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1 Introduction

To study phase structure of QCD is a challenging and important task. It is well known that

QCD is in the confinement and chiral symmetry breaking phase for the low temperature

and small chemical potential, while it is in the deconfinement and chiral symmetry restored

phase for the high temperature and large chemical potential. Thus it is widely believed that

there exists a phase transition between these two phases. To obtain the phase transition

line in the T−µ phase diagram is a rather difficult task because the QCD coupling constant

becomes very strong near the phase transition region and the conventional perturbative

method does not work well. Moreover, with the nonzero physical quark masses presented,

part of the phase transition line will weaken to a crossover for a range of temperature and

chemical potential that makes the phase structure of QCD more complicated. Locating the

critical point where the phase transition converts to a crossover is another challenging work.

For a long time, lattice QCD is the only method to attack these problems. Although lattice

QCD works well for zero density, it encounters the sign problem when considering finite

density, i.e. µ 6= 0. However, the most interesting region in the QCD phase diagram is at fi-

nite density. The most concerned subjects, such as heavy-ion collisions and compact stars in

astrophysics, are all related to QCD at finite density. Recently, lattice QCD has developed

some techniques to solve the sign problem, such as reweighting method, imaginary chemical

potential method and the method of expansion in µ/T . Nevertheless, these techniques are

only able to deal with the cases of small chemical potentials and quickly lost control for

the larger chemical potential. See [1] for a review of the current status of lattice QCD.

On the other hand, using the idea of AdS/CFT duality from string theory, one is able

to study QCD in the strongly coupled region by studying its weakly coupled dual gravita-

tional theory, i.e. holographic QCD. The models which are directly constructed from string
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theory are called the top-down models. The most popular top-down models are D3-D7 [2–

5] model and D4-D8 (Sakai-Sugimoto) model [6, 7]. In these top-down holographic QCD

models, confinement and chiral symmetry phase transitions in QCD have been addressed

and been translated into geometric transformations in the dual gravity theory. Meson spec-

trums and decay constants have also been calculated and compared with the experimental

data with surprisingly consistency. Although the top-down QCD models describe many im-

portant properties in realistic QCD, the meson spectrums obtained from those models can

not realize the linear Regge trajectories. To solve this problem, another type of holographic

models have been developed, i.e. bottom-up models, such as the hard wall model [8] and

the later refined soft-wall model [9]. In the original soft-wall model, the IR correction of the

dilaton field was put by hand to obtain the linear Regge behavior of the meson spectrum.

However, since the fields configuration is put by hand, it does not satisfy the equations of

motion. To get a fields configuration which is both consistent with the equation of mo-

tions and realizes the linear Regge trajectory, dynamical soft-wall models were constructed

by introduce a dilaton potential [10, 11] consistently. Later on, the Einstein-dilaton and

Einstein-Maxwell-dilaton models have been widely studied numerically [12–18]. By po-

tential reconstruction method, analytic solutions can be obtained in the Einstein-dilaton

model [19] and similarly in the Einstein-Maxwell-dilaton model [18, 20].

In this paper, we consider the Einstein-Maxwell-dilaton system with an arbitrary ki-

netic gauge function and a dilaton potential. A family of analytic solutions are obtained

by the potential reconstruction method. We then study its holographic dual QCD model.

The kinetic gauge function can be fixed by requesting the meson spectrums satisfy the

linear Regge trajectories. We study the thermodynamics of the Einstein-Maxwell-dilaton

background and calculate the free energy to obtain the phase diagram of the holographic

QCD model. By comparing our result with the recent lattice QCD simulations, we inter-

pret our system as the model for the heavy quarks system. We finally compute the different

equation of states in our model and discuss their behaviors. The behavior of the equations

of state is consistent with our interpretation of the heavy quarks.

The paper is organized as follows. In section II, we consider the Einstein-Maxwell-

dilaton system with a dilaton potential as well as a gauge kinetic function. By potential

reconstruction method, we obtain a family of analytic solutions with arbitrary gauge ki-

netic function and warped factor. We then fix the gauge kinetic function by requesting

the meson spectrums to realize the linear Regge trajectories. By choosing a proper warped

factor, we obtain the final form of our analytic solution. In section III, we study the ther-

modynamics of our gravitational background and compute the free energy to get the phase

diagram. From the phase diagram, we argue that our background is dual to QCD with

heavy quarks and interpret the black hole phase transition as the deconfinement phase

transition in QCD. We finally plot the equations of state in our background to compare

with that in QCD. We conclude our result in section IV.
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2 Einstein-Maxwell-dilaton system

We consider a 5-dimensional Einstein-Maxwell-dilaton system with probe matters. The

action of the system have two parts, the background part and the matter part,

S = Sb + Sm. (2.1)

In string frame, the background action includes a gravity field gsµν , a Maxwell field Aµ and

a neutral dilatonic scalar field φs,

Sb =
1

16πG5

∫

d5x
√
−gse−2φs

[

Rs −
fs (φs)

4
F 2 + 4∂µφs∂

µφs − Vs (φs)

]

, (2.2)

where fs (φs) is the gauge kinetic function associated to the Maxwell field Aµ and Vs (φs)

is the potential of the dilaton field. One should note that the function fs (φs) is a positive-

definite function. The explicit forms of the gauge kinetic function fs (φs) and the dilaton

potential Vs (φs) are not given ad hoc and will be solved consistently with the background.

The matter action includes a scalar field ψ and flavor fields
(

ALµ , A
R
µ

)

, which we will

treat as probe, describing the degree of freedom of quark condensation and mesons on the

4d boundary,

Sm =
1

16πG5

∫

d5x
√
−gse−2φs

[

−fs (φs)
4

(

F 2
L + F 2

R

)

− 1

2
|Dµψ|2 − V (ψ)

]

, (2.3)

where Dµψ = ∂µψ − ig5
(

ALµ −ARµ
)

ψ and g5 is the coupling constant for the flavor fields.

The gauge kinetic function fs (φs) of the flavor field in the matter action is not necessary

to be the same as that of the Maxwell field in the background action (2.2) in general, but

here we set them equal for simplicity.

In the above, we have defined our model in string frame in which it is natural to write

the boundary conditions as we will see when solving the background in the next section.

However, to study the thermodynamics of QCD at finite temperature, it is convenient to

solve the equations of motion and study the equations of state in Einstein frame. To trans-

form the action from string frame to Einstein frame, we make the following ”standard”

transformations,

φs =

√

3

8
φ, gsµν = gµνe

√

2
3φ, fs (φs) = f (φ) e

√

2
3φ, Vs (φs) = e−

√

2
3φV (φ) . (2.4)

The background and the matter actions become, in Einstein frame,

Sb =
1

16πG5

∫

d5x
√−g

[

R− f (φ)

4
F 2 − 1

2
∂µφ∂

µφ− V (φ)

]

, (2.5)

Sm =
1

16πG5

∫

d5x
√−g

[

−f (φ)
4

(

F 2
V + F 2

Ṽ

)

− 1

2
∂µψ∂

µψ − 1

2
g25ψ

2Ṽ 2 − U (ψ)

]

. (2.6)

where we have written the flavor fields AL and AR in terms of the vector meson and

pseudovector meson fields V and ψ,

AL = V + Ṽ , AR = V − Ṽ . (2.7)
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We see that the pesudo-vector field Ṽ picks up a 5d mass via the vacuum expectation value

of the scalar field ψ.

The equations of motion can be derived from the actions (2.5) and (2.6) as

∇2ψ = g25Ṽ ψ +
∂U

∂ψ
(2.8)

∇2φ =
∂V

∂φ
+

1

4

∂f

∂φ

(

F 2 + F 2
V + F 2

Ṽ

)

, (2.9)

∇µ [f(φ)F
µν ] = 0, (2.10)

∇µ

[

f(φ)FµνV
]

= 0, (2.11)

∇µ

[

f(φ)Fµν
Ṽ

]

= g25ψ
2Ṽ ν , (2.12)

Rµν −
1

2
gµνR =

f(φ)

2

(

FµρF
ρ
ν −

1

4
gµνF

2+
{

FV , FṼ
}

)

+
1

2
g25ψ

2

(

ṼµṼ ν−
1

2
gµν Ṽ

2

)

+
1

2

[

∂µφ∂νφ−
1

2
gµν (∂φ)

2+∂µψ∂νψ−
1

2
gµν (∂ψ)

2 − gµν (V +U)

]

. (2.13)

In the next section, we will solve the above equations of motion under some physical

boundary conditions and constraints.

2.1 The gravitational background

In this section, we will solve the background of the Einstein-Maxwell-dilaton system de-

fined in the last section. We first turn off the probe fields V , Ṽ and ψ in the equations of

motion (2.9)–(2.13), which reduce to

∇2φ =
∂V

∂φ
+
F 2

4

∂f

∂φ
, (2.14)

∇µ [f(φ)F
µν ] = 0, (2.15)

Rµν −
1

2
gµνR =

f(φ)

2

(

FµρF
ρ
ν − 1

4
gµνF

2

)

+
1

2

[

∂µφ∂νφ− 1

2
gµν (∂φ)

2 − gµνV

]

. (2.16)

Because we are interested in the black hole solutions, we consider the following form of the

metric in Einstein frame,

ds2 =
L2e2A(z)

z2

[

−g(z)dt2 + dz2

g(z)
+ d~x2

]

, (2.17)

φ = φ (z) , Aµ = At (z) , (2.18)

where z = 0 corresponds to the conformal boundary of the 5d spacetime. We will set the

radial L of AdS5 space to be unit in the following of this paper.

Using the ansatz of the metric, the Maxwell field and the dilaton field (2.17), (2.18),

the equations of motion and constraints for the background fields become

φ′′ +

(

g′

g
+ 3A′ − 3

z

)

φ′ +

(

z2e−2AA′2
t fφ

2g
− e2AVφ

z2g

)

= 0, (2.19)
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A′′
t +

(

f ′

f
+A′ − 1

z

)

A′
t = 0, (2.20)

A′′ −A′2 +
2

z
A′ +

φ′2

6
= 0, (2.21)

g′′ +

(

3A′ − 3

z

)

g′ − e−2Az2fA′2
t = 0, (2.22)

A′′ + 3A′2 +

(

3g′

2g
− 6

z

)

A′ − 1

z

(

3g′

2g
− 4

z

)

+
g′′

6g
+
e2AV

3z2g
= 0. (2.23)

We should notice that only four of the above five equations are independent. In the follow-

ing, we will solve the equations (2.20)–(2.23), and leave the equation (2.19) as a constraint

for a consistent check.

To solve the background, we need to specify the boundary conditions. Near the horizon

z = zH , we require

At (zH) = g (zH) = 0, (2.24)

due to the physical requirement that AµA
µ = gttA0A0 must be finite at z = zH .

Near the boundary z → 0, we require the metric in string frame to be asymptotic to

AdS5, thus

ds2z→0 = gsµν (z → 0) dxµdxν =
1

z2
[

−dt2 + dz2 + d~x2
]

. (2.25)

This boundary condition, in Einstein frame, becomes,

A (0) = −
√

1

6
φ (0) , g (0) = 1. (2.26)

Since we do not assume the form of the dilaton potential V (φ), which should be solved

consistently from the equations of motion, we will treat the dilaton potential as a function

of z, i.e. V (z), when we solve the equations of motion. With the above boundary condi-

tions (2.24) and (2.26), the equations of motion (2.20)–(2.23) can be analytically solved as

φ′ (z) =

√

−6

(

A′′ −A′2 +
2

z
A′

)

, (2.27)

At (z) =

√

√

√

√

−1
∫ zH
0 y3e−3Ady

∫ y
yg

x

eAf
dx

∫ z

zH

y

eAf
dy, (2.28)

g (z) = 1−

∫ z
0 y

3e−3Ady
∫ y
yg

x

eAf
dx

∫ zH
0 y3e−3Ady

∫ y
yg

x

eAf
dx
, (2.29)

V (z) = −3z2ge−2A

[

A′′ + 3A′2 +

(

3g′

2g
− 6

z

)

A′ − 1

z

(

3g′

2g
− 4

z

)

+
g′′

6g

]

, (2.30)

where we have used the boundary conditions to fix most of the integration constants. The

only undetermined integration constant yg will be related to the chemical potential µ in

the following way. We expand the field At (z) near the boundary at z = 0 to get

At (0) =

√

√

√

√

−1
∫ zH
0 y3e−3Ady

∫ y
yg

x

eAf
dx

(

−
∫ zH

0

y

eAf
dy +

1

eA(0)f (0)
z2 + · · ·

)

. (2.31)
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Using the AdS/CFT dictionary, we can define the chemical potential in our system as

µ = −
√

√

√

√

−1
∫ zH
0 y3e−3Ady

∫ y
yg

x

eAf
dx

∫ zH

0

y

eAf
dy, (2.32)

in which yg can be solved in term of the chemical potential µ once the gauge kinetic func-

tion f (z) and the warped factor A (z) are given. Put the solution (2.27)–(2.30) into the

constraint (2.19), it is straightforward to verify that the above solutions are consistent with

the constraint.

We note that the solutions (2.27)–(2.30) depend on two arbitrary functions, i.e. the

gauge kinetic function f (z) and the warped factor A (z). Different choices of the func-

tions f (z) and A (z) will give different physically allowed backgrounds. Thus we have just

found a family of analytic solutions for the Einstein-Maxwell-dilaton system. We will use

the freedom of choosing functions f (z) and A (z) to satisfy some extra important physical

constraints.

2.2 Vector meson spectrum

In a theory with linear confinement like QCD, the spectrum of the squared mass m2
n of

mesons is expected to grow as n at zero temperature and zero density. This is known as the

linear Regge trajectories [21]. In the method of AdS/QCD duality, this issue was first ad-

dressed in [9] by modifying the dilaton field in the IR region with a z2 term, i.e. the soft-wall

model. In [9], the z2 term was added by hand to the dilaton field. It means that the fields

configuration used in the soft-wall model is not a solution of the Einstein equations. Dynam-

ically generating the z2 term by consistently solving the Einstein equations has been consid-

ered in several later works [19, 22] by including a proper dilaton potential. At finite temper-

ature and density, the temperature dependent meson spectrum has been studied in [23–28]

with the AdS thermal gas background replaced by the charged AdS black hole background.

In the previous section, we consistently solved the equations of motion (2.19)–(2.23)

for the Einstein-Maxwell-dilaton system. The analytic solutions depend on two arbitrary

functions, the gauge kinetic function f (z) and the warped factor A (z). In this section,

we will study the meson spectrum in our background and constrain the functions of f (z)

and A (z) by requesting the vector meson spectrums satisfy the linear Regge trajectories

at zero temperature and zero density.

We consider a 5d probe vector field V whose action has been written down in (2.6),

Sm = − 1

16πG5

∫

d5x
√−g f (φ)

4
F 2
V . (2.33)

To get the meson spectrum, we study the vector field V in the charged AdS black hole

background which we have obtained in the previous section,

ds2 =
e2A(z)

z2

[

−g(z)dt2 + dz2

g(z)
+ d~x2

]

(2.34)

Aµ = At (z) dt. (2.35)
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The equation of motion of the vector field V has been derived in (2.11) as

∇µ

[

f (φ)FµνV
]

= 0. (2.36)

Following [9], we first use the gauge invariance to fix the gauge Vz = 0, then the equation

of motion of the transverse vector field Vµ (∂µVµ = 0) in the background (2.34) reduces to

1

g
∇2Vi + V ′′

i +

(

g′

g
+
f ′

f
+A′ − 1

z

)

V ′
i = 0, (2.37)

where the prime is the derivative of z. We next perform the Fourier transformation for the

vector field Vi as

Vi (x, z) =

∫

d4k

(2π)4
eik·xvi (z) , (2.38)

where k = (ω, ~p) and the functions vi (z) satisfy the eigen-equations

− v′′i −
(

g′

g
+
f ′

f ′
+A′ − 1

z

)

v′i =

(

ω2

g2
− p2

g

)

vi. (2.39)

Redefining the functions vi (z) with

vi =

(

z

eAfg

)1/2

ψi ≡ Xψi, (2.40)

brings the equation of motion (2.39) into the form of the Schrödinger equation

− ψ′′
i + U (z)ψi =

(

ω2

g2
− p2

g

)

ψi, (2.41)

where the potential function is

U (z) =
2X ′2

X2
− X ′′

X
. (2.42)

In the case of zero temperature and zero chemical potential, we expect that the discrete

spectrum of the vector mesons obeys the linear Regge trajectories. At µ = 0, the metric

of the zero temperature background (thermal gas) coincides with the black hole metric in

the limit of zero size, i.e. zH → ∞, which corresponds to g (z) = 1. In the zero size black

hole limit, the Schrödinger equation reduces to

− ψ′′
i + U (z)ψi = m2ψi, (2.43)

where −m2 = k2 = −ω2 + p2. To produce the discrete mass spectrum with the linear

Regge trajectories, the potential U (z) should be in certain forms. Following [9], a simple

choice is to fix the gauge kinetic function as f (z) = e±cz
2−A(z), then the potential becomes

U (z) = − 3

4z2
− c2z2. (2.44)

The Schrödinger equations (2.41) with the above potential (2.44) have the discrete eigen-

values

m2
n = 4cn, (2.45)
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which is linear in the energy level n as we expect for the vector spectrum at zero tempera-

ture and zero density. At finite temperature and finite density, g (z) 6= 1, the masses of the

vector mesons solved from the eq. (2.41) will depend on the temperature and density. For

the case of small enough temperature and density, eq. (2.41) can be solved perturbatively

to get the mass shift from the linear Regge trajectories [10, 26–28]. For large temperature

and density, the method of spectral functions is useful. The study of temperature and

density dependent vector mass spectrum is in progress.

Once we fixed the gauge kinetic function f = e±cz
2−A(z), the eq. (2.32) can be solved

to get the integration constant yg in term of the chemical potential µ explicitly as

ecy
2
g =

∫ zH
0 y3e−3Aecy

2

dy
∫ zH
0 y3e−3Ady

+

(

1− ecz
2

H

)2

2cµ2
∫ zH
0 y3e−3Ady

. (2.46)

Put the integration constant yg back into the solution (2.27)–(2.30), we can finally write

down our solution as

φ′ (z)=

√

−6

(

A′′ −A′2 +
2

z
A′

)

, (2.47)

At (z) = µ
ecz

2 − ecz
2

H

1− ecz
2

H

, (2.48)

g (z)=1+
1

∫ zH
0 y3e−3Ady

[

2cµ2

(1−ecz2H )2

∣

∣

∣

∣

∣

∫ zH
0 y3e−3Ady

∫ zH
0 y3e−3Aecy

2

dy
∫ z
zH
y3e−3Ady

∫ z
zH
y3e−3Aecy

2

dy

∣

∣

∣

∣

∣

−
∫ z

0
y3e−3Ady

]

,

(2.49)

V (z)=−3z2ge−2A

[

A′′ + 3A′2 +

(

3g′

2g
− 6

z

)

A′ − 1

z

(

3g′

2g
− 4

z

)

+
g′′

6g

]

. (2.50)

Now we have fixed all the integration constants by either satisfying the boundary condi-

tions (2.24) and (2.26) or relating to the chemical potential µ. The final solution (2.47)–

(2.50) depends only on the warped factor A (z). The choice of A (z) is arbitrary provided it

satisfies the boundary condition (2.26). In the next sections, we will make a simple choice

of A (z) and use it to study the phase structure in its holographic QCD model.

3 Phase structure

We will study the phase structure for the black hole background which we obtained in the

last section (2.47)–(2.50). The phase transitions in the black hole background correspond

to the phase transitions in its holographic QCD theory by AdS/QCD duality.

3.1 Fixing the warped factor

To be concrete, we fix the warped factor A (z) in our solution in a simple form as

A (z) = − c
3
z2 − bz4, (3.1)

where the parameters b and c will be determined by later. It is easy to show that this

choice of A (z) satisfies the boundary condition (2.26) by eq. (2.47). There are many more

– 8 –
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complicated choices for the function of A (z), but we will show that our simple choice

already educes abundant phenomena in QCD.

Once we choose the function of A (z) up to the parameters b and c, our solution (2.47)–

(2.50) is completely fixed. Expanding the dilaton field and the dilaton potential near the

boundary z = 0, respectively,

φ (z) = 2
√
3cz +

2
(

c2 + 30b
)

9
√
3c

z3 + · · · , (3.2)

V = −12− 18cz2 + · · · , (3.3)

we can write the dilaton potential in terms of the dilaton field φ as the expected form from

the AdS/CFT dictionary,

V = −12 +
∆(∆− 4)

2
φ2 + · · · ,∆ = 3. (3.4)

The conformal dimension ∆ = 3 satisfies the BF bound 2 < ∆ < 4 implying that our

gravitational background is stable. Furthermore, the dilaton satisfying the BF bound cor-

responds to a local, gauge invariant operator in 4d QCD possibly. One should note that

the dilaton in our work is different from that in the references [18–20], where the dictionary

between the dilaton and gauge invariant operator in field theory are not clear. In our case,

we combine the effects of quarks and gluon which absorbed by dilaton potential.

We fix the parameter c by fitting our mass formula1 m2
n = 4c (n+ 1) to the lowest two

quarkonium states,2

mJ/ψ = 3.096GeV , mψ′ = 3.685GeV, (3.5)

For c ≃ 1.16GeV 2, we have

m1 = 3.046GeV , m2 = 3.731GeV, (3.6)

which are consistent with the experimental data within 1%. The parameter b will be deter-

mined later by comparing the the lattice QCD result of the phase transition temperature

at zero chemical potential.

3.2 Black hole thermodynamics

Using the black hole metric we obtained

ds2 =
e2A(z)

z2

[

−g(z)dt2 + dz2

g(z)
+ d~x2

]

, (3.7)

it is easy to calculate the Hawking-Bekenstein entropy

s =
area (zH)

4
=
e3A(zH)

4z3H
, (3.8)

1We shift our mass formula (2.45) by 1 to make n = 1 correspond to the lowest quarkonium states, J/ψ.
2According to the analysis of the phase structure of our background that we will see later in this section,

we would like to interpret our holographic QCD model to describe the heavy quarks system.
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Figure 1. The temperature v.s. horizon at the different chemical potentials µ =

0, 0.35, 0.5, 0.714, 0.9GeV are plotted. We enlarge the rectangle region in (a) into (b) to see the

detailed structure. At µ = 0, there is a global minimum Tmin; for 0 < µ < µc ≃ 0.714GeV , the

minimum becomes local and eventually disappears for µ ≥ µc.

and the Hawking temperature

T =
κ

2π
=

z3He
−3A(zH)

4π
∫ zH
0 y3e−3Ady






1−

2cµ2
(

ecz
2

H

∫ zH
0 y3e−3Ady −

∫ zH
0 y3e−3Aecy

2

dy
)

(

1− ecz
2

H

)2






. (3.9)

We plot the temperature T v.s. horizon zH at different chemical potentials in figure 1.

At µ = 0, the temperature has a global minimum Tmin at zH = zmin. For zH > zmin, the

black hole solutions are thermodynamically unstable. Below the temperature Tmin, there

is no black hole solution and we expect a Hawking-Page phase transition happens at a

temperature THP & Tmin where the black hole background transits to a thermal gas back-

ground. For 0 < µ < µc ≃ 0.714GeV , the temperature has a local minimum/maximum

temperature Tµmin/Tµmax at rH = rmin/rmax and decreases to zero at a finite size of

horizon. The black holes between rmin and rmax are thermodynamically unstable. We

expect a similar Hawking-Page phase transition happens at a temperature THP & Tµmin.

In addition, since the thermodynamically stable black hole solutions exist even when the

temperature below Tµmin, we also expect a black hole to black hole phase transition hap-

pens at a temperature TBB ∈ [Tµmin, Tµmax], where the large black hole transits to a small

black hole. The values of THP and TBB will determine the true vacuum state, thermal

gas or small black hole, in which the system will stay eventually. Finally, for µ > µc, the

temperature monotonously decreases to zero and there is no black hole to black hole phase

transition anymore,3 which implies that there is a second order phase transition happens

at µ = µc, i.e. the critical point.

3There could still be a Hawking-Page phase transition at some temperature for the case of µ > µc, but

we will show later that the black hole solution is always thermodynamically favored in the case.
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Figure 2. (a) The free energy v.s. horizon at the different chemical potentials µ =

0, 0.35, 0.5, 0.71, 0.9. At µ = 0, we normalized that the free energy vanishes when zH → ∞. For

µ < µc ≃ 0.71, the free energy has a maximum; for µ ≥ µc, the free energy becomes monotonous.

(b) The free energy v.s. temperature at the different chemical potentials. At µ = 0, we normalized

that the free energy vanishes when zH → ∞. For µ < µc, the free energy has a maximum; for

µ ≥ µc, the free energy becomes monotonous.

To determine the phase transition temperatures THP and TBB, we compute the free

energy4 from the first law of thermodynamics in grand canonical ensemble,

F = ǫ− Ts− µρ. (3.10)

Changes in the free energy of a system with constant volume are given by

dF = −sdT − ρdµ. (3.11)

At fixed values of the chemical potential µ, the free energy can be evaluated by the inte-

gral [29]

F = −
∫

sdT. (3.12)

We can fix the integration constant in the above integral (3.12) by considering the zero

chemical potential case. At µ = 0, the metric of the zero temperature background (ther-

mal gas) coincides with the black hole metric in the limit of zero size, i.e. zH → ∞, where

we expect that the free energy of the black hole background also coincides with the free

energy of the thermal gas background which we can choose to be zero. Thus we require

F (zH → ∞) = 0 and obtain that

F =

∫ ∞

zH

s
dT

dzH
dzH . (3.13)

With the choice of A (z) in (3.1), the integral in (3.13) can be performed to get the free

energy of the black hole at fixed chemical potentials. We plot the free energy v.s. horizon

at different chemical potentials in figure 2. We have normalized the free energy of the black

4Formally, this free energy is called grand potential in grand canonical ensemble.
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Figure 3. The phase diagram in T and µ plane. At small µ, the system undergoes a first order

phase transition at finite T . The first order phase transition stops at the critical point (µc, Tc) ≃
(0.714GeV, 0.528GeV ), where the phase transition becomes second order. For µ > µc, the system

weaken to a sharp but smooth crossover.

holes by requiring it to vanish (or equal to the free energy of the thermal gas) at zH → ∞.

Therefore, the black hole background is favored for the negative value of the free energy and

the thermal gas background is favored for the positive value of the free energy. At µ = 0,

the free energy starts from a large negative value at small zH to a positive maximum value

and then decreases to zero at zH → ∞. The free energy intersecting the x-axis implies

that there exists a Hawking-Page phase transition from the black hole to the thermal gas

background at THP . For 0 < µ < µc, besides a maximum value, the free energy has a local

minimum value, which implies a black hole to black hole phase transition. For µ ≥ µc, the

free energy becomes monotonous and no phase transition exists.

The phase structure is more transparent in the plot of free energy v.s. temperature in

figure 2. At µ = 0, the free energy increase from a negative value with a large temperature

to zero at T = THP where the black hole transits to the thermal gas background which is

thermodynamically stable for T < THP . At finite µ, the free energy behaves as the expected

swallow-tailed shape. For 0 < µ < µc, the curve of free energy intersects with itself at T =

TBB where the large black hole transits to the small black hole background. We found that

the free energy of the black hole is always less than that of the thermal gas, i.e. Fblack hole <

Fthermal gas = 0. Therefore the thermodynamic system will always favor the small black hole

background other than the thermal gas background when T < TBB. When we increase the

chemical potential µ from zero to µc, the loop of the swallow-tailed shape shrinks to disap-

pear at µ = µc, where the background undergoes a second phase transition. For µ > µc, the

curve of the free energy increases smoothly from higher temperature to lower temperature.

We plot the phase diagram of our holographic QCD model in figure 3. At µ = 0, the

system undergoes a black hole to thermal gas first order phase transition at T = THP . For

0 < µ < µc, the system undergoes a large black hole to small black hole first order phase

transition at TBB. The phase transition temperature TBB approaches to THP at µ → 0

that makes the phase diagram continuous at µ = 0. By comparing the phase transition
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Figure 4. Schematic phase transition behavior of three flavor QCD for different choices of quark

masses at zero density [1].

temperature at µ = 0 to the lattice QCD simulation of THP ≃ 0.6GeV in [30], we fix

the parameter b ≃ 0.273GeV 4. The first order phase transition stops at the critical point

(µc, Tc), where the phase transition becomes second order. For µ > µc, the system has a

sharp but smooth crossover.

The phase diagram of our holographic QCD model in figure 3 is not expected from the

common picture of QCD phase diagram, in which the transition is crossover for the small

chemical potential µ and sharpens to the first order phase transition beyond a critical µc.

Then question is how to interpret our result? To explain our result, we need to look at the

phase structure of QCD more carefully. Lattice QCD provides many useful information

about the phase diagram of QCD at least at µ = 0. For finite density, lattice QCD suffers

the well-known sign problem. However, several perturbative methods such as reweighting,

complex chemical potential and expansions in µ/T etc. have been developed in lattice QCD

to compute the physical quantities at finite density. Despite that these methods only work

for small chemical potential µ, they can help us to understand the whole picture of QCD

phase diagram.

Figure 4 shows the schematic phase transition behavior of three flavor QCD for differ-

ent choices of quark masses at µ = 0 [1]. We can see that, the order of the phase transition

at µ = 0 depends on the quark masses.5 There are two limit regions where the phase tran-

sition is first order at µ = 0. One of them is near the chiral limit, i.e. mu = md = ms = 0.

The other is near the decoupling limit, i.e. mu = md = ms → ∞. Thus there are two

possibilities to interpret the phase diagram of our holographic QCD model.

The first possibility is to interpret our result as for the light quarks (near the point of

chiral limit) and the phase transition is the chiral symmetry breaking phase transition. For

5Most of the lattice results prefer that the physical mass point locates in the crossover region, but this

is not completely confirmed yet [31].
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Figure 5. The chiral critical surfaces in the case of positive (left) and negative (right) curvature

from lattice QCD [1].
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Figure 6. The deconfinement critical surface from lattice QCD [30].

a not very large chemical potential µ, lattice calculation shows that the chiral critical line

separating the crossover from the first order phase transition regions expands as increasing

the chemical potential µ to form a chiral critical surface. The sign of the curvature of

the critical surface is crucial to determine the phase structure at finite µ. In figure 5, the

chiral critical surfaces in the case of positive and negative curvature are showed. In the

interpretation of the light quarks, the mass point locates near the origin. The first order

transition will be preserved for any finite µ if the curvature of the chiral critical surface is

positive, while it will becomes a crossover at a finite chemical potential µc if the curvature

of the chiral critical surface is negative. Recent lattice calculations shows that the curva-

ture of the chiral critical surface is more like negative [1, 31] that is consistent with the

phase diagram of our holographic QCD model.

The other possibility is to interpret our result as for the heavy quarks (near the point

of decoupling limit) and the phase transition is the deconfinement phase transition. Sim-

ilar to the chiral critical line, lattice calculation shows that the deconfinement critical line

separating the crossover from the first order phase transition regions expands as increasing

the chemical potential µ to form a deconfinement critical surface. Figure 6 shows the recent
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result of the deconfinement critical surface from lattice QCD [30]. In our interpretation of

heavy quarks, the mass point locates near the infinite mass point. The first order phase

transition at µ = 0 will becomes a crossover at a finite chemical potential µc and it is consis-

tent with the phase diagram of our holographic QCD model. The phase transition for heavy

quarks has been extensively studied recently by using lattice QCD method [1, 30, 32–36].

Among the two possible interpretations of our holographic QCD model, we will focus

on the heavy quark interpretation in the rest of our paper. The reason is that, for the light

quarks, the lattice QCD simulation has almost confirmed that the physical point of light

quarks mass locates in the crossover region at zero chemical potential in figure 4. While

for the heavy quarks, the lattice QCD does not give any constraint yet and the physical

point of the heavy quarks mass has great possibility to locate in the first order region at

zero chemical potential. Furthermore, if we re-examine the gravity side more carefully, we

realize that we did not take into account the backreaction from the matter fields when

we solved our gravitational background. We only consider the baryon number chemical

potential, but not the dynamical quarks. This means that we are considering the quenched

limit of the heavy quarks.

To interpret our result as for the heavy quarks with the deconfinement phase transi-

tion, there is still a problem in the gravity side. It is widely believed that the deconfinement

phase transition in the field theory side is dual to the Hawking-Page phase transition in the

gravity side. Hawking-Page phase transition is the transition between black hole and ther-

mal gas backgrounds. However, in our gravity background, the phase transition is between

a large black hole and a small black hole backgrounds for non-zero chemical potential. Thus

it sounds inconsistent to consider that the black hole to black hole phase transition in the

gravity side is dual to the deconfinement phase transition in QCD. Our resolution for this

problem is that, although it is thermodynamically stable, the small black hole is dynamical

unstable. On the other hand, the gauge group in realistic QCD is SU (N) ∼ SU (3). Thus

we have to consider the finite N effect in the gravity side. If we still require that the gravity

limit held, this is merely to consider the finite string coupling constant by including the

loop correction, i.e. the quantum effect. It is well-known that small black holes are quantum

mechanically unstable and will quickly evaporate away by quantum radiation. Therefore,

right after the phase transition of a large black hole to a small black hole, the small black

hole will continue to evaporate away quickly to a thermal gas background. In this sense,

the black hole to black hole phase transition can be interpreted as the deconfinement phase

transition in the dual QCD theory.

In our heavy quarks interpretation, an important question is where the critical point

is, i.e. the point where the first order phase transition cease to become a crossover in

the phase diagram figure 3. Locating the critical point is a crucial job to understand

the phase structure of QCD. As we have seen in figure 2, the critical point is the point

where the self-intersection disappears. We thus obtain the critical point as (µc, Tc) ≃
(0.714GeV, 0.528GeV ). To justify the critical point we got, we expand the the function
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Figure 7. (a) The baryon density ρ v.s. the chemical potential µ. The curve is single-valued for

T > Tc, while it is multi-valued for T < Tc. At T = Tc, the slope becomes infinite at µ = µc. (b) The

specific heat CV v.s. Temperature. The negative value of CV corresponds to the thermodynamically

instability. For µ < µc, CV is negative for a range of T . For µ > µc, the specific heat is always

positive implying no phase transition.

At (z) in eq. (2.48) near the boundary z → 0 as

At (z) = µ
ecz

2 − ecz
2

H

1− ecz
2

H

= µ+
2cµ

1− ecz
2

H

z2 + · · · , (3.14)

from which the baryon ρ density can be read off as

ρ = − 2cµ

1− ecz
2

H

. (3.15)

We plot the baryon density ρ v.s. the chemical potential µ in (a) of figure 7. For

T < Tc, the baryon density ρ is single-valued which indicates that there is no phase tran-

sition. While for T > Tc, ρ is multi-valued which indicates that there is a phase transition

at certain value of the chemical potential µ. At the critical temperature T = Tc, the slope

of the ρ − µ curve becomes infinite at the critical chemical potential µc. The behavior of

the baryon number ρ (µ) near the critical temperature Tc is consistent with the result we

obtained from the free energy.

The susceptibility is defined as

χ =

(

∂ρ

∂µ

)

T

, (3.16)

which is just the slope in (a) of figure 7. For T < Tc, the susceptibility is always positive,

χ > 0 implies that the black hole with any chemical potential value is thermodynamically

stable. On the other hand, for T < Tc, χ could be negative for a range of µ where the

black hole is thermodynamically unstable. At T = Tc, χ → ∞ at µ = µc which indicates

that a phase transition happens around there.

The similar behavior of the susceptibility χ can be seen from the plot of the specific

heat CV v.s. the temperature T in (b) of figure 7, where the specific heat CV is defined as

CV = T

(

∂s

∂T

)

µ

. (3.17)
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Figure 8. The squared of speed of sound c2s v.s. temperature. For µ < µc, c
2

s is negative for a

range of T implying dynamical instability and there is a phase transition. For µ > µc, c
2

s becomes

smooth and always positive. At µ = µc, c
2

s touches the x-axis at T = Tc where the phase transition

transfers to a crossover.

We note that, in the CV −T diagram, the negative value of the specific heat corresponds to

the thermodynamically instability. For µ > µc, the specific heat is always positive, CV > 0

implies that the black hole with any temperature is thermodynamically stable. While for

0 < µ < µc, CV could be negative for a range of T where the black hole is thermodynami-

cally unstable. At µ = 0, there is a minimum temperature Tmin for the black hole solutions

where the specific heat diverges. The Hawking-Page like phase transition happens at a

temperature slightly above Tmin at THP .

3.3 Equations of state

The speed of sound is defined as

c2s =
∂ lnT

∂ ln s
. (3.18)

Figure 8 plots the squared of speed of sound c2s v.s. temperature T . For 0 < µ < µc,

the speed of sound is imaginary for a range of temperature, indicating a Gregory-Laflamme

instability [37, 38]. This is related to the general version of Gubser-Mitra conjecture [39–

41], i.e. the dynamical stability of a horizon is equivalent to the thermodynamic stability.

In our system, the negative specific heat implies thermodynamically unstable. While the

imaginary speed of sound implies the amplitude of the fixed momentum sound wave would

increase exponentially with time, reflecting the dynamical instability. Roughly speaking,

CV < 0 is equivalent to c2s < 0 in our system. For µ > µc, the speed of sound behaves as a

sharp but smooth crossover. At the critical point µ = µc, a second order phase transition

happens where c2s goes to 0 at the critical temperature Tc but never becomes negative. In

all the case, c2s approaches the comformal limit 1/3 at very high temperature as expected.

We plot entropy s and pressure p v.s. temperature in figure 9. The entropy of our

black hole solution has been calculated in (3.8) and is plotted in (a) of figure 9. At µ = 0,
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Figure 9. (a) The entropy s v.s. temperature. (b) The pressure p v.s. temperature.

there is a minimum temperature Tmin for the black hole solutions. The black hole solutions

with very low entropy and high temperature always have negative specific heat and are

thermodynamically unstable and the black hole will transit to the thermal gas through a

Hawking-Page phase transition. For 0 < µ < µc, the entropy is multi-valued for a region

of temperature which indicates a phase transition between high entropy and low entropy

black holes. For µ ≥ µc, the entropy is single-valued and there is no phase transition.

The similar phase behaviors have been discussed in [12] for a holographic QCD model

with different values of parameters tuned by hand. The pressure p can be calculated from

the free energy as p = −F and is plotted in (b) of figure 9. For some particular µ and

T , the pressure becomes negative which seems not make sense for a real physical system.

However, we see that the pressures for all the thermodynamically favorite backgrounds are

always positive. Both the pressure and the energy increase with the chemical potential,

that pushes the phase transition temperature TBB to the smaller values for growing µ. Our

results are consistent to the recent lattice results with finite chemical potential [42].

We finally plot the trace anomaly ǫ−3p v.s T in of figure 10. At µ < µc, the peak with

a infinite slope edge indicates a phase transition. With the growing chemical potential,

the peak increases and the position of the peak shifts toward the lower temperature. This

behavior is similar to the results in [43], but in the reverse way, i.e. the height of peak

decreases with the growing chemical potential in [43]. Our result is consistent with the

lattice result in [42].

4 Conclusion

In this paper, we studied the Einstein-Maxwell-dilaton system. We obtained a family of

analytic black hole solutions by the potential reconstruction method. We then studied the

thermodynamic properties of the black hole backgrounds. We computed the free energy

to get the phase diagram of the black hole backgrounds. In its dual holographic QCD

theory, we are able to realized the Regge trajectory of the vector mass spectrum by fixing

the gauge kinetic function. We then discussed the possible interpretations of the phase
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Figure 10. The trace anomaly ǫ− 3p v.s. temperature.

structure that we obtained from the gravitational background by comparing the lattice

QCD simulations. We argued that the heavy quarks interpretation is more favored in

our system. We calculated the equations of state in our holographic QCD model. We

found that our dynamical model captures many properties in the realistic QCD. The most

remarkable feature of our model is that, by changing the chemical potential, we are able

to see the conversion from the phase transition to a crossover dynamically. We identified

the critical point in our holographic QCD model and calculated its value. As the authors

knowledge, our model is the first holographic QCD model which could both dynamically

describe the transformation from the phase transition to the crossover by changing the

chemical potential and realize the linear Regge trajectory for the meson spectrum.

Since we interpret our holographic QCD model as a heavy quarks system, it would

be interesting to perform a lattice simulation on the equations of state of a heavy quarks

system and compare with our results. On the other hamd, there are many future directions

one can study. For example, the most interesting issue is to find an appropriate warped fac-

tor such that one can obtain a phase diagram similar to the common QCD phase diagram.

Another interesting issue is to incorporate the chiral symmetry breaking by introducing a

scalar coupled to the flavor fields and take the backreactions of flavor fields into account.

It is also interesting to compute the linear quark-antiquark potential and expectation value

of Polykov loop. One can compute the meson spectrum and determine the quarkonium

dissociation temperature in our background. One can also compute the various transport

coefficients like shear visocisty, bulk viscosity and so on. It is also interesting to compute

the critical exponents of various physical quantities near the critical point. Some of these

issues are in progress.
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[42] S. Borsányi et al., QCD equation of state at nonzero chemical potential: continuum results

with physical quark masses at order mu2, JHEP 08 (2012) 053 [arXiv:1204.6710] [INSPIRE].

[43] A. Stoffers and I. Zahed, Improved AdS/QCD model with matter,

Phys. Rev. D 83 (2011) 055016 [arXiv:1009.4428] [INSPIRE].

– 22 –

http://arxiv.org/abs/1207.3005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3005
http://arxiv.org/abs/1210.7994
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7994
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://arxiv.org/abs/hep-th/9301052
http://inspirehep.net/search?p=find+EPRINT+hep-th/9301052
http://dx.doi.org/10.1016/0550-3213(94)90206-2
http://arxiv.org/abs/hep-th/9404071
http://inspirehep.net/search?p=find+EPRINT+hep-th/9404071
http://arxiv.org/abs/hep-th/0009126
http://inspirehep.net/search?p=find+EPRINT+hep-th/0009126
http://dx.doi.org/10.1088/1126-6708/2001/08/018
http://arxiv.org/abs/hep-th/0011127
http://inspirehep.net/search?p=find+EPRINT+hep-th/0011127
http://dx.doi.org/10.1103/PhysRevD.64.044005
http://arxiv.org/abs/hep-th/0104071
http://inspirehep.net/search?p=find+EPRINT+hep-th/0104071
http://dx.doi.org/10.1007/JHEP08(2012)053
http://arxiv.org/abs/1204.6710
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.6710
http://dx.doi.org/10.1103/PhysRevD.83.055016
http://arxiv.org/abs/1009.4428
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4428

	Introduction
	Einstein-Maxwell-dilaton system
	The gravitational background
	Vector meson spectrum

	Phase structure
	Fixing the warped factor
	Black hole thermodynamics
	Equations of state

	Conclusion

