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Nonvariational approach to impurity states in quantum wires

J.F. Jan and Y.C. Lee
Department of Physics, State University of ¹wYork at Buffalo, Arnherst, ¹mYork 1$MO

D.S. Chuu
Electrophysics Department, National Chiao Tung University, Hsinchu, Taiwan 80050, Republic of China

(Received 31 January 1994; revised manuscript received 7 June 1994)

While the binding energy and the ground-state wave function of a hydrogenic impurity in a strictly
one-dimensional or three-dimensional system can be exactly calculated, the case of finite but small
(a ( as) or large (a ) as) wire radius a is not amenable to an exact treatment, and is usually
left to the variational method as the only resort. However, the amount of computation involved in
variational calculations is large and its accuracy is sometimes difFicult to assess. We have developed
reliable and physically motivated perturbative approaches specifically to treat the a & a& and a ) a&
situations. The close agreement of our results with those from variational methods lends support
for our simpler method as an alternative to the variational approach.

There has been a great deal of interest in the quasi-
one-dimensional (Q1D) systems or so-called quantum
wires, which restrict electrons to moving in one dimen-
sion. Recent progresses56 in growth and fabrication
techniques have made possible the fabrication of quan-
turn wires with radii less than 100 A.. Theoretically, 7 ~s

the electronic properties of a hydrogenic impurity in a
quantum wire have been discussed by many researchers.
Loudon~ found the binding energy of a strictly one-
dimensional hydrogen atom to be infinite. Brown and
Spector discussed the binding energies of ixnpurities as
a function of the well width of the quantum wire with infi-
nite or finite potential barrier. The effect of location
of impurities with respect to the wire axis was also dis-
cussed. The shapes~z ~s of the circular or rectangular
quantuxn wires, with equal cross sections, were found to
have no significant eH'ect on the binding energies. In the
presence of a longitudinal magnetic Geld, the bind-
ing energies were predicted to be higher than the values
without xnagnetic fields.

Most approaches ' to finding the ground state of an
impurity in a Q1D wire depended on the variational
xnethod. However, the construction of variational trial
wave functions is based entirely on physical intuition. It
is difBcult to estimate the accuracy of the results &om
variational approaches. It would be xnost desirable to
have an alternative approach to the quantum wire prob-
lexn to serve as an independent check. Yet, as soon as the
radius of the wire deviates from zero (one-dimensional
wire) or infinite (three-dimensional wire), the problem
becoxnes not exactly soluble and it is often hard to de-
vise suitable approximation scheme to get at the solu-
tion. In this paper, we shall develop two nonvariational
xoethods to treat the sxnall-wire and the large-wire cases
separately.

The Hamiltonian for a hydrogenic impurity in a quan-
t»m wire is given by

P2 e2H= + V(p)2m e/Z2 + p&

where m is the electron effective mass, e is the static
dielectric constant, and V(p) is the confining potential.
In this paper, we shall use the infinite-barrier model for
the confinement potential. Then V(p) is zero if p ( a
and infinite if p & a, a being the radius of the wire. The
Schrodinger equation of this system, in general, cannot be
solved analytically due to the Coulomb potential. How-
ever, for a 1D quantuxn wire, this problem can be solved
exactly with the Hamiltonian

P2 ~2H=
2m .[Z[

(2)

1
Esp oc ——,P:0. (4)

This is obtained by solving the 1D hydrogen atom with
a truncated Coulomb potential V = —2/(~Z~ + a) and
then letting a approach zero. The relation between P
and a is given by P = 1/2 ln(a).

In a real but small wire system of radius a, the po-
2

tential energy V is approximately given by Z
which is qualitatively similiar to the truncated potential.
Then the factor P can be rewritten as P = 1/2 ln(a).
Accordingly, based on Eq. (3) the potential energy (V)
is roughly — ", [ln(~)] and the kinetic energy is still

given by the virial theorem, (Tz) = —2(V). A caution-
ary rexnark about the uncertainty relation for z motion is
in order here. With kinetic energy (Tz) = (b,Pz) /2m,
we identify b Pz —"[ln(~)]. From Eq. (3), the wave
function spread is b,z Pas ~ a~/2 ln(a). Hence
the uncertainty relation AZAPz h is satisified. On
the other hand, if we write as usual (Tz) DPz /2m,

The z motion is found to be extrexnely localized at the
ion's position, producing a minus infinity ground state
energy. The ground state wave function for a strictly 1D
hydrogen atom is

1
@s,g(z) oc e

aB
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@(Z,p) oc Jp
l

'p
l @(Z) .

a ) (5)

The validity of such a factorized form in the limit
of Aa &( 1, implied by the variational trial function

4'(p, Z) oc cos( & )e "V~ + was pointed out by Bas-
tard in a quasi-two-dimensional problem. 2 However, as
we shall see, the averaging out of the fast p-motion based
on 4'(p, Z) of Eq. (5) will efFectively extend its range
of validity to beyond a a~, seen later to be consis-
tent with the variational result in this range. This is
not totally unexpected, since a physical averaging gen-
erally irons out the inaccuracies in the wave function.
In fact, when we compare the p-component kinetic en-

ergy T~ =
2

", to the Z-component kinetic energy

T, — 2lVl = ", (ln a) we see that T~ ) T, for
B

a & 1.89a~, which constitutes the range of validity for
the averaging process.

With the factorized wave function in Eq. (5) and
the Hamiltonian in Eq. (1), the Schrodinger equation
II@(z,p) = E%'(Z, p) takes the form

2

(AZ) h,/APz, and the potential energy (V) naively
as &z), minimization of (Tz) + (V) by adjusting (AZ)
would lead to a wrong result because V (&z) g (&z)
due to the fluctuation in QlD systems

Physically, along the radial (p) direction, the wave
function is dominated by the behavior of a particle con-
fined in an infinitely deep but narrow well. The radial
motion then includes the kinetic energy (T~) Ft /2ma
and the ground state wave function Jo( "p), where Xoq
corresponds to the first root of the zeroth order Bessel
function Jo. The p-motion energy (T~) —, will go to
infinity much faster than the above mentioned Z-motion
energy (Tz) (ln ~) . Similarly, the binding Coulomb
potential energy in the Z motion, (V) —(ln a)2, is
also much weaker than (T~). Accordingly, we are moti-
vated by the above physical considerations to first aver-
age out the fast p motion and then treat the remaining
Z motion. To implement this idea, it is then reasonable
to assume a factorized form for the ground-state wave
function

with a~ = eh /me2 as unit length, and R = e /2ea~ as
unit energy. The factor % is the normalization constant
defined by

2

Z2 + 2
(10)

which serves to define g, the average position in p direc-
tion. For a given radius a, the value of I0 is calculated
to make the simple efFective potential V,'&(Z) of Eq. (10)
best resemble the averaged potential V,tr(z) of Eq. (8).
In our calculation listed in Table I, the average position
g is found to be considerably smaller than the well width
a, va.idating thus the factorized form in the limit Ag & 1,

15.0

(1) Variational Method

(2) Pseudopotential

(3) Effective Potential

This equation can be considered as for a 1D atom in
an efFective Coulomb potential V,s(Z), which is seen to
be an average of 3D Coulomb attraction over the fast p
motion of the electron. Due to the finite value of the
averaged p, this V,g is weaker than the 1D Coulombic

2

Z
An advantage of the effective potential is that there

is no singularity in V~ for all Z. It leads to a much
simpler mathematic problem. Note that once the fac-
torized form of III(z, p) in Eq. (5) is established for fi-

nite wire radius a, the concept of the effective poten-
tial V,s(z) of Eqs. (7),(8) is exactly valid, containing no
more mathematical approximation. The results of solv-
ing Eqs. (7),(8) directly by numerical method are shown
in Fig. 1. The binding energy was found to be larger and
larger for smaller and smaller well width a, which agrees
with the results of other works. In the large well width
limit, however, our method of eH'ective potential ceases
to be valid because the decoupled wave function is no
longer viable.

To gain more insight into V,tr(Z) of Eq. (8) and its
relation to the decoupled wave function in Eq. (5), we

approximate the efFective potential V,g by a simple form

= EJo(, ' p)&(z) (6)

d2
2 2 2 (Ao,-„Z. + ~ PJo

l
P l

dP y(Z)
o Z2+p2 q a )

z — ",
l 4(z) . (7)

Hence, we define

V,g(z) = N or )ld
QZ2 + p2 g a )

Multiplying by Jo( "p) and integrating over p from p =
Oto p=a, we get
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FIG. 1. The binding energies are plotted as a function of
the mell width a for (1) variational method, (2) psendopoten-
tial method, (3) efFective-potential method.
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TABLE I. Averaged p position in V ff.
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6.0
for different well widths a

I

14649

a(as)
0.01
0.05
0.10
0.50
1.00
1.50
2.00

e(as)
0.0037
0.0155
0.0463
0.2222
0.4153
0.5765
0.7077

4.0

Z)
tO

0
CL

g 20

instead of merely Aa & 1. Our numerical results in Fig. 1
indeed show that the effective potential gives rise to re-
sults in close agreement with the variational method up
to a 2a~.

Figure 2 shows the efFective potentials and the ground-
state energies for difFerent values of well width. For 6nite
well widths, the efFective potentials are truncated due to
the nonzero value of g, and hence there is no pole for
the entire range of Z. However, the efFective potentials
become the 1D Coulomb potential as the well radius a
approaches zero. The square of the ground state wave
function g(Z) is plotted in Fig. 3 which shows the grad-
ual spreading and aattening of @(Z) as the radius a in-
creases. The wave functions we obtained are consistent
with Loudon's result, r Eq. (5).

The variational trial wave function used by many
researchers ' 1s9)10 '

~+ox l —p z'+p'4(p, Z) oc Jo
I p I

e

where A is the variational parameter. The binding ener-
gies o ainebt d by such variational methods are also s own

allerin Fig. 1 for comparison. When the well width a is sma er
than ag, the results f'rom the variational method is in-
deed very close to that of our method of efFective poten-
tial. Thus, the decoupling of the wave function which is
expected to be more valid in the range a ( a~, is am-

ply justified by the agreement of these two results. The

0.0
-1.0 -0.5 0.0

Z (units of as)
0.5 1.0

FIG. 3. The square of wave function ur(z) in arbitrary
units by solving Eq. (12) for (1) a = 1.00, (2) a = 0.50, (3)
a = 0.10, (4) a = 0.01 (as).

probability densities for the trial functions for different
well widths are shown in Fig. 4. The wave functions
obtained by the variational method and by our method
are again very c ose.lose However the wave function y
our efFective-potential method is slightly sharper than
the function by the variational method. This is because
the variational function was devised to fit the full range
of the well width, while our efFective potential is specif-

the optical transition matrix elements for slender quan-
tum wires. On the other hand, the close agreement of
our results to that of the variational calculation even in

ant surprise. This is attributed to the ironing out of the
inaccuracies of the decoupled wave function Eq. (5) in
this range as a consequence of the averaging that yields

In the large well width limit (a ) a~), the boundary

0.0 6.0
for dNerent well widths a

-10.0
(1)a =1 00

(4)

-20.0— 4.0

-30.0

-40.0
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g 2.0
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(4

-60.0
-1.0
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-0.5 0.0
Z (units of as)

I

0.5 1.0 0.0
-1.0 -0.5 0.0

Z (units of aB)

0.5 1.0

FIG. 2. ES'ective potential of Eq. (13) for the well width
(1) a = 1.OO, (2) a = O.5O, (3) a = O. 1O, (4) a = O.O1 (aa).
The ground-state energies are also shown in this Ggure.

FIG. 4. The square of the z-component wave function zn

arbitrary units in Eq. (16) for (1) a ==1.OO, 2 a = O.5O, (3)
a = 0.10, (4) a = 0.01 (an).
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has only a slight effect on the exponentially decaying elec-
tronic wave function of the impurities. The physical rea-
son is the following. In the absence of an attraction center
(an ionic core at the origin), the electron wave function is
a standing wave which vanishes at p = a. %hen the well
width shrinks, the standing-wave-like eigenfunction will
be much affected by the changing of the well width. On
the other hand, a hydrogenlike ground-state function will
not be influenced too much due to the exponentially de-

caying behavior of the wave function (e + +i'
) at large

p (a& « p « a). The ground-state energy Es,,(ez g 0)
associated with such a decaying wave function will not
change much by decreasing a. Being the difference of the
energies in the above two situations, the binding energy
will thus be slightly larger than the usual 1 R (for a = oo)
for large but finite wells (a~ & a ( oo).

Conventional perturbation theories, however, cannot
be readily adapted to obtain the energy correction as
the radius a decreases from oo to finite but large val-

ues. Here, we use the pseudopotential method specifi-
cally devised for such problems. The boundary condition
for the wave function is 4'(Z, p) = 0 for p ) a. This
condition can be shown to be exactly reproduced by a
pseudopotential H' = —b(p —a) ( & ) l~

—. Hence, the

Schrodinger equation becomes an ordinary second order
differential equation but with the added pseudopotential
term

—V
Qgz + p2

—E C(p, Z)

=&(~-a)
I I

(»)
& ~~)

which now is valid for all values of p. As long as the
boundary potential barrier is not located too close as to
jam the ionic Coulombic well significantly, it is physically
clear that the modifications to the eigenenergy and wave

functions will not be major ones. Perturbation treatment
based on the pseudopotential H' should be then valid.
However, the ordinary perturbation theory again cannot

be applied to such an artificial perturbative term. This
is because the total energy correction is given by

(&'IH'I@' + &&')
(O'l0'+ &4')

= W'III'I&') + (O'IH'I«'),
in which the wave function correction term IA@ ) cannot
be neglected since it is approximately equal to Ig ) at
the boundary p = a, where H' is dominant. In contrast
to the conventional perturbation theory, the actual first
order correction due to 0' is then given by

&E = 2(&'IH'I&') . (14)

The binding energies calculated by using Eqs. (12) and
(14) is also plotted in Fig. 1. We note that in the range
a & 20,~ our result practically coincides with that from
the variational method, thereby attesting to the reliabil-
ity of both methods. Indeed, it is amazing to see how the
variational result bridges our two results, one for small
a, the other for large a as shown in Fig. 1.

In this paper, we have calculated the binding ener-
gies and ground-state wave functions for quantum wire
systems by the use of physically motivated perturbation
methods specifically designed to treat quantum wires of
small (a & aB) or large (a ) a~) radii. The averaged ef-

fective potential method is especially suited to the narrow
quantum wire problem, and the pseudopotential method
is tailored to the large wire system (a ) a~). The imple-
mentation is much simpler than the variational method
as far as the amount of computation is concerned. These
methods provide clear physical discriptions for the elec-
tron behaviors in both the small and large wire limits in
that the electrons in a small wire are seen perturbatively
to be extremely localized, while in a large wire they nat-
urally behave like a 3D hydrogen atom. The excellent
agreement between our results and those from the varia-
tional method lends comforting support for our method
as an alternative to the variational approach.
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