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Landfill siting analysis is complex when compactness and other factors are simultaneously evaluated. In
our previous work, a raster-based mixed-integer model was proposed to overcome this difficulty, and a
C program was further developed to improve the computational time for solving the raster-based model.
In this study, an enhanced parallelised branch-and-bound algorithm was proposed to shorten the solving
time further. A parallelised computing environment with five computers was established for implementing
the proposed algorithm. For comparison purpose, the un-parallelised algorithm was also tested on a single
computer. The results show that the parallelised algorithm and computing environment can increase the
speed by about three to seven times, while compared to the original algorithm implemented on a single
computer.

Keywords: landfill; site selection; optimisation model; parallel processing; environmental systems
analysis

1. Introduction

The site selection for constructing a landfill is a complex process because it requires performing
analyses for various factors to evaluate site suitability. As suggested by Zyma (1990), an appropri-
ate landfill site should have minimum impact on environment, society, and economy, comply with
regulations, and receive general public acceptance. Implementing such a complicated procedure
in a conventional information processing approach would be expensive and tedious. A geographic
information system (GIS) is capable of processing a large amount of spatial data. Lindquist (1991)
stated that using a GIS for landfill site selection increases objectivity and flexibility. Easy presen-
tations to visualise GIS siting results are among its advantages also (Yesilnacar and Cetin 2005,
Sener et al. 2006, Nas et al. 2010).

However, it is complex for landfill siting when compactness and other factors are simultane-
ously evaluated. Compactness represents the nature of the site and the extent to which it can be
regarded as integrated tightly. The lower the level of compactness, the less likely the solution
is to satisfy siting requirements, subsequently making general land planning difficult. Compact-
ness can be defined by a variety of methods. For example, Wright et al. (1983) used the ratio
of the perimeter to the area of a site as a measure of compactness. According to this definition,
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16 K.-H. Liu and J.-J. Kao

the shorter the perimeter of a site implies the higher its degree of compactness. Diamond and
Wright (1989) applied the ratio of the largest diameter square to the area of a selected site as
another measure. The largest diameter refers to the longest distance between any two points
within the selected site. However, this method of calculation is nonlinear. Minor and Jacobs
(1994) and Benabdallah and Wright (1992) adopted the former definition for a waste landfill
siting problem and a land allocation problem, respectively. These spatially compactness models,
although useful in solving a siting problem, have not been integrated into a GIS. Diamond and
Wright (1989) indicated that such integration would provide an intelligent decision-making tool
for land-use problems. The major obstacle to this integration is that significant numbers of integer
variables and constraints are required to construct a compactness model for raster-based GIS
map layers, thereby making the model difficult to solve by a general mixed-integer programming
package.

In one of our previous studies (Kao and Lin 1996), we proposed an improved compactness
model for raster-based GIS data. In that work, the model was applied to a case in central Taiwan.
The model, although it uses less variables and constraints than two other models, still requires
excessive computational time for a large raster-based landfill siting problem. Two primary rea-
sons exist for this computational problem: (1) a large number of steps are implemented to search
for a feasible integer solution during a typical branch-and-bound (B&B) solution procedure for
solving a mixed-integer programming model; and (2) unnecessary branches are implemented on
cells that are not contiguous. However, once a set of land cells is selected, the corresponding
feasible integer solution can be easily determined without using a complex programming method.
Moreover, branching on obviously impossible cells that are far away from previously selected
cells is unnecessary. In our other previous study (Kao 1996), a C program was therefore devel-
oped, based on a proposed raster-based B&B algorithm, to implement multi-factor analyses for
compactness and other siting factors with weights pre-specified by the user. The C program can
avoid the two computational problems and significantly reduces the time required for solving
the compactness model. The C program, although efficient in solving the compactness model,
may still take a significant amount of time for a large problem. A parallelised algorithm was
thus developed in this study to enhance further the performance of the C program for solving the
compactness model.

The idea of a parallelised algorithm is to separate the computing being executed simultaneously
by multiple processes or a cluster of computers. For example, Keedwell and Khu (2006) applied
parallel computing to the multi-objective optimisation of two water distribution networks, and
significant computational savings were observed. In this study, the previously developed B&B
algorithm is modified for being able to implement in parallel without using a specific parallelised
language.A parallelised computing environment with five single instruction single data computers
has been established by two Perl (Wall et al. 2000) programs written by the authors. The developed
parallelised algorithm and computing environment is applied to an illustrative example, without
using any specific computer and language compiler.

2. The compactness model

The compactness model used in this study is adopted from our previous research. The development
of the model and detail description and comparison to other models are referred to Kao and Lin
(1996). The compactness model used in this work is listed as follows.

Min
i=m∑
i=0

j=n+1∑
j=1

Vi,j (1)
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Civil Engineering and Environmental Systems 17

s.t.

2Ii,j − Ii,j−1 − Ii+1,j + Vi,j ≥ 0 ∀ i ∈ {0, . . . , m}; ∀ j ∈ {1, . . . , n + 1},
i=m∑
i=1

j=n∑
j=1

Ii,j ≥ A ∀ i ∈ {1, . . . , m}; ∀j ∈ {1, . . . , n},

i=m∑
i=1

j=n∑
j=1

Ck
i,j · Ii,j ≥ Gk ∀k ∈ {1, . . . , p},

Ii,jis [0,1] integer,

other constrains or bounds.

where m and n are the number of columns and rows of cells that represent the whole siting area;
Vi,j is used to record the length of the site perimeter; Ii,j, an [0,1] indicator variable, is defined to
represent whether cell i, j belongs to a considered site; A is the required size (in numbers of cells)
of the desired site; Ck

i,j is the value of siting factor k for cell i, j; p is the number of considered
factors; and Gk is the lower bound of the sum of factor values of cells in a site for siting factor
k. Noticeably, to ensure that each cell in the siting area has an adjacent cell, a pseudo column of
cells (for j = n + 1) on the right side and a pseudo row (for i = 0) of cells on the top side of the
siting area are required and added. The continuity of the selected cells of the solution to the above
model is guaranteed because the model seeks the smallest perimeter.

2.1. The model with multiple factors

For a problem with consideration of multiple factors, the objective function of the model should
be modified as follows.

Min
i=m∑
i=0

j=n+1∑
j=1

(
wvVi,j +

p∑
k=1

wkCk
i,j

)
, (2)

where wv is the weight for compactness and wk is the weight for factor k. This modified objec-
tive function is based on the weighting method described by Cohon (1978). Solving this siting
compactness model using a general optimisation package is time-consuming. Therefore, a special
depth-first B&B algorithm (Kao 1996) was developed for solving the siting model efficiently.

3. The parallelised B&B algorithm

The special depth-first B&B algorithm is modified further in this study to parallelise the algorithm.
The goal is to shorten the computational time for solving the siting problem. The concept of ‘par-
allelized’ is defined as a process being separated into several parts to obtain better computational
efficiency, and each computer is assigned a part or more to solve.

3.1. The procedure for implementing the parallelised B&B algorithm

Figure 1 illustrates the conceptual procedure for implementing the parallelised algorithm. And
the detail steps are described by the pseudo code listed below.
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18 K.-H. Liu and J.-J. Kao

Figure 1. Parallelised B&B siting algorithm.

Algorithm: Parallel Siting

Read mask and factor map layers;
Read the options selected by the user and each computer is assigned to solve a pre-specified

range of cells as top cells;
Activate each computer running in parallel to implement the Algorithm: B&B Siting for solving

the siting problem for the pre-specified range of cells;
Display the final globally best result as the solution.

Algorithm: B&B Siting
For each candidate cell being severed as a top cell, do Branch();

Branch():

Do Bound();
If a possible site is found, do Check() for checking feasibility and/or noninferiority;
Collect candidate cells that can be branched into an adjacent cell stack;
For each cell in the adjacent cell stack, do Branch();

Bound():

Implement bounding rules to prune subtrees that are unnecessary to branch further: possible
cells to branch, bounds of factor values and siting area, bounds of estimated site factor values,
improvement of the objective function value based on an estimated current objective value,
maximally allowable width and/or height to the top cell, width of a horizontal bridge, and
number of corner cells.

Check():

Check feasibility with constraints provided by the user;

Check noninferiority; (optional)

If it is a valid site, output or record the associated information.
If the objective value of the valid site is better than the locally best one, then the locally best one

is updated.
If the locally best one is better than the globally one, the global one is replaced by the local one;

otherwise the global one is copied to the local one.
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Civil Engineering and Environmental Systems 19

3.2. The branch step

The detailed B&B steps of this parallelised algorithm are similar to those developed by Kao
(1996). A brief description of both steps is provided below and details of both steps are referred to
Kao (1996). The branch step starts with a top cell from a siting area. Next, all candidate branching
cells, cells not eliminated after applying bounding rules described later for the Bound step of this
algorithm, of the top cell are added into a branching pool for current searching level. One of the
candidate branching cells is then selected (branched) to implement the next level of searching.
The candidate branching cells for this newly branched cell are collected into the branching pool
for next searching level. This procedure is repeated until the number of selected cells satisfies the
required siting size. Such a set of selected cells forms a site and is passed to the Check step to
check for its feasibility, noninferiority (optional), and validity. If the site passes all the checks, its
objective and factor values are recorded, and the best values obtained so far are used as bounds.
Then, another site is formed by replacing the most recently selected cell by another cell in the
branching pool. This procedure is repeated until no new cell in the branching pool in current level.
The searching process then moves up one level in the branching tree and continues the searching
from another candidate branching cell in the branching pool of the upper level. If no new cell
can be branched, the searching process moves further up in the tree. This procedure is repeated
to ensure that all branching pools are empty and each cell has been used as a top cell.

3.3. The bound step

This step is applied to prune subtrees of the depth-first branching tree that are not necessary to
explore further. Pruning the subtrees as early as possible would significantly save computational
time. Several bounding rules are provided: possible cells to branch, bounds of factor values and
siting area, bounds of estimated site factor values, improvement of the objective function value
based on an estimated current objective value, maximally allowable width and/or height to the
top cell, width of a horizontal bridge, and number of corner cells. The required size of a site is
known, thereby making it unnecessary to branch on cells that are too far away from the current
top cell. The continuity of the finally selected site is guaranteed because a site with unconnected
cells has a poor compactness value and will not be selected.

The estimated value of a factor for a site is computed by the following equation.

Fe =
s∑

i=1

fi +
r∑

j=s+1

f l
j , (3)

where Fe is the estimated value of a factor for the currently selected site; s is the number of
currently selected cells; fi is the factor value of cell i; r is the number of cells required for a site;
and f l

j is the lower bound of the factor value of cell j. If the estimated objective function value
is worse than the best one currently recorded so far, the subtree following the current cell can be
pruned. The user can also define the maximally allowable width and/or height to the top cell, the
width of a horizontal bridge, or the number of corner cells. The default values for these rules avoid
branching on those cells that are too far away from previously selected cells and searching for sites
having a poor shape. A corner cell is a cell without any cell that is selected on its left-hand and
top sides. If the number of corner cells is limited to 1, all sites selected tend to have rectangular
shapes.

Properly using these rules can significantly reduce the size of the branching tree. Cells that are
not eliminated in this Bound step are candidate branching cells. If any candidate branching cell
exists, the Branch step is repeated to branch from one of candidate branching cells. The two steps
are repeated until no candidate branching cell is available on the branching tree.
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20 K.-H. Liu and J.-J. Kao

3.4. The parallelised B&B step

The entire siting area is divided into several smaller parts and the B&B algorithm is implemented by
several computers simultaneously in parallel. The computing speed could be enhanced because
the branching tree for each part is not so large as for the entire siting area. Although multiple
parts could be solved as multi-processes on the same one-CPU computer, this situation is not
truly parallelised. These parts are more efficient to be solved in parallel by several computers
simultaneously. Whether being solved on single or multiple computers, the current best result
during the B&B searching processes is shared by all processes.

The parallelised B&B algorithm is implemented by a C program and two Perl (Wall et al. 2000)
computer programs written by the authors. The Perl programs are described in the next section.
The C program is modified from the program developed by Kao (1996). The program first read a
mask map layer, indicating valid siting areas and cells, and several factor map layers, providing
cell suitability scores of siting factors that used to compute objective function values during the
B&B searching process. Several options can be set by the user. Available major options include
minimal and maximal size limits of the site to be searched, the best objective value currently known
or a best guess, an option to check the noninferiority of a site, maximally allowable horizontal
bridge width of a site, weights of siting factors considered in the objective function, maximally
allowable width and height to the top cell, and other options.

Multiple computers are run in parallel and each one implements the B&B algorithm for a
separate range of land cells specified by the user. During the B&B searching process, if any
superior solution is obtained, the bounding record for the current best one is replaced by the new
one.

4. Parallel computing environment

Five typical personal computers, one server and five clients, were used to establish a parallel
computing environment. We did not use the popular Cluster environment (e.g. MPICH2 cluster:
Gropp et al. 2009) because it is too complex and unaffordable for a local environmental engi-
neering office. Instead, this study developed two Perl (Wall et al. 2000) programs to establish
a parallel computing environment for implementing the proposed parallelised B&B algorithm.
The programs implement a client–server environment, one for the server side and the other for
client sides. Immediately after the Perl program on the sever computer is executed, it initiates
the programs on all client computers too. The Perl programs apply a socket interface over the
computer network to achieve the initiation. The program provides a function for network data
flow control and two-way transmission of data. The socket interface accepts request and issue
new commands over the network between the server and client computers. The bounding record
for currently best one is stored on one of the computers and shared to others via a network file
sharing protocol. A read/write locking mechanism is applied to read and update the bounding
record. Whenever a new feasible siting solution is obtained from any computer, the program will
check whether the new solution is better than the currently recorded best solution. If the new
solution is worse, then it is discarded; if it is superior, then a write lock is issued to update the
sharing record for storing the new one as the currently recorded best bound. As shown in Figure 2,
during the parallel execution, the globally best result is shared to all computers. Since file writing
and reading over the network is time consuming, a local copy of the globally best result is made
for each client computer as the locally best result. Whenever a new local result is superior to the
locally best one, it becomes the new locally best result. At the same time, the server-side checks
whether the locally best result is better than the global one or not. If the local one is better than
the global one, the global one is replaced with the new one.
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Civil Engineering and Environmental Systems 21

Figure 2. Read/write mechanism for reading and updating currently recorded best bound.

All computers are with IntelTM Pentium CPU and each costs less than US$800. All computers
are installed with the famous Linux (Fedora project 2009) operation system. The server computer
is not only a server for controlling the entire parallel siting solving process, but also used as a client
to participate in solving a siting problem. All client computers, each implements a B&B siting C
program, are run in parallel. This computing environment is cheap and effective for implementing
the proposed parallelised siting model.

5. Illustrative case

An illustrative case for a landfill siting problem in central Taiwan was applied to demonstrate the
applicability of the proposed parallelised B&B siting algorithm. The mask map layer consists of
2500 land cells. Three major siting factors are considered: land slope, land soil, and land cost.
Figure 3 shows factor map layers prepared for the study area, for which the siting area is divided
into numerous square land cells. The factor map layers are created and digitised using a scoring
system that is based on the soil type, slope, and cost of each land cell. For instance, a soil type
with lower infiltration rate is assigned a lower suitability score, and vice versa. In this case, for
consistency with the compactness model minimising its objective function, a low value implies
a high suitability and a high value implies a low suitability. A map overlay function is applied
to determine the final score of each land cell based on these factor suitability maps. The data for
all map layers are shared to the server and client computers in the established parallel computing
environment.

As shown in Figure 1, each computer implements the parallelised B&B program by starting
from a different top cell in the siting area. Four scenarios were analysed: in the first three sce-
narios, each siting factor is considered independently, and in the last one, all three factors are
considered simultaneously. The scenarios are (A) land slope; (B) land soil; (C) land cost; and
(D) all three factors. All of the values for each factor layer are normalised to the range from 1 to
100, where 1 is the best. For comparison purpose, the siting problem was also solved by a single
computer to execute the B&B siting algorithm. Figure 4 presents the solutions obtained in each
scenario for a size limit of 16 land cells. The weight set used in each scenario is also listed in
the same figure. Figure 5(a) compares the computational performance for four scenarios with a

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

0:
09

 2
6 

A
pr

il 
20

14
 



22 K.-H. Liu and J.-J. Kao

Figure 3. Suitability value maps for landfill siting factors.

Figure 4. Results obtained in different scenarios with a 16-cell size limit.

size limit of 16 land cells. The computational time required by the parallel model is 1/3.1–1/4.6
times that required when a single computer is used. The computational time required for sce-
narios that involve only one factor is short, even when a single computer is used. However, the
problem becomes more complicated when all three factors are simultaneously considered and a
much longer computational time is also required for solving the multiple-factor siting problem.
Figure 4 shows the locations of solutions obtained for different scenarios. The computational time
is substantially shorter than that of a single computer, as presented in Figure 5(a). The typical
reduction is expected to be 1/5 because five computers were used. All the cases did not achieve
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Civil Engineering and Environmental Systems 23

Figure 5. CPU time required to solve the siting model on a single computer and on five parallel computers (a) four
scenarios with a 16-cell size limit; (b) scenario D with size limits of 16–20 cells.

this typical reduction because (1) extra time is required for I/O (read/write); (2) work balance
was roughly done by assigning approximately the same range of cells and it might not be the
true work balance among computers. However, the computational time reduction is already quite
significant and is enough to demonstrate the success of the proposed algorithm.
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24 K.-H. Liu and J.-J. Kao

Various size limits of 16–20 land cells are also tested for Scenario D and their computa-
tional times are compared. All factors are assigned equal weight in the siting objective function.
Figure 5(b) presents the results obtained for various size limits using both a single computer and
five computers in parallel. The computational time required to solve the siting problem using
the parallelised algorithm is significantly reduced to 1/4–1/7.3 times that required by a single
computer. As for a size limit of 16–20 cells, three of the cases did not exhibit the typical compu-
tational time reduction of 1/5. However, for size limits of 19 and 20 cells, further time reductions
of 1/7.3 and 1/5.7, respectively, were achieved because (a) the I/O time is less influential while
compared to the long computational time that is required to solve the problem with a large size
limit; and (b) a good solution is obtained by one of the five computers in the early stage of the
B&B searching procedure and numerous unnecessary branches are pruned, significantly reducing
the computational time.

6. Conclusion

The proposed parallelised B&B algorithm substantially shortens the computational time for solv-
ing a siting problem. The concept of this new algorithm is to divide the process of a siting problem
into several small processes, and each computer executes a small process. For implementing the
parallel B&B algorithm, this research establishes a parallel computing environment. The com-
puting environment consists of five cheap personal computers, which are affordable by a local
engineering office. When the parallel B&B algorithm is applied to the landfill siting problem in
central Taiwan, the computational time is significantly reduced below that required using a single
computer. Furthermore, the proposed algorithm and computing environment make it easily to
integrate them with a typical geographical information system.
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