inter-
face between two media, being [21]

(69)

and as before, assuming upon penetrating into the
grooves, we obtain

(70)

where is the same as that of (62), being still the same TE
type wave impedance and not the TM type wave impedance
as what one might wrongly imagine initially (since TM polar-
ized incident plane wave is presently considered), because no

modes exist inside the grooves under ACBC (see earlier
section).
As before, results for the phase, real part and imaginary

part of the reflection coefficient produced using (70)
for another arbitrary case of corrugations and incidence
angles are given in Fig. 13(a), (b), and (c), respec-
tively. Corresponding results generated by the self-developed
full-wave moment-method code are also provided alongside
for comparison and as the supreme check. The parameters
for this case are: period mm, ,
depth mm, groove-width mm,

, and . Evidently, the agreement
with the full-wave approach is again seen to be superb.
These direct analytic formulas of (61) and (70) for the

and complex reflection coefficients (not only the phase or
magnitude, but both) of planar corrugations provide speeds of
characterization as HIS and AMC surfaces that are higher than
most full-wave solvers.

VII. CONCLUSION

An accurate but yet rapid method for analyzing surface-wave
as well as reflection characteristics of planar corrugated
surfaces is presented. Based on the use of asymptotic corru-
gations boundary conditions (ACBC) which yield solutions
that approach exactness as the period of the corrugations tends
asymptotically to zero, this method is able to treat not only the
principal but also oblique azimuth planes of surface-wave prop-
agation (for dispersion analysis) as well as of plane space-wave
incidence and reflection (reflection analysis), for both TE and
TM polarizations. In addition to the transcendental character-
istic equation from which surface-wave dispersion properties
(relating frequency to the surface-wavenumber) can be ac-
quired, the formulation of this ACBC-based tool is also capable
of producing explicit closed-form analytical expressions for the

(66)

(67)
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fields within both the groove region and the upper half-space
above the corrugations, being mathematical functions of all ge-
ometrical and material parameters of the corrugated structure.
These have potential to serve as facility for the modal analysis
of such corrugated surfaces that coexist with other microwave
devices, such as mode-matching with waveguides, or even
for the analysis of finite corrugations. Furthermore, these field
expressions also can find utility in the studies of surface-wave
antennas made up of such planar gratings by permitting Fourier
integration of the radiating aperture.
Moreover, not only is this ACBC method, for both TE

and TM polarizations, better in accuracy than the conven-
tional transverse resonance technique (TRT), the latter already
well-reputed for offering quick and accurate insights into
the modal dispersion properties, it also provides speedup in
computation time as compared to CST Microwave Studio and
a moment method code, with reduction in CPU clock times
by many thousand-folds, yet without compromising accuracy.
This is on top of the fact that the ACBC technique holds up
well to full-wave solvers in terms of the ability to provide field
expressions, something which the TRT or other asymptotic
methods may not offer.
By an unprecedented concept of atypical plane waves that

are unusually phased along a transverse direction when prop-
agating within a principal plane, analytical expressions for the
complex reflection coefficients of plane-waves impingent on the
corrugated surface were also derived for any general oblique
azimuth angle of plane-wave incidence, for both TE and TM
polarizations. These closed-form mathematical formulas, being
functions of all parameters of the corrugation structure as well as
the incident plane-wave (its direction and polarization), provide
virtually instantaneous acquisition of the complex reflection co-
efficient, both its real and imaginary parts.
All in all, this proposed new treatment tool for planar corru-

gations offers improvements over both the classical TRT and the
genre of full-wave solvers, in terms of accuracy and the ability to
yield field expressions compared with the former, while in terms
of speed relative to the latter. It provides fast but yet accurate
characterization of EBG structures, HIS/AMC surfaces, soft/
hard surfaces, and surface-wave antennas composed of such
gratings, in terms of surface-wave dispersion and plane-wave
reflection properties, as well as field distributions. This con-
sequently affords likewise swift and effective designs of an-
tennas and microwave devices that make use of such corrugated
surfaces.
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