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Reconfiguring the parameters of PTZ cameras in a surveillance system is a combi-

natorial optimization problem. Computing the optimal solution is very time consuming, 
and existing methods can only provide sub-optimal solutions. In this paper, we propose a 
non-linear objective function that better utilizes a camera network to track multiple tar-
gets. We also show that, by expanding the unknown parameters and imposing new con-
straints, the non-linear objective function can be converted into a linear production game 
(LPG) problem. Since an LPG yields an optimal solution that can be evaluated in poly-
nomial time, the proposed method is efficient and accurate. The results of simulations 
and a real-world experiment demonstrate the proposed method’s potential. 
 
Keywords: visual surveillance, camera network, pan-tilt-zoom camera, linear production 
game, target tracking 
 
 

1. INTRODUCTION 
 

Intelligent video surveillance systems have been used for several years, and they 
are now widely deployed in important places, such as airports, all over the world. A sin-
gle camera can provide useful information for event detection and target tracking [1, 2]; 
however, a surveillance system based on a camera network can reduce the number of 
blind spots and improve the system’s reliability [3-9]. Camera networks are usually 
comprised of a heterogeneous collection of cameras, including panoramic cameras, fixed 
cameras, infrared cameras, and pan-tilt-zoom (PTZ) cameras. Among the different types 
of imaging devices, PTZ cameras are the most important components of an intelligent 
surveillance system because their field of view (FOV) can be changed in response to 
different task requirements. However, incorporating PTZ cameras into a surveillance 
system raises a challenging issue: How can the cameras be controlled and coordinated to 
accomplish a given task? Most surveillance tasks performed by PTZ cameras are related 
to three functions: tracking multiple targets, improving evidential quality and maximiz-
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ing surveillance coverage. 
Target tracking involves target detection as well as temporal and/or inter-view target 

correspondence matching. For example, Lim et al.’s approach [3] tracks the targets ob-
served in FOVs and constructs a dynamic scene model containing the position, velocity, 
and view-dependent visibility of each target. The system tries to accomplish three objec-
tives, namely, initial detection of moving objects, tracking of moving objects, and sched-
uling cameras to monitor activities. Cameras are assigned to tasks by solving a bipartite 
matching problem so that tasks are accomplished in order of priority. In the PTZ camera 
network developed by Ukita and Matsuyama [4], when the system detects a new target, 
nearby cameras that are idle are assigned to track the target. The system is simple and 
effective provided that the number of cameras is greater than the number of targets. 
Qureshi and Terzopoulos [5] introduced a multi-camera tracking system in which cali-
brated wide-FOV cameras are used to locate targets, and PTZ cameras are used to fixate 
on the located targets. The PTZ network operates according to heuristic rules designed to 
track targets cooperatively. Their method was further improved so that it can be applied 
to an uncalibrated multi-camera surveillance system connected with wireless communi-
cation network [10]. Since the wireless communication range is limited, Qureshi and 
Terzopoulos assumed that each camera can only communicate with its neighbors. There- 
fore, cameras within a communication range can share information of targets to be 
tracked. Adding/removing camera nodes can be accomplished very easily with their 
method. However, the flexibility is exchanged for security because, in general, a camera 
network sufficiently sharing information with a centralized server can outperform a cam-
era network sharing information locally. In summary, a cooperative target tracking ap-
proach can utilize the camera resources efficiently and enable the cameras to support 
each other to recover the tracking when a tracking task fails.  

While a solution to the target tracking problem can provide each target’s trajectory, 
a surveillance system usually requires more information. For example, it is often neces-
sary to capture the face of a human target or the license plate of a vehicle at a high reso-
lution. These applications are related to improving evidential quality [7, 8]. In addition, 
PTZ cameras are frequently used to extend the coverage of the surveillance area by 
pan-tilt scanning. Piciarelli et al. [9] proposed an approach that reconfigures the pan- 
tilt-zoom parameters of all PTZ cameras based on the probability of observing an event 
in a specific location. Song et al. [6] applied game theory to maximize the surveillance 
coverage in their decentralized system, and adopted a sequential optimization strategy to 
achieve the Nash equilibrium [11]. Under this method, one PTZ camera is selected at 
random each time and its parameters are tuned, while those of the other cameras remain 
unchanged. After the Nash equilibrium is achieved, the cameras should cover the entire 
surveillance area at an acceptable resolution. When a human operator decides to track a 
specific target at a higher resolution, the target will be assigned to the most appropriate 
PTZ camera, which will then be excluded from the game. As a result, the remaining 
cameras have to adjust their parameters and try to maintain the maximum surveillance 
coverage. The game theoretic framework has two advantages: (1) it can be implemented 
easily; and (2) only a small amount of information needs to be exchanged. However, we 
remark that the Nash equilibrium is not necessarily an optimal solution. Moreover, 
tracking a specific target at a higher resolution is treated as an exceptional task that can-
not be optimized by using the same game theory framework. Another potential problem 
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of their method is that there is no mechanism to suppress investing too many resources 
(i.e., cameras) in tracking a single target. 

Reconfiguring PTZ cameras to achieve any of the three objectives is intrinsically a 
combinatorial optimization problem. Computing the optimal solution is very time con-
suming and, therefore, existing methods usually reduce the problem into a bipartite 
matching problem, which assigns tasks to cameras. However, the task assignment for-
mulation does not fully utilize the camera network. For example, when the number of 
tasks is greater than the number of cameras, some tasks will have to be abandoned de-
spite that a camera may accomplish multi-tasks at the same time. 

In this paper, we propose an optimal and flexible solution to the PTZ network coor-
dination problem. We show that the problem can be formulated as a linear production 
game (LPG). The LPG is about how a group of collaborative players utilizing their lim-
ited resources to create various products yielding the maximum payoff given that the 
price of each product is known. Players in the LPG of a PTZ network are the cameras. 
Each camera can control its FOV by selecting the PTZ parameters. Although the number 
of all PTZ combinations is very large, due to the limited speed of PTZ actuators, only a 
small set of new PTZ settings has to be considered. The new FOV corresponding to each 
new PTZ setting is the product of the game. Resources owned by each player (i.e., cam-
era) are the targets which are observable to the camera. The observability of a target to a 
camera is determined by checking whether the camera can select a feasible PTZ settings 
to observe the target. The price of a product (i.e., the new FOV of a camera) is evaluated 
by examining the video quality of each target in the FOV. The goal of this cooperative 
game is to select a set of FOVs for the cameras to maximize the total payoff (video qual-
ity of the targets). The LPG is a special case of a linear programming problem. While a 
linear programming problem may be infeasible or unbounded [12], the LPG always has 
an optimal solution that can be evaluated in polynomial time. Therefore, many tech-
niques, such as branch-and-bound and cutting-plane techniques [13], can be applied to 
solve the camera network reconfiguration problem. 

The remainder of this paper is organized as follows. In section 2, we formulate the 
PTZ network problem; and in section 3, we describe the proposed LPG method. Section 
4 details the results of simulations and a real-world experiment. Section 5 contains some 
concluding remarks. 

2. PROBLEM FORMULATION 

Suppose a surveillance system contains n calibrated PTZ cameras, each of which is 
controlled by a network-connected processor. In addition, a fixed (non-PTZ) camera in 
our system is seen as a PTZ camera with only one available FOV. Furthermore, let m be 
the number of targets detected in the surveillance area. Each detected target is re- 
presented by a status vector denoted by gk

t = [bk
t, v

k
t], where bk

t and vk
t are, respectively, the 

3-D bounding box and the velocity of target k estimated at time t. The target’s status Ut = 
{gk

t|k = 1, 2, …, m} and the static background constitute a dynamic scene model (targets’ 
history positions and a top-view scene model) that can be used to predict the status of all 
the targets at time t + 1, expressed as Ût+1 = {ĝk

t+1|k = 1, 2, …, m}. The model is main- 
tained by a central information processing node (a central server) that gathers informa- 
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tion about the detected targets and the camera parameters from each camera node. It is 
assumed that the camera network has been calibrated and the homography (a point to 
point mapping matrix) between any two of the cameras is known so that the information 
about the detected target can be integrated. The central information processing node is 
also responsible for determining the optimal camera parameters. 
 
2.1 Parameters to be Determined 
 

Let i denote the ith camera’s FOV, which is controlled by the pan-tilt-zoom para- 
meters of the camera. We assume that the relationship between the FOV and the para- 
meters is known. Therefore, the problem of determining the optimal camera parameters 
is transformed into a problem of selecting the optimal FOV for each camera. Because of 
the limitation of the lens motor speed, a camera can only change its parameters locally in 
a short time. Hence, given each camera’s current parameters, a set of feasible FOVs can 
be constructed and expressed as follows: 

 
i = {i

jj = 1, 2, …, wi},    (1) 
 

for i = 1, 2, …, n where wi is the number of feasible FOVs of the ith camera. The PTZ 
camera coordination problem is formulated as the following combinatorial optimization 
problem: 

 
1* * 1

, =1,...,

( ,..., ) arg ( ,..., ),max
n n

i i i n

Q


   


     (2) 

where Q(): 1  …  n  R is a function mapping (1, …, n) to a real quality value. 
In the next subsection, we explain how to assess the quality of a set of FOVs for different 
goals. 
 
2.2 Quality Function of a Camera’s FOV  
 

Under the dynamic scene model, the locations of predicted targets can be computed 
for each camera’s FOV. The predicted bounding box is defined as a region of interest 
(ROI). In a visual surveillance system, assessing the quality of an FOV usually involves 
the following two steps.   
 
1. Determine whether the FOV includes some ROIs. An FOV without any ROIs should 

be evaluated as having the lowest quality. 
2. Evaluate the dimensions (width and height) of each ROI. The resolution of the ROI 

should be sufficient to accomplish the given task. Aldrige and Gilbert [14] suggested 
different resolution requirements for different tasks. If a resolution is lower than the 
suggested value, a very low quality value should be assigned to it. Conversely, if the 
resolution is higher than the suggested value, the quality value should be upper 
bounded or reduced to induce camera zoom out for monitoring a larger area. 

 
For most surveillance tasks, the quality of each camera’s FOV can be evaluated in-
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dividually and the total quality function, Q(1, …, n), can be simplified as follows: 
 
Q(1, …, n) = fq1, q2, …, qn, (3) 
 

where qi = Q(i) for i = 1, 2, …, n, and f(): Rn  R is a function that maps the n indi-
vidual quality values to a total quality value. We discuss possible choices of f() later in 
this section. Furthermore, the quality function of each FOV, say i, can be expressed as a 
function of the qualities of individual ROIs. Since the quality of each ROI can be evalu-
ated independently, it is reasonable to compute the quality of an FOV as follows: 

 

1

( ) ( ),
m

i i
k

k

Q Q 


   (4) 

where Qk(i)  
1 1 1

ˆ ˆ( ; , { })
k

i k
t t tQ T  b g is the non-negative quality of observing the kth 

target with FOV i. The value is zero when 1
ˆ

tb is not observable in FOV i or it is com-
pletely occluded by other targets at 

^
Tt+1. The simplest form of f() in Eq. (3) is a linear 

summation function given by  
 

   .=,...,
1=

1 i
n

i

n
L QQ  

 
  (5)

 

However, since the qualities of a target in all views count toward the total quality 
function, maximizing (5) makes all the cameras pursue high video quality targets and 
ignore low quality ones. 

To resolve the problem, we adopt the following non-linear quality function in this 
work:  

   ,max=,...,
1=

1 i
k

i

m

k

n
NL QQ      (6)

 

where only the maximum ROI quality of each target counts toward the total quality. Thus, 
the quality of a solution that favors a specific target will be lower than that of a solution 
that assigns the cameras to monitor different targets. 

3. THE PROPOSED APPROACH 

In this section, we show that the non-linear objective function (6) can be converted 
into a linear function by expanding the set of feasible solutions and imposing new 
constraints. Let Ti

j and |Ti
j| denote the set of targets covered by FOV  i

j, i.e., the jth 
feasible FOV of the ith camera (refer to Eq. (1)), and the number of targets in Ti

j respec- 

tively. The total number of subsets of Ti
j is

i
jT

2 , and h is an index of the subset. For each 

subset Si
j,h  Ti

j,
i
jT

h 21  , we can construct a virtual FOV that ignores any target not in 
Si

j,h, i.e., Qk(
i
j) = 0, for all k  Si

j,h (see Fig. 1).  
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Fig. 1. The decomposition of an FOV containing |T

i
j| targets into 2

i
jT
 1 virtual FOVs. 

 
Notably, introducing virtual FOVs into the system increases the number of expanded  

feasible FOVs to maxT

max

i
jT

iw

j

n

i
wn 22

1=1=
 , where wmax and |Tmax| are the maximum num- 

ber of feasible FOVs of a camera and the maximum number of targets in an FOV, 
respectively. From the complexity analysis, it is obvious that the computation load is 
linearly proportional to the number cameras and is exponentially proportional to the 
number of targets in an FOV. The exponential growth of the variables may lead to the 
scalability problem. However, since a PTZ camera is mainly used to acquire high 
definition images of targets by choosing a proper zoom setting, the number of targets 
observed by a PTZ camera is very limited. To give an impression about the typical 
number of targets covered by the FOV of an camera in different surveillance applications, 
we refer the suggested target sizes with respect to four different applications described by 
Aldrige and Gilbert [14]. According to the data shown in [14], the maximum number of 
targets in an FOV of a camera is less than 15 for the recognition and identification 
applications. The suggesting target size is estimated by the average human width-height 
ratio [15] (0.3442) and a 640  480 FOV. In practice, the maximum target number will 
be much smaller than this value and the solution can be computed very efficiently. The 
scalability problem emerges only when one uses too few PTZ cameras to observe too 
many targets. In that case, PTZ cameras are operating at the wide-angle (low resolution) 
mode, and the video content is less informative. To acquire useful surveillance videos, 
one should consider introducing more PTZ cameras into the network. Hence, although 
from the algorithmic point of view, the proposed method might suffer from scalability 
issues, in practice, the scalability issues can be ignored. 

By replacing  i
j with the virtual FOVs,  i

j,h, h = 1, …., 2 ,
i
jT

the number of feasible  

FOVs to be assigned to the ith camera becomes 
i
jT

iw

j
2

1= . To select the optimal FOVs, we 
define the binary variables xi

j,h  B (B  {0, 1}) to indicate whether the (j, h)th virtual 
FOV of the ith camera, i.e.,  i

j,h, is selected. Therefore, the optimization problem in FOV 
selection can be rewritten as follows:  
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 ,max ,
1=

,
1=1=

i
hjk

m

k

i
hj

iw

j

n

i

Qx 
x  (7) 

subject to  
 

1,,

2

1=1=

 i
hj

i
jT

h

iw

j

x
 (8) 

For i = 1, 2, …, n, and  
 

1,,

2

1=1=1=

 ijhk
i

hj

i
jT

h

iw

j

n

i

ox
 (9) 

for k = 1, 2, …, m, where 






 n

w
n
nw

T

n

xxx
||

,2

1
1,2

1
1,1 ,,,= x  and the binary coefficient oijhk  B 

indicates whether the kth target is observable in the virtual FOV  i
j,h. The constraint 

specified in Eq. (8) ensures that each camera can only be assigned one FOV at a time, 
and Eq. (9) guarantees that the quality of a target can only be evaluated by a single FOV 
because the repeated target selection violates the constraint in Eq. (9) (the summation 
value is larger than 1.) 

The relation between the solutions to Eqs. (6) and (7) can be derived by changing 
the summation order of Eq. (7) as follows:  

 

  ,=max
*

1=
,,

1=1=1=
k

m

k

i
hjk

i
hj

iw

j

n

i

m

k

qQx 













x
 (10) 

where q*
k is the quality of the kth target evaluated by one of the optimal FOVs. 

The objective function and the constraints given in Eqs. (10), (8) and (9) form a lin-
ear programming problem. Since a linear programming problem may be infeasible or 
unbounded [12], it is important to show that the above formulation yields an optimal 
solution that can be solved efficiently. In the following subsection, we show that our 
formulation can be regarded as an LPG [16]. The LPG is a special case of linear pro-
gramming problems which has the following nice properties 
 
1. The optimal solution of an LPG always exists, and  
2. The solution can be computed in polynomial time by solving its dual problem [16, 17]. 
 
3.1 Linear Production Game (LPG) Problem 
 

An LPG is a special case of a cooperative game that is usually denoted as (N, v), 
where N is a set of n players, namely {1, 2, …, n}, and v: 2N  R is a payoff function 
that maps a coalition to a payoff value [18]. Specifically, the payoff of an empty set is 
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zero. A coalition, say S, is a subset of all players, i.e., S  N. The LPG described in [16] 
involves maximizing the payoff of n cooperative players who own m different types of 
resources. The total number of the resources type k in a coalition S are denoted as bk(S), k 
= 1, 2, …, m, and those resources can produce p different products. A resource-product 
matrix A is used to specify the relationships between the amounts of the different types 
of resources required to produce each product. The (i, j)th entry of the resource-product 
matrix, denoted by aij, describes the amount of the ith resource required to produce the 
jth product, which is non-negative. Then, each product can be sold at a different price 
given by c = (c1, c2, …, cp). In this game, the maximum payoff can be obtained by solv-
ing the following linear programming problem  
 

,max=)( xc
x

Sv
 (11) 

subject to Ax  bk(S) and xi  0 for all i.  
The above optimization problem indicates that all players in the coalition S should 

combine their resources to produce a set of products that maximize the revenue v(S). Let 
y = [y1 … yn]

T denote the payoff vector, where yi = cixi, i = 1, 2, …, n. In cooperative 
game theory, an imputation describing a payoff vector is defined as follows,  

 
T

1 2{ | [ , ,..., ] , ( ), ({ } )}.n i i
i N

y y y y v N y v i i N


    y y  (12) 

Eq. (12) indicates that each player benefits by cooperating in a game because the 
resulting payoff, i.e., yi, of the ith player is not less than the payoff derived by playing 
alone, i.e., v({i}). v({i}) means the maximum payoff value obtained by the ith player’s 
resource. Moreover, in the cooperative game v(N), the sum of the payoffs to all the play-
ers is equal to the total payoff. The solution concept of a cooperative game is called the 
core. It consists of one or more imputations that satisfy the following condition: all the 
payoffs of a subset in the imputation must be maximized. In the payoff vector, none of 
the players has a motive to leave the coalition because doing so would reduce his/her 
payoff. The core is defined as follows:  

 

   











 NSSvyNvyyyy i
Si

i
Ni

n ),(=,,...,,=|= 21yyC
 (13) 

Notably, the coefficients in the LPG equations are all positive. As the coefficients in 
the objective function (7) and in the constraints (8) and (9) are also all non-negative, the 
optimization problem can be easily mapped to an LPG problem. The role mapping be-
tween the camera network reconfiguration problem and the LPG is listed as follows:   
 
1. The players are the cameras.  
2. The resources of a player are the targets covered by a camera at the next time instance.  
3. The products are the selected FOVs for the cameras.  
4. The price of each product (i.e., an FOV) is the quality of each selected FOV.  
 

This formulation is similar to a bounty hunter game in which the cameras act as 
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hunters who use FOVs to “hunt” targets. Different hunters will receive different rewards 
(i.e., video quality) when obtaining a target. This is a cooperative game because all the 
hunters tend to let the hunter who may receive the greatest reward to catch a target. The 
existence of a core of the game ensures that all players will obtain the maximum payoff.  

In this work, we adopt the branch-and-cut algorithm [19] to compute an optimal in-
teger solution. Since an optimal solution guarantees that Eq. (10) is an upper bound of Eq. 
(6), the LPG solution is equivalent to the optimal solution of the non-linear objective 
function (6). 

4. SIMULATIONS AND A REAL WORLD EXPERIMENT 

To compare the performances of different approaches, we conducted three computer 
simulations and a real experiment. Throughout the four experiments, the following sim-
ple quality function is adopted.  

 

, ,
,

1 ,     if target  is cover by 
( )

0,                otherwise,

i i
j h j hi

k j h

z k
Q

 


  


 (14) 

 
where  = 0.01 in the experiments and zi

j,h  [0, 1] is the zoom level of the FOV i
j,h. 

When the lens is fully zoomed out, zi
j,h = 0. Conversely, zi

j,h = 1 indicates that the lens is 
fully zoomed in. Therefore, zi

j,h  0.01. The quality function defined in Eq. (14) indi-
cates that our goal is to control the PTZ cameras to capture as many as possible the tar-
gets appearing at the area under surveillance while favoring high zoom level camera set-
tings. The goal can be applied to real-world applications. For example, the most common 
application is to record all targets’ trajectories in the scene. Then, when an event oc-
curred, the recorded trajectories can be utilized to trace a target (for example, a criminal) 
and to reconstruct his escaping route. For simplicity, we assume that the image resolution 
of any static camera included in the surveillance network is too low that the image qual-
ity function always returns zero. Hence, the optimal solution will be a control strategy 
that uses the PTZ cameras to capture the highest number of targets. 

In the first two experiments, we simulated a surveillance system containing three 
virtual PTZ cameras, a virtual static camera covering the entire area under surveillance, 
and several virtual pedestrians with different paths and movement speeds. In total, we 
produced five pedestrian sets each containing 15 moving objects. Fig. 2 shows the simu-
lation environment in which the total coverage of each PTZ is depicted as a fan-shaped 
region and a moving target is represented as a trajectory with time ordering. 

We compared the performance of the proposed non-linear objective function LPG 
(NOF-LPG) method with that of the following four methods: the linear sum method, i.e., 
the linear objective function LPG (LOF-LPG), which maximizes Eq. (5); Song et al.’s 
method (SONG) [6]; Lim et al.’s method (LIM) [3]; and the exhaustive search (ES) 
method. To find an optimal solution, the ES algorithm tests all possible combinations 

i

n

i
w 1=  of the feasible FOVs (refer to Eq. (1)) of all the cameras. The small-scale tests  

enable us computing an ES solution as a reference to compare different approaches. The 
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simulated system was implemented in C++ on a PC with an Intel Core 2 DUO E8400 
3.00Ghz CPU. 

The first simulation compares the efficiency and accuracy of the five algorithms on 
the five pedestrian sets. The average computation times using NOF-LPG, LOF-LPG, 
SONG, LIM, and ES are shown in Table 1. The computational load of NOF-LPG is ex-
ponentially proportional to the maximum number of targets in an FOV, i.e., |Ti

j| (refer to 
section 3) but the number of targets in an FOV is normally small. Therefore, the effi-
ciency of NOF-LPG is acceptable. In the simulation, the maximum number of targets in 
an FOV is five, so the computation time of the proposed method is satisfactory. 
 

  
Fig. 2. The simulated surveillance environment with three PTZ cameras and fifteen moving targets 

in Pedestrian set 1. 
 

Table 1. The average computation time required for one iteration by the NOF-LPG, 
LOG-LPG, SONG, LIM, and ES methods. 

   Average computation time in the first simulation 
NOF-LPG 334.14 ms 
LOF-LPG 247.76 ms 

LIM 236.33 ms 
SONG 245.01 ms 

ES 2330.37 ms 
 

Fig. 3 shows the true number of moving objects in pedestrian set 1 and the number 
observed by ES. Note that the cameras may not be able to observe all the moving objects 
simultaneously because of the limitations of their FOVs. Therefore, the numbers of 
observed targets derived by the ES algorithm are used as a benchmark. In the simulation, 
the positions of all pedestrians are provided by the global-view static camera. Table 2 
details their performances on the five pedestrian sets, where all data are normalized by 
the corresponding reference values (the result of ES). The NOF-LPG and LOF-LPG 
methods outperform the other two methods. The results show that the number of targets 
observed using NOF-LPG is equal to that of the ES algorithm. Furthermore, the LOF- 
LPG method outperforms the SONG and LIM methods because it utilizes a centralized 
optimization technique.  
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The proposed NOF-LPG method outperforms the other three methods because it 
adopts a better objective function. 

 
Fig. 3. The true number of moving objects in Pedestrian set 1 and the number observed by the ex- 

haustive search (ES) method. 

Table 2. The percentages of targets observed by the compared methods (normalized by 
the result of exhaustive search). 

  Pedestrian 
set 1 

Pedestrian 
set 2 

Pedestrian 
set 3 

Pedestrian 
set 4 

Pedestrian 
set 5 

NOF-LPG 100.0%  100.0% 100.0% 100.0% 100.0% 
LOF-LPG 96.4%  93.7% 93.9% 93.6% 93.2%  

LIM 75.6%  71.7% 84.6% 77.9% 77.0%  
SONG 73.4%  76.0% 66.3% 72.4% 68.4%  

Time instance 21 

 
LOF-LPG          NOF-LPG 

Fig. 4. The snapshot of NOF-LPG and LOF-LPG at time instance 21. 

 
As mentioned in section 2.2 that the linear summation function (5) encourages all 

cameras to pursue high video quality targets without a mechanism to suppress too many 
cameras focusing on the same group of targets. Therefore, the LOF-LPG method may 
lose track of some targets. Fig. 4 shows an example of this effect found in the first simu-
lation at time instance 21. This figure shows that target 4 is ignored by the LOF-LPG 
algorithm because the sum of the quality values of targets 2 and 6 is greater than that of 
target 4. Conversely, the NOF-LPG appropriately controls cameras’ FOVs to obtained 
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more targets. 
We also conducted an experiment using real-world data to evaluate the performance 

of the four methods. A camera network comprised of two PTZ cameras (AXIS AX-215) 
and one fixed camera (D-link DCS-3220G) was deployed in an outdoor environment.  
There are quite a few automatic methods to estimate the image homographies, such as 
[20] and [21]. However, since estimating a homography only requires four pairs of cor-
respondence points, it is not difficult to manually construct the correspondence points. 
Therefore, in the experiment, all cameras were calibrated by selecting landmarks manu-
ally and the homography map was computed by using functions in OpenCV [22].  

The video resolution of each FOV was 352  240. At the system setup stage, 24 pre-
determined FOVs were assigned to each PTZ camera. To calibrate the homographies of 
the predetermined FOVs, the images corresponding to the 24 FOVs were acquired and 
used to build a panoramic image of the PTZ camera with Autostitch [23]. Therefore, the 
homography between any of the 24 FOVs and the corresponding panoramic image is 
known. At present, the 24 FOVs only contain two zoom levels because, if the FOV is too 
narrow, the image features would be insufficient (feature points < 4) to estimate the im-
age homography reliably. The panoramic images of the two PTZ cameras and the images 
of the fixed camera are related by registering them to a top-view aerial image. Fig. 5 (a) 
shows the set of 24 acquired images and the registered panoramic image; and Fig. 5 (b) 
shows the visual coverage regions of the three cameras overlaid on a top-view image. 
Therefore, the homography between any two cameras is known. 

 

 
(a) 

 

 
(b) 

Fig. 5. (a) A panoramic image derived by integrating 24 images; (b) the coverage regions of the 
three cameras overlaid on a top view image and the panoramic image of the three cameras. 
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The video from the fixed camera is used for target detection and prediction; and 
Yoo and Park’s difference-based approach [24] is utilized to detect moving targets. Al-
though the approach in [24] may fail to detect semi-stationary targets, it is efficient and 
robust to lighting variations; thus, it is very suitable for an outdoor real time system. A 
simple constant-velocity motion model is used to predict the locations of targets.    

Since it is impossible to control the PTZ cameras by using the four compared meth-
ods simultaneously, we tested them one by one. For comparison, each algorithm was 
tested for 20 minutes (about 5400 frames) on a cloudy and windy day. At each iteration, 
the system required about 0.8 seconds to estimate the parameters of the constant-velocity 
model of each moving target in order to predict its next position. Then, new parameters 
were determined and sent to the PTZ cameras. Usually, the cameras took 0.6 seconds to 
move to the assigned FOV. Finally, the targets observed by the FOVs were counted to 
evaluate the performance. Fig. 6 shows the NOF-LPG results at three time instances. In 
video frame 1470, several groups of people are detected and the two PTZ cameras are 
instructed to observe different groups of targets for maximizing the observed target num-
ber. Video frames 3358 and 3444 exemplify a target hand-over between cameras, where 
the group observed by camera 2 in frame 3358 is passed to camera 3 in frame 3444. As 
in the simulations, the exhaustive search method is applied to obtain reference data. 
However, since it is impractical to test all combinations of the cameras’ FOVs when de-
termining the optimal solution in a real environment, the exhaustive search is based on 
the video recorded by the fixed camera. Each feasible FOV of the PTZ cameras is 
mapped to a region in the image of the fixed camera. Then, all combinations of the 
mapped regions are utilized to search for the maximum number of observed targets as 
reference data. Table 3 details the performances of the four algorithms in the real-world 
experiment. 

 
Fig. 6. The tracking results of frames 1470, 3358, and 3444 using NOF-LPG. 
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Table 3. The percentages of targets observed by the compared methods in a real environment. 

 Performance (normalized by the result of  
exhaustive search in the fixed camera) 

NOF-LPG 71.0% 
LOF-LPG 67.3% 

LIM 60.2% 
SONG 62.3% 

Although the performance of each algorithm is affected by shadows, wind, calibra- 
tion errors, target detection errors, and prediction errors, the results demonstrate that 
NOF-LPG and LOF-LPG still outperform LIM and SONG. 

5. CONCLUDING REMARKS 

In this paper, we have considered the process used to assess the quality of a set of 
FOVs and proposed a non-linear objective function to reduce the number of unattended 
targets in a surveillance region. When the quality of each FOV is evaluated individually, 
it is easy to derive the objective functions of different PTZ network problems. The 
proposed approach provides an optimal solution for the PTZ network coordination pro- 
blem. We have also shown that the non-linear optimization problem can be transformed 
into a linear production game problem that is guaranteed to yield an optimal solution. 
The optimal solution of LPG can be computed in polynomial time so our approach is 
efficient. The branch-and-cut method is adopted to solve the PTZ parameters selection 
problem. Computer simulations and a real-world experiment were performed to evaluate 
the proposed method in a multi-target surveillance environment. The results show that 
the method achieved the highest tracking rate among the compared methods. In future 
work, we will address the system efficiency to improve the frame rates of the real-world 
experiment. Since the system preprocessing such as target detection and target prediction 
can be performed independently, distributing the preprocessing to camera nodes is an 
available way to descrease the computational loads of the central server.   
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