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ARTICLE INFO ABSTRACT
Am’;le history; ) This paper proposes an effective blind spot warning system (BSWS) for daytime and night-
Available online 15 April 2013 time conditions. The proposed BSWS includes camera models of a dynamic calibration and

blind spot detection (BSD) algorithms for the daytime and nighttime. Under daytime con-
ditions, the proposed system presents the Horizontal Edge and Shadow Composite Region
(HESCR) method to extract the searching region and to acquire the shadow location of the
targeted vehicles. Additionally, to detect vehicles at nighttime road scenes, the proposed
system extracts bright objects and recognizes the paired headlights of the targeted vehicles
for the BSD. The BSWS is implemented on a DSP-based embedded platform. The results of
the BSWS are obtained by conducting practical experiments on our camera-assisted car on
a highway in Taiwan under both nighttime and daytime conditions. Experimental results
show that the proposed BSWS is feasible for vehicle detection and collision warning in var-
ious daytime and nighttime road environments.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, driving safety has become one of the most critical concerns. Because car accidents frequently occur, intelligent
vehicle technologies are rapidly advancing worldwide [1,2]. Previous studies have indicated that intelligent vehicle technol-
ogies enhance road transportation efficiency and increase driving pleasure. Within the research areas of intelligent transpor-
tation systems, driving assistance plays a vital role in protecting driver safety and prevents car collisions. Because human
vision weakens while driving, scientists and scholars have focused on detecting obstacles in front of the host car. The afore-
mentioned works promote driver safety using front and rear vision. However, collision accidents occurring in a vehicle’s BSR
is a more serious problem.

Therefore, this study presents a BSWS compatible with daytime and nighttime uses. The introduced architecture applies
two algorithms focusing on the characteristics of daytime and nighttime conditions with low computational complexity and
high precision accuracy. The proposed BSWS is a fully vision-based detection system using only two cameras, which are
installed below the rear view mirror on both sides of our camera-assisted experimental car, a Taiwan iTS-II. By setting
the CCD cameras below both sides of the rear view mirrors, the proposed system obtains road conditions and determines

Abbreviations: BSD, blind spot detection; BSR, blind spot region; BSWS,blind spot warning system; CAN, Control Area Network; HESCR, Horizontal Edge
and Shadow Composite Region; HSV, Hue Saturation Values; SIFT, Scale Invariant Feature Transform; ROI, Region of Interest.
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Fig. 1. Vertical view of the warning system detection zone.

whether there are any accidents occurring in the BSR. The vertical overview of the proposed system is shown in Fig. 1. The
horizontal viewing angle between the cameras and the body of the car is 75.2°. The detection zone covers 20 m behind the
camera and a 4-m width on both sides.

The images captured by cameras are analyzed using the proposed vision-based algorithms, such as edge detection meth-
ods [3-5], morphological image processing [6-10], and other computer vision techniques. First, the camera models are
established using a dynamic calibration method, and the corresponding transform of the 2D image plane and 3D world
coordinate are derived. After the camera calibration is completed, practical roadway information can be efficiently obtained.
In the next step, this study presents an edge-based BSD approach for daytime conditions, and a paired-headlight-based BSD
approach for nighttime conditions. Under daytime conditions, the shadow edge features of the vehicle object are extracted
using minimum ground plane pre-processing and continuous level shadow detection techniques. The minimum ground
plane is obtained using the HESCR, and the horizontal and continuous scanning is then performed on the minimum ground
plane to specialize the shadow positions. Moreover, this study also presents a solution for eliminating false detections of
non-vehicle obstacles. Under nighttime conditions, this study adopted a bright object segmentation method to extract bright
objects that possibly indicate vehicle lamps under nighttime conditions. The extracted bright objects are analyzed to deter-
mine whether they are lamp objects. The potential vehicle lamp objects are then verified to determine whether two of the
lamp objects can be paired. Vehicles in the nighttime are detected if the paired-headlights are found. Additionally, an effi-
cient vehicle distance estimation method is also presented. Mastering the distance between the host car and approaching
vehicles allows the system to forewarn the driver to avoid possible collisions.

With the growth of the embedded hardware, some previous works have implemented BSD systems using real-time
embedded applications [12,13]. Thus, the proposed BSWS is implemented on a portable DSP-based embedded platform
[11]. The experimental results are evaluated under both daytime and nighttime conditions. The proposed system was tested
on our experimental car for more than 30 min to guarantee robustness, and the experimental results demonstrate that the
proposed system can achieve a high detection accuracy of over 90% under both daytime and nighttime conditions. In addi-
tion, the proposed system is also compared with other relevant methods. The comparative and experimental results show
that the proposed BSWS system can provide favorable performance in vehicle detection and collision warning, despite blind
spots under both daytime and nighttime conditions.

The features and contributions of this study are as follows:

(1) The proposed BSWS is a fully vision-based BSD system by using computer vision techniques, such as dynamic camera
calibration and image pre-processing methods. Therefore, the proposed BSWS can be easily implemented only using
cameras as Sensors.

(2) This study presents two vision-based BSD algorithms according to daytime and nighttime conditions. For daytime and
nighttime conditions, this study presents an edge-based approach and a paired-headlight-based approach to detect
the shadow regions and paired headlights of vehicle obstacles as features for BSD.

(3) Additionally, the proposed BSWS is implemented on a DSP-based platform for practical demonstration. This study
evaluates the proposed system in practical by using only two cameras, which are installed below the rear view mirror
on both sides of our camera-assisted experimental car, a Taiwan iTS-II. The experimental results of the proposed BSWS
are evaluated under both daytime and nighttime conditions.

This paper is organized as follows. Section 2 presents a review of literature in the area of driving assistance and BSD.
Section 3 presents an efficient camera model with a dynamic calibration model. Section 4 shows the proposed two algo-
rithms of the BSWS for both daytime and nighttime, including the vehicle distance estimation method. The experimental
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results are shown in Section 5. Finally, Section 6 offers the conclusions to this paper. Besides, this study uses several abbre-
viations for concise writing.

2. Related works

Numerous studies have proposed novel methods to solve this problem during the day [14,15] and night [16-18]. To
improve the performance of detection obstacles in the front view, some studies attempt to increase sensors mounted on
vehicles. Rodriguez Flérez et al. adopt two cameras for stereo vision, multi-layer RADAR and CAN-bus sensors to vehicles
and pedestrians [14]. Jia et al. employee multi-range RADARs and several cameras to detect multi-model obstacles [15]. Un-
der nighttime conditions, a paired-lamp-based detection method using bright object segmentation is employed to determine
the vehicles appearing in front of the host car. Wang et al. presented a taillight extraction and paring method to detect front
cars [16]. Fossati et al. proposes a real-time vehicle detecting and tracking system based on the HSV of taillight [17]. Further-
more, O’Malley et al. realized rear-lamp extraction and pairing and implemented lamp tracking using Kalman filters [18].
However, rear vision is also a critical concern. Recently, pattern recognition techniques [19] are widely developed and ap-
plied on intelligent vehicular technologies. Lin and Xu presented a vision-based method for detecting the vertical edges
of vehicles behind the host car [20].

Although most attention was fascinated with the frontview obstacle and lane detection, some previous studies have at-
tempted to solve the problem of blind spot detection (BSD) [21-29]. Wong and Qidwai installed six ultrasonic sensors and
three cameras to obtain the surrounding information of the host car. The obtained data were then processed using fuzzy
inference to forewarn the driver before the collision occurs [21]. Ruder et al. adopted RADAR and image sensors to acquire
the speed and position of the vehicle in the BSR [22]. Both [21,22] built the system architecture by integrating both cameras
and other detection sensors. Numerous other works have introduced a vision-based method to reduce cost. Otto et al. also
adopted cameras and RADARs as BSD sensors, but this study focuses on detecting the pedestrians and keeping pedestrians
safety while walking across roads [23]. Achler and Trivedi used an omni-directional camera to monitor the surroundings of
the host car. The wheel data in the captured images are filtered by the 2D filter banks and are used to distinguish the vehicles
in the BSR [24]. Techmer [25] utilized inverse perspective mapping and an edge extraction algorithm to match the pattern
and to determine whether any vehicle exists in the BSR. Diaz et al. applied an optical flow algorithm to extract the vehicles in
the BSR and to track the target vehicle using several scale templates and Kalman filters [26]. Although [24-26] have obtained
the surrounding information of the host car using specialized sensors or processors, the computational costs of image pre-
processing are substantial. Krips et al. introduced the adaptive template matching method, which is characterized according
to the self-adjusted template to detect the vehicles approaching the host car in the BSR [27]. Jeong et al. presented a mor-
phology-based saliency map model and combined it with Scale Invariant Feature Transform (SIFT) [30]. Lin et al. proposed a
vision-based BSD by pattern recognition techniques. The edge features of vehicles are first trained as a detector, and the
trained edge detector is used to recognize the vehicles in BSD, The related studies [27,28] have distinguished the vehicle
according to an established database of the vehicle objects. The detecting method, using the feature and templates, can sup-
ply effective classification for common vehicles in the daytime, but this method may not perform effectively in the night-
time. Li et al. demonstrated the BSD by using fisheye cameras [29]. However, the scenario stated in [29] is for parking
assistance, rather than on-road driving assistance applications.

3. Camera model with dynamic calibration

This section presents the camera projection model to transform the 2D image plane and the 3D world coordinate system.
The proposed camera model also contains the parameter settings and the camera calibration process. In this section, the de-
tails of the proposed camera model, including the perspective transformation, transformation between the 2D image and the
3D world coordinates, and adjustment of the uneven pavement is illustrated.

The position of any point (X, Y Z.) in the camera projection on a 2D image plane (u, ) can be obtained using perspective
transformation. Fig. 2a shows the model of image objects captured by the camera being projected onto the 2D image coor-
dinates, where X, and Z. in this camera projection model correspond to u and v in the 2D image coordinate, respectively. In
the following description, we introduce the transforms from the camera coordinate to the 2D image coordinate. In the pro-
posed transforms, Y., which denotes the perception depth, is the key parameter.

Using the perspective transformation, it is observed that

udu _x  vdv_z )
foy fy
Eq. (1) can be rewritten as

u:eu)y%7 v:eyi—i (2)

where e, and e, represent as dL and % respectively. x, y and z in Eq. (1) are substituted with X, Y. and Z, respectively.

u
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(a) The camera and 2D image coordinates (b) The camera and 3D world coordinates

Fig. 2. Relationships between the camera, 2D image and 3D world coordinates.

Let Py, 11 and C,, be a perspective transformation matrix, the vectors of the 2D image and camera coordinates, respec-
tively. It can be observed that

e, 0 0 O
01 0 O - - /
Ppmj: 0 0 e ol lh:[xi Yi 1}7 Ch:[XC Yo Z 1] (3)
v
0 0 0 1

By applying Eq. (3), the relationships between Yh, Eh, and P,,; can be formulated as Eq. (4) as follows:

Iy = PproiChr (4)

As Fig. 2b shows, (X,,Y.Z.) and (X,,Y;,Z,) represent the camera and 3D world coordinates, respectively. By shifting and
rotating (X,,Y.Z,), (X, Y., Zc) is acquired. Let W, be the vector of the 3D world coordinate. Thus, the relationship between
Cn and W), can be rewritten as

Ch=Ry(W, —T) 5)

where R, and T denote the 4 x 4 rotating matrix the 4 x 1 shifting vector between Eh and \7\/,1, respectively. O, and O, rep-
resent the origins of the camera and 3D world coordinates. Let H be the distance between O, and O,. Then T can be repre-
sented as Eq. (6).

T=[0 0 H 0] (6)

Here, as Eq. (7) shows, the rotating matrix R, is decomposed to three matrices Ry, Rg, and R,. «, 8, and y denote the coun-
terclockwise rotation angle within the X axis, Z axis, and Y axis, respectively. Additionally, «, 8, and y respectively represent
the “tilt angle,” “pan angle,” and “swing angle” in the practical case examined in this study. Accordingly, R,, Rg, and R, are
obtained using Eq. (8).

Rx = RMR/}R)! (7)
1 0 0 0 cosp —sinp 0 O cosy 0 —siny O
0 cosoe —sina O sing cosp 0 O 0 1 0 0

Ra = . 3 R/f = s y = . (8)
0 sinoe cosax O 0 0] 10 siny 0 cosy O
0 o 0 1 0 0 0 1 0 o0 0 1

The rotation angle within the Y axis does not exist in the case involving a blind spot. Therefore, the swing angle 7 is zero,
and then Eq. (7) is rewritten as Eq. (9).
cos f8 —sin B 0
coso-sinff coso-cosf —sino
sing-sinf sino-cosf  cosa
0 0 0

R, =R.R, =

- O O O
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Based on the results introduced in the previous two subsections, the perspective transformation between the 2D image
and 3D world coordinates can be obtained. The relationship is shown as Eq. (10), which can be acquired using Egs. (4) and

(5).
B e, (cosB-X,—sinp-Y,)
Iy = coso-sinf- X, +cosa-cosf-Y, —sino- (Z, — H) (10)
e, (sino-sinf- X, +sino-cosf-Y,+cosa- (Z —H)

Additionally, the relationships of (u, v) and (X, Y,,Z;) are attained using Eqs. (2) and (10), respectively,

ufﬁfe cosfB-X,—sinp-Y, (11)
Ty, “cosa-sinf-X,+coso-cosp-Y, —sino- (Z, — H)
Ufﬁfe sino-sinf- X, +sino-cospf- Y, 4+ cosa - (Z- — H) (12)

“y; “cosa-sinf-X,4coso-cosf-Y, —sino - (Z, — H)
For the case of zero tilt angles, let « = 0. Then Eqgs. (11) and (12) can be rewritten as Eq. (13).
cosp- X, —sinp-Y; Z,—H

=ey— , V=€,
“sinfi-X, +cosp-Y, Ysinfi-X, +cosp-Y,

(13)

In practical cases, the roads are usually non-flat. Thus, this subsection concerns the angle of inclination in real-life cases.
Fig. 3 shows the angle of inclination 0. It is observed that

Z,=tan0 .Y, =my-Y, (14)

In Fig. 3, the road surface and the camera are parallel with an included edge angle 0. In this case, 0 is equivalent to ¢,
which is the tilt angle of the camera described in the previous subsection. Using Egs. (13) and (14), the relationships of
X, Y, and Z, between the world coordinate system and the image coordinate system is declared in Eq. (15), respectively.

H(sinﬁ+cosﬁ£) H(cosﬁ— sin [3%) H(cos B— sinﬁi)
r= R , Y= R s L= R (15)
md(cosﬁ—sm[fi) —el] m%(cosﬁ—sm[f%) —%} (cosﬁ—smﬁﬁ) —%
The geometric lane model is approximated to a linear equation, as obtained using
X,=m-Y,+b, (16)

where m and b denote the slope and offset of the lane marking, respectively. There is an assumption that the coefficients in
the 3D world coordinates are the same as those in the 2D image coordinates. Hence, the geometric lane model is transformed
in the image domain, as obtained using

u —b v, ((-Hsinp+mHcos § + bm, cos f) (17)
e, \(Hcosp+mHsinp+bmysing)/) e, (Hcos p + mHsin  + bm, sin p)
Here, we can define,
M= —b BﬁH(—sinﬁ+mcosﬁ)+mecosﬁ (18)
"~ H(cos 4+ msin ) +bmysin’ ~  H(cos f + msin ) + bm, sin
u=2 v=2 (19)
ey e,
Then substituting Eqs. (18) and (19) into Eq. (17) can yields
U=MV +B, (20)

Eq. (20) represents the lane model in terms of the image coordinates as well as the road inclination, my, which is applied to
the cases of non-flat roads.

Fig. 3. Angle of inclination between the vehicles and pavement.
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4. Daytime and nighttime blind spot detection

This section presents the algorithm of BSD under daytime and nighttime conditions. Under daytime conditions, the
regions of interest are determined according to the lane markings for detection efficiency and accuracy. After the ROI are
determined, the edge of the shadow region is obtained using the proposed mechanisms, and the positions of the targeted
vehicles in the BSR are detected according to the shadow edge. In addition, this section discusses how to eliminate non-
vehicle obstacles, which are often misjudged as vehicle objects. Under nighttime conditions, the location of the paired head-
lights is specified, and the vehicles in the BSR are located using the paired headlights.

4.1. ROI in daytime

The ROI detection under daytime conditions is based on information obtained using the lane marking detection process.
The proposed ROl is initialized by detecting lane markings. The proposed system adopts a linear equation shown as Eq. (16)
to approximate the model of lanes, which are calculated according to the Eq. (20). The detections of lane markings are per-
formed by using the gray-level distribution of lane markings described in [32]. When the near-side marking line is detected
in the captured images, modeling the marking lines with a linear equation is necessary. Fig. 4 illustrates the example of mod-
eling the label lines in the 2D image and 3D real world coordinates. In Fig. 43, it is obvious that two marking lines, which are
the near side and the far side, are parallel in the 3D real world coordinates. Let the linear equations of the near-side and
far-side label lines be X, = m,Y, + b; and X, = m,Y, + b,, respectively. m, is equal to m, because the two label lines are parallel.

The corresponding relationship of the two label lines in the 2D image coordinate is shown in Fig. 4b. The linear equations
of the detected near-side marking line in the 2D coordinate is U = M,V + By, which can be also obtained using the information
of the captured images. The detection result of the near-side label line is shown as Fig. 5a. After the near-side marking line is
acquired, the ROI is updated using the information of the detected marking line as shown in Fig. 4b. Because the near-side
and far-side marking lines are parallel in the 3D world coordinate, let the line segment of the near-side AD be shifted 4
meters, and then BC, which is the line segment of the far side, is obtained. Fig. 5b illustrates the corresponding image of
AD and BC in the 2D image coordinate. The new ROI is enclosed using AD, BC, and the vanishing line. The range of the
detected ROI is adjusted with the vanishing line adaptively. For example, using the camera with a 3.6 mm focal length,
the maximum range of the detected ROI is approximately 20 m. The determination of ABCD consults the definition of lane
change decision aid systems in ISO document [31]. According to the models described in [31], ABCD covers the left and right
adjacent zones.

4.2. Image pre-processing

The captured blind spot images comprise two main parts, which are the ground plane and the obstacles. The main pur-
pose of the blind spot detection is to detect whether the oncoming obstacles are vehicles. Therefore, eliminating the ground
plane in the captured images is necessary. This subsection introduces the minimum ground method [33] to analyze the cap-
tured images and obtain the minimum ground plane. In addition, the salient features of the vehicles under daytime condi-
tions are the shadows underneath the target vehicles. This study adopted the edge features of the shadows to extract the
vehicle features in the captured images, as discussed in this subsection.

Before presenting the minimum ground statistic method, three assumptions should be addressed:

e The ground plane and obstacles make contact with each other.
e The boundaries between the ground plane and the obstacles are visible in the captured images.
e A boundary line exists, which is nearly horizontal between the ground plane and the obstacles in the captured images.

Voo
X, =mY +b X, =m} +b,

(a) 3D world coordinates (b) 2D image coordinates

Fig. 4. Modeling the label lines in the 2D image and 3D real world coordinates.
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" Vanishing Line

(a) Result of the detection of the (b) Updated ROI
near-side label line

Fig. 5. Detection results of the near-lane marking line and updated ROI.

,. _“‘ ' = ;ﬁ
L r

(a) Original image (b) After performing the HESCR (c¢) Minimum ground plane

Fig. 6. Example of the minimum ground plane pre-processing.

Fig. 6 illustrates the minimum ground plane pre-processing. In Fig. 6a, the target of the process is to obtain the minimum
ground plane I[JKL. Thus, the proposed process uses the adopted horizontal Sobel edge extraction and obtains the HESCR,
as shown in Fig. 6b. In Fig. 6b, the white and black regions denote the shaded regions and the ground regions, respectively,
and the gray regions reflecting the boundaries between the white and black regions represent the horizontal edge area. After
the horizontal Sobel edge extraction, the process begins scanning from the bottom-left to the top-right. The scanning process
stops while the gray level of the scanned pixels are nonzero, which are the ground regions, and the remained black region is
the minimum ground plane, as shown in Fig. 6c.

After the minimum ground plane is obtained, the average Gy and the standard deviation gy of the gray level of the pix-
els in the ground plane can be computed as Eq. (21). In Eq. (21), N and I,;, denote the number of pixels and the gray level of
the mth pixel in the minimum ground plane, respectively.

(21)

1 2 1
-1 -2 -1
(a) Sobel horizontal edge detector (b) HESCR of Fig. 6(a)

Fig. 7. Processing of HESCR.
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The calculated Gy and oy, are used to determine the threshold of distinguishing the ground plane and the vehicle objects
adaptively. Thus, the effects caused by the different weather conditions and different sensitivity of the camera can be
overcome.

The following description discusses how to calculate the HESCR, as shown in Fig. 7. Fig. 7a shows the Sobel horizontal
edge detector which are used to filter the original image, such as that in Fig. 7a. The threshold of the Sobel binary plane
is set to Gy to eliminate the noise in the image. It is assumed that the gray levels of the shadow regions are lower than
Gue, and the gray levels of the shadow regions are much lower than those of the other possible shadow regions. Thus,
the threshold of the “dark” shadow regions is defined as Gy — 26yc. The HESCR can be calculated using Eq. (22), where
df(u, v)/dv represents the gradient of the image in the v direction. Fig. 7b illustrates the calculated HESCR of Fig. 6a.

50,if df (u, v)/dv > Gug
fuescr(U, v) = ¢ 255,if df(u, v)/dv < Gue — 20m¢ (22)
0, otherwise

4.3. Continuous level shadow detection

Under daytime conditions, the shadow of the bottom of the vehicles is also the main feature when recognizing the junc-
tion between the vehicle and the ground plane in the captured images. Fig. 8 illustrates the process of the continuous level
shadow detection. In Fig. 8a, the continuous level scanning in the image is performed by applying Sobel edge extraction. The
scanning horizontal levels begin from the bottom to the top of the images, and cross to the near-side and far-side marking
lines at points Fp and Np. Then, My, M,, M3, and M, are calculated using Eq. (23).

When the level scanning line moves upward, M,, M,, M5, and M, meet the shadow region of the vehicle appearing in the
ROIL. When the gray levels of My, M,, M3, and My are 255, the current level scanning line is the lower bound of the shadow
region of the vehicle, and the interval width of Fp and Np at this time is defined as the width of the region of the vehicle,
which is denied as Lgp. In Fig. 8b, the shadow of the vehicle is projected on the width of the region of the vehicle. Although
some of the projected lines of the shadow regions are shattered, most of them are close enough to be considered as con-
nected lines. In the proposed algorithm, when the distances of a pair shattered lines is lower than 1/16Lgp, these two shat-
tered lines are connected. After the close shattered lines are connected, a maximum continuous projection line Lys is
observed. When Lys is larger than a quarter of Lgp, it means that the detected shadow region is large enough, and the junction
between the vehicle and the ground plane is detected in the ROL

M, =

1 1
(Fp+My), My =5 (Fo+Np), Ms=5(Mi+Np), Ms=5(Ms+Np) (23)

N| =
N —

4.4. Non-vehicle obstacles elimination

It is observed that using the proposed shadow features to recognize the vehicles is efficient under daytime conditions. The
bright objects, such as the zebra crossings and road markings shown in Fig. 9a and b, can be eliminated easily using the pro-
posed algorithm. However, two frequently occurring conditions that are caused by the complicated shadows are described as
follows. Fig. 25a and b illustrate examples of the long shadow region of vehicles and shadows of non-vehicle obstacles,
respectively.

Most of the boundary features between the vehicle and the ground plane in the daytime can be detected using the pro-
posed method in Section 4.2. But when vehicles drive in the dawn and nightfall times, the shadows lengthen because of the
uprising and falling sunshine, respectively. As Fig. 10a shows, CD is the first detected shadow region, but it is not the suitable
boundary between the vehicle and the ground plane. However, the shadow regions of the bottom of vehicles are darker than

LRd

(a) Continuous level scanning (b) Projection of the shadow region

Fig. 8. Process of the continuous level shadow detection.
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(a) léxample of bright (b) Example of bright (a) Example of the long (b) Example of the shadows
objects: zebra crossings objects: road markings shadow region of vehicles of non-vehicle obstacles

Fig. 9. Examples of bright objects and shadow regions.

—

(a) Long shadow region of vehicle (b) Correcting process of the continuous level shadow detection

Fig. 10. Correction process based on the gray levels of the shadow regions.

those projected by the sunshine. To detect the shadow boundaries accurately, we present a correction process based on the
gray levels of the shadow regions to contend with such a condition. According to the results of the continuous level shadow
detection, CD corresponds to the maximum continuous projection line Lys. The searching rectangular region ABCD of the cor-
rection process is chosen, where the width and height of ABCD are Lys and 1/4Lys, respectively. As Fig. 10b shows, the search-
ing order is from the bottom to the top of ABCD. Assume that I, is the average gray level of the nth scanning line in ABCD. The
boundary between the vehicle and the ground plane is calculated using Eq. (24).

vys = arg min(Ij) (24)
Jj=1~n

Another frequently occurring condition is when the shadow regions of non-vehicle obstacles have similar characteristics
with those of actual vehicles. Fig. 11a indicates that PQRS and ABCD are detected using the proposed continuous level shadow
detection method; but only PQRS is the shadow region of the vehicle, whereas ABCD is not. However, Fig. 11b shows that the
vertical edges planes of PQRS and ABCD are distinguished. This study proposes a correction process for overcoming the non-
vehicle obstacles.

To distinguish actual vehicle objects and non-vehicle obstacles accurately, the proposed architecture includes the correc-
tion process for eliminating non-vehicle obstacles. First, the correction process for the long shadow regions is employed to
obtain the precise positions of junctions, such as SR and CD with length Lys in Fig. 11c and d. The settings of searching regions
are similar to those of the detection of long shadow regions. The searching regions PQRS and ABCD are chosen with the width
Lys and the height Ly, which is set as 1/4Lys. After the searching regions are established, the captured image is transformed
into the vertical edges planes, and PQRS and ABCD are enlarged to be analyzed, as shown in Fig. 11c and d, respectively. In the
enlarged regions PQRS and ABCD, the scanning vertical line orders from left to right, and uj, represents the u coordinate of

E; -~ o nyA,
SSR
K T Uy Uy Uy . Uy Uy Uy .
(a) Error detection of the ~ (b) Vertical edge plane of (a) (c) Enlarging PORS in (b)  (d) Enlarging ABCD in (b)

non-vehicle obstacle

Fig. 11. Distinguishing actual vehicle objects and non-vehicle obstacles by the vertical edge plane.
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The ROI Image Pre- Detection Any Vehicles Tracking
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Settings processing Mode Detected? Mode
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N

Fig. 12. Flow chart of the nighttime BSD.

the corresponding scanning vertical line, where n denotes the order of 1y and begins from 1. The method exploited in Sec-
tion 4.3 is then employed to obtain the maximum continuous projection line of the vertical edge Lyg, and uyp is determined
using Eq. (25). When there is no uy; identified as 1, the searching region is determined as the non-vehicle object which edges
are shattered. Otherwise, the searching region is determined as the vehicle object whereas at least one uyjp is detected as 1.
The u coordinate of the detected vehicle object is then set as uJ,, whereas m is the smallest of n which corresponding uf is 1.
Thus, the position of the vehicle object can be specified, and the non-vehicle object can be eliminated.

1, lf LVE > 1 LVH
un — ’ 2 25
vB { 0, otherwise 25)

4.5. Nighttime blind spot detection

The proposed nighttime BSD identifies vehicles by detecting and locating vehicle headlights using image segmentation
and pattern analysis techniques. The flow chart of the proposed detection algorithm for nighttime conditions is shown in
Fig. 12.

The ROI settings in the nighttime BSD are similar to those under daytime conditions. The upper bound of the ROI depends
on the vanishing line of the image. However, the chosen ROI under nighttime conditions is fixed and not necessary to be
updated. The image pre-processing procedure contains the bright objects segmentation and connecting components method
[34]. After the image pre-processing, the bright objects are extracted and labeled. The labeled bright components would be
recognized if they are the possible headlight objects.

In the detection mode of the nighttime BSD flow, the extracted and labeled bright objects are classified when the bright
objects are the possible single headlight. The single headlight classification rules are shown as Eq. (26). A5, and Rg; denote the
area and the aspect ratio of the nth labeled bright component, respectively. THs.,,, THsa,;, THsir,;, and THsg,, represent the
upper and lower thresholds of the area and the aspect ratio of the single headlight, respectively. The standard deviation ¢%, of
the gray levels of the nth labeled bright component is also adopted to distinguish when the bright components are the single
headlight objects, and the upper bound threshold of ¢¥, is THs;;. According to the three rules listed in Eq. (26), the results of
recognizing the nth labeled bright component, SL", are obtained. The bright component would be identified as the single
headlight if SL" is equal to 1. Otherwise, the bright component would not be classified as the single headlight and eliminated.
These identified single headlight objects are merged and confirmed when they are paired headlight components.

1, if THyu,, < Ag < THsiay,,
THSLRLB < REL < THSLRW
04 < THsis
0, otherwise

SL" = (26)

The values of the thresholds in Eq. (26) are defined as follows. The threshold THs,, and THgg,,, are set as 1.2 and 0.8,
respectively, to determine the circular-shaped appearance of a potential vehicle light. The threshold THsis,, and THsa,
are determined as THgg,, = (LW(C;)/4)?, and THs, = (LW(C;)/8)%, respectively, to adaptively reflect the reasonable area
characteristics of a potential vehicle light. LW(G;) is the approximate lane width which is referred by [34], The threshold
THs; ;- is set as 50 to ensure the reasonable luminance distribution of a potential vehicle light.

Eq. (27) shows the rules to determine whether the identified single headlight objects are merged as the paired headlight
components. Ay, and Ry, denote the area and the aspect ratio of the nth merged single headlight objects, respectively. The
area and aspect ratio of a pair of headlight components of a potential vehicle should follow the rule shown in Eq. (27), where
THuia,, and THyis,, denote the upper and lower threshold of the area of the paired headlight component, respectively. Addi-
tionally, because the blind spot cameras are set precisely at the same height from the ground, the paired headlights of a vehi-
cle in the BSR must locate objects at the same level. In other words, the vertical coordinates of the paired headlights should
be almost the same. In the practical case, if the vertical coordinates of the merged single headlights are adequately close, the
merged single headlights would be considered as the possible paired headlights, as shown in Eq. (27). vgn and vgw denote
the left and right lamps of the merged single headlights, and THy,p is the threshold to assess whether these two lamps are
close enough. Finally, the gray-level distribution of the paired headlight component is “light-dark-light.” As Fig. 13 shows,
the gray levels of pixels of the left and right headlights are much higher (lighter) than other regions. The gray levels of pixels
in the region, which is between the paired headlights, are much lower (darker) than the lamp region. Therefore, the average
luminance of the paired headlights G and G} must be higher than that of the region between the paired headlights. The
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Fig. 13. Characteristic of the paired headlight component.

result Ay, is gained after checking the merged single headlights using Eq. (27). The merged single headlight would be deter-
mined as the pairing headlight component when ML" is equal to 1.

1, if THMLALB < AR/"_ < THMLAUB7RHML <1,
| Vg — Ugne| < THyerp, and
nL CLR CnR CLR
G§ > G GEF > G
0, otherwise

ML" = (27)

The values of the thresholds in Eq. (27) are defined as follows. The threshold THu,, and THu.,,, are determined as
THuyia,, = LW(G;), and THyia, = 0.5 - LW(G;), respectively, to reveal the width property of the most types of different sized
cars, such as sedans, buses, and trucks, appearing in the BSD. LW(G;) is the approximated lane width which is referred by
[34].

In the tracking mode, this study consults the tracking process of vehicle component groups described in [34]. After the
pairing headlight component is determined, the current coordinate of the pairing headlight component is recorded. The cur-
rent coordinate of the detected paired headlight component is recorded. Since the vehicles are moving according to traffic
flow, the coordinates are recorded five times and tested if the direction of recorded coordinates is the same as traffic flow.
If so, the moving paired headlight component is recognized as the vehicle in the BSR.

4.6. Vehicle distance estimation

This subsection presents a geometric model of the lane departure based on the blind spot image and the vehicle distance
estimation. Fig. 14a illustrates the relative positions of the blind spot camera and the lanes in the 3D real world, where the
distance between the host vehicle and the right-side lane wyg is composed of three parts, as shown in Eq. (28).

War = W1 + Wy +W,, (28)

where w,, w; and w, represent half of the width of the host vehicle, the length of the blind spot camera, and the distance
between the blind spot camera and the near-side label line in the pavement, respectively. Generally, w, is fixed because
of the standard specification of the vehicle, and w, is given because it depends on the specification of the camera. Therefore,
to derive wgg, calculating the value of w, is necessary.

Fig. 14b is the projection of 2D image coordinates to the 3D real world coordinates, and Fig. 14c is the detail of the geo-
metric model. Let the blind spot camera and the host vehicle form an included angle . From the viewpoint of the 2D image,
the point O is the center point of the bottom of the captured images. To analyze the geometric model, three extended lines
are drawn, as shown in Fig. 14c. First, draw an extended line from the bottom of the host vehicle and orthogonal to the driv-
ing direction of the host vehicle. Then draw another extended line from the blind spot camera to intersect with the previous
extended line at the point O. The distance between the camera and O is Yj,, and Xy, is orthogonal to Yy, at O. Eq. (29) shows
how to derive w, based on the model described in Fig. 14c.

Wy = Y sin f — Xim COS B (29)

The values of X;;; and Yy, can be acquired using the information in the 2D image coordinates. X, is the distance from the
point Yy, to the closest lane in captured images. Let (u;y,, 7m) be the 2D image coordinate of Yp,,. Furthermore, Yy, is the dis-
tance from the point Yj,, to the blind spot camera. As Eq. (30) shows, X, and Y, can be calculated according to the camera
models presented in Section 3.
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Fig. 14. Geometric model of calculating wgg.
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Therefore, as Fig. 14c shows, w; can be obtained by substituting Yy, and X;,,, and the distance between the vehicle and the
right-side lane wgp is also derived.

Fig. 15a illustrates the model of the vehicle distance estimation in the 3D world coordinate, where Yj, is the distance
from the blind spot camera to the target vehicle, Dy, is the distance between the vehicle and the near-side lane, D, is the
distance between the target vehicle and the near-side lane, and Dy, is the vertical component of Yj,. The vehicle distance
estimation in the 2D image coordinate is shown in Fig. 15b, where Vk is the position underneath the host vehicle with
the coordinate (uycp, tvcp). Then draw a horizontal line through V. The horizontal line is also the junction between the
vehicle and the ground plane and crosses the near-side lane with the point L with the coordinate (uyy, vn.). Thus, vycp= -
vn, and Yy, is obtained using Eq. (31), which is obtained using Eq. (15). Besides, to calculate the value of Dy, it is nec-
essary to obtain LV, which is denoted as X, in Fig. 15c at first. X;, is employed using Eq. (31), which can be obtained
using Eq. (15). The transform equation of Dy, and X}, is described as Eq. (32). Finally, Dy, is derived using the Pythagorean
Theorem described as Eq. (32).

lv )

vep? T vep

V(u

(a) Distance estimation in (b) Distance estimation in the (c) Vehicle distance estimation D,
the 2D world coordinate 3D world coordinate

Fig. 15. Vehicle distance estimation.
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(a) Left side camera (b) Right side camera (c) Taiwan iTS-11

Fig. 16. The proposed BSWS installed on our experimental car, the Taiwan iTS-II.

H(cosﬁ— sinﬁ“e”%) H(sinﬂ+cosﬁA;’—uLV>
ho = TN o KW= v —— (31)
mo(COSﬁ—Slnﬁ?) -2r m(,<cosﬁ—smﬁ7) -2
Dy, = X, cos B,Dp, = Yﬁu — (D + Dl,,)2 (32)

5. Experimental results

This section describes the implementation of the proposed blind spot detection and warning system. This study con-
ducted various real on-road experiments on our experimental car to evaluate the vehicle detection performance, and per-
form comparative evaluations with the existent techniques to demonstrate the advantages of the proposed system.

5.1. Experimental environments

The proposed system was tested on several videos of real nighttime highway scenes under daytime and nighttime con-
ditions in Taiwan. The proposed BSD system was implemented on a TI DM642 DSP-based embedded platform, operating at
600 MHz with 32 MB DRAM.

Fig. 16 illustrates that the BSD system was installed on our experimental car, the Taiwan iTS-II, with micro cameras. The
established cameras are used to capture the images in the blind spot regions (BSRs), and then the proposed system on
DM642 analyze the captured images and provide the real-time information for the driving assistance. The warning module
alarms the drivers when the system detects the vehicles coming close in the BSR. The operation architecture is shown in
Fig. 17. The proposed BSD system takes an average of 20 and 50 frames per second on daytime and nighttime. For the quan-
titative evaluation of vehicle detection performance, this study adopts the Jaccard coefficient [35], which is commonly used
for evaluating performance in information retrieval. This measure is defined as,

Ty

]:TP+FP+F,1

(33)

Blind Spot Cameras TI DM642 The Warning Module

—
ﬁ NCTU CSSP LAB
¥

TI-642 Power board V2.0 . s Video

e

Images from right side

blind spot region

Images from left side

blind spot region

Fig. 17. The proposed BSWS implementation on DSP.
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where T, (true positives) represents the number of correctly detected vehicles, F, (false positives) represents the number of
falsely detected vehicles, and F, (false negatives) is the number of missed vehicles. We determined the Jaccard coefficient J
for the vehicle detection results of each frame of the traffic video sequences by manually counting the number of correctly
detected vehicles, falsely detected vehicles, and missed detections of vehicles in each frame. The average value of the Jaccard
coefficients J was then obtained from all frames of the video sequences using

J=>JIN (34)
N
where N is the total number of video frames. Here, the ground-truth of detected vehicles was obtained by manual counting.

5.2. On-road evaluation and performance comparisons

This subsection presents the on-road experimental results of the proposed BSWS. Figs. 18 and 19 and Tables 1 and 2 ex-
hibit the most representative experimental samples of traffic scenes under different weather conditions regarding physical
performance evaluation. First, Fig. 18 is a daytime highway traffic scene, where the detection results and the demonstration
of the warning system are illustrated. Where a vehicle is detected in the blind spot region (BSR), the front of the detected
vehicle is illustrated with a rectangle; and the distance between the driving and targeted vehicles is estimated, as
Fig. 18a shows. When the detected vehicle approaches the driving vehicle and enters the warning zone, the proposed system
alerts the drivers with the blinking rectangular sign, as Fig. 18b shows. However, some detection errors may occur when cars
pass through the viaduct. Table 1 depicts the quantitative results of the proposed approach for vehicle blind spot detection

(a) Result of the blind spot detection (b) Warning system

Fig. 18. Results of the blind spot detection and the warning system under daytime conditions.

(a) Result of the blind spot detection (b) Warning system

Fig. 19. Results of the blind spot detection and warning system under nighttime conditions.

Table 1

Experimental data of the proposed system under daytime conditions, as shown in Fig. 18.
Lane Detected vehicles Falsely detected vehicles Actual vehicles
Total no. vehicles in BSR 70 0 72
Detection score J of vehicles 97.22%

Time span of the video 36 min
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Table 2
Experimental data of the proposed system under daytime conditions, as shown in Fig. 19.
Lane Detected vehicles Falsely detected vehicles Actual vehicles
Total no. vehicles in BSR 41 0 45
Detection score J of vehicles 91.11%
Time span of the video 35 min

under daytime conditions. It is observed that although there are loss detections, the proposed BSWS for daytime does not
falsely detect vehicles because of the proposed method of non-vehicle obstacles elimination described in Section 4.4. The
bright objects and non-vehicle obstacles will not be mis-detected.

Fig. 19 shows the detection results under nighttime conditions. Unlike daytime conditions, the detection under nighttime
conditions is based on the paired headlights. As Fig. 19 shows, most of these vehicles in the blind spot region are accurately
detected and tracked using the proposed system, though many non-vehicle illuminating objects, such as street lamps, re-
flected beams, and road reflectors on the ground appear extremely close to the lights of the detected vehicles.

Table 2 shows the experimental data of the proposed system of vehicle detection and tracking for the traffic scene shown
in Fig. 19. Besides, the proposed BSWS does not falsely detect vehicles under the nighttime condition. This is because the
proposed classification rules shown as Egs. (26) and (27) can recognize the pairing headlights of vehicles precisely. Further-
more, by using the tracking process, the detected pairing headlights are certificated once more. Thus, the proposed BSWS
prevents false detecting for nighttime. According to the results of the blind spot detection under daytime and nighttime con-
ditions, the proposed system can provide favorable performances under both daytime and nighttime conditions.

The above experimental traffic video sequences in the daytime and nighttime were also employed for a comparative eval-
uation of vehicle detection performance. The following experiments evaluate the performance of the proposed system and
compare with the Lin and Xu’s vertical-edge based method [20] in the daytime and the Wang et al.’s paired-light-based
method [16] at night. Fig. 20 presents the comparative results of the proposed system with the Lin and Xu’s vertical-edge
based method. Fig. 20a shows that the approaching vehicles are accurately detected using the proposed system, whereas
in Fig. 20b, the Lin and Xu’s vertical-edge based method cannot accurately detect the vehicles. This is because the verti-
cal-edge feature of the target vehicle is shattered, as shown in Fig. 20c. Fig. 20d compares the proposed system, which adopts
the HESCR, and the continuous level shadow detection, as described in Sections 4.2 and 4.3, respectively. The proposed sys-
tem can efficiently retrieve the shadow region and determine the locations of the vehicles accurately. The comparative
experimental data are also shown in Table 3.

Fig. 21 illustrates the comparisons of the proposed method with the Wang et al.’s paired-light-based method. As Fig. 21b
shows, the reflections of the paired headlights were mis-detected using the Wang et al.’s method, because the area and the
aspect ratio of the headlights are not considered comprehensively. Moreover, many occlusions and misdetections occur, as
illustrated in Fig. 21d, because the lamp tracking mechanism is lacking. By contrast, the proposed system can resolve the
occlusions and misdetections, and strengthens the detection results of target vehicles. The proposed system can detect

(a) BSb example by the (b) BSD example by Lin et ) ) (d) HESCR by the proposed
proposed method al.’s method [20] (c) Vertical edge extraction method

Fig. 20. Image pre-processing of the testing scene.

Table 3
Comparative experimental results of the proposed system and Lin et al.’s method.
Lane Proposed method Lin et al.’s method [20]
Detected warning vehicles 70 59
Falsely detected vehicles 0 0
Actual warning vehicles 72
Detection score J of vehicles 97.22% 81.94%

Time span of the video 35 min
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(a) BSD Example 1 using the  (b) BSD Example 1 using (c) BSD Example 2 by the (d) BSD Example 2 by Wang
proposed method Wang et al.’s method [16] proposed method et al.’s method [16]

Fig. 21. Comparative results of BSD under nighttime conditions.

Table 4
Comparative experimental results of the proposed system and Wang et al.’s method.
Lane Proposed method Wang et al.’s method [16]
Detected warning vehicles 41 26
Falsely detected vehicles 0 4
Actual warning vehicles 45
Detection score J of vehicles 91.11% 53.06%
Time span of the video 35 min

the vehicle with paired headlights, as shown in Fig. 21a and c. The quantitative experimental data are shown in Table 4. As
can be seen from the results shown in Tables 3 and 4, the proposed BSD system performs effectively in blind spot vehicle
detection under both daytime and nighttime conditions.

6. Conclusions

An effective BSWS for daytime and nighttime conditions has been proposed in this paper. The proposed BSWS is fully vi-
sion-based and uses only two cameras that were installed below the rear view mirror on both sides of our camera-assisted
experimental car, the Taiwan iTS-II. Before presenting the BSWS, a dynamic camera models are introduced using perspective
transformation. To perform the BSD in daytime effectively, this study proposes the ROI for daytime based on the models of
lane markings by using the presented camera models. After obtaining the ROI in daytime, the shadow edge features of the
vehicle object are extracted using minimum ground plane pre-processing, HESCR, and continuous level shadow detection
techniques. Moreover, this study presents the elimination approach of non-vehicle obstacles to improve the detection accu-
racy in daytime. Besides, this study employed bright object segmentation under nighttime conditions. The extracted bright
objects were analyzed to determine whether they are lamp objects. Sequentially, the potential vehicle lamp objects are then
verified to determine whether two of the lamp objects can be paired. Thus, when the paired headlights are found, the vehi-
cles in the nighttime are detected. Additionally, the vehicle distance estimation is also implemented to forewarn the driver if
any vehicle is approaching the host car. The proposed BSWS is implemented on a TI DM642 DSP-based embedded platform,
operating at 600 MHz with 32 MB DRAM, and achieves an average of 20 and 50 frames per second to operate under both
daytime and nighttime conditions. To evaluate vehicle detection performance quantitatively, the experimental video se-
quences having totaling more than 30 min captured in daytime and nighttime road scenes are adopted. The proposed system
achieves high accuracy in vehicle detection performance, and the detection accuracy achieves up to 97.22% and 91.11% for
daytime and nighttime conditions, respectively. Besides, this study implemented the existing researches and conducted the
performance comparisons to the proposed BSWS in both daytime and nighttime conditions. The experimental results dem-
onstrate that the proposed BSWS can provide robustness, high computational efficiency, and high vehicle detection accuracy
for driver assistance and collision warning applications.
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