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Abstract We show that Ge tmov ' s  N-soliton-type solutions in the selfduality Yang-Mills 
(SDYM) equations in lhe (+ - - -)-signatured M4-space can be derived in a unified way similar 
to that of deriving '1 Hooft's instanton solutions in the (+ t t t)-signaNred E4-space, Further. 
we show that such N-soliton-type solutions can also be constructed for the SDYM equations in 
the (t - +-)-signatured real D'-space. 

Recently, Getmanov [I] explicitly constructed N-soliton-type solutions to the (complex) 
SU(2) self-duality Yang-Mills (SDYM) equations (or, equivalently, the real SU(2C) SDYM 
equations) in the four-dimensional (+ - - -)-signatured real M4-space. Here, we shall 
show that such N-soliton-type solutions in M4 can be derived in a unified way siinilar to 
that of deriving 't Hooft's instanton solutions in the (+ + + +)-signahred complex E4- 
space. We further show that such N-soliton-type solutions can also be constructed in the 
(+ - + -)-signatured real D4-space. The advantage of considering D4-space is that both 
the SDYM equations and the D4-space can be real; in contrast, the E4-space has to be 
complexified in formulating the 't Hooft solutions. This important property of the D4-space 
has been emphasized and made use of in a recent study [2] on the quantization of the SDYM 
equations. 

First, we formulate the S D m  equations for various spaces in a unified way [3]. 
(i) For xw = (x1,x2,x3,x4) in E4 with metric (++++), let y = '(XI + i x 2 ) ,  

L(x3 + ix4). Then, the SDYM equations 
Ji 

j = $(xl - ix2), z = ' ( x 3  - ix4) and i 
F12 = F34. F13 = F42, FM = Fz3 become 

?I5 Ji 

FYI = 0 Fjz = 0 Fyi + FLt 0. (1) 

L ( x 3  + x o ) .  Then, the complex SDYM 

(ii) For xJ' = (xo,  XI, x 2 ,  x3) in M 4  with metric (+ - - -), let y = $ ( X I  + k2), 
2 

j = L x l  - ix2), z e L ( x 3  - xo)  and i Ji Ji 
equations FOI = iF23, Fm = iF31, F03 = iF12 again become equation (1). 

(iii) For xw = (x1,x2,x3,x4) in D4 with metric (+ - +-), let y L ( x l  + x 2 ) .  45 
j =  L ( x l - x * ) , z =  I ( x 3 + x 4 ) a n d i =  $ ( x 3 - x 4 ) .  2 ThesDYMequations FlZ=-F3,,, 
Fl3 = F42, F14 = -Fu again become equation (1). 
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The first two equations in (1) can be immediately solved by A, = D-’D,  (U = y , z )  
and A i  = b-’& (17 = j ,  i). If we define J E D b - ’  [4], the remaining equation in (1) 
becomes 

a , ( r l J y )  + ~ , ( J - ’ J J  = o (2) 

which has been extensively studied during the period of the discoveries of the instanton 
and monopole solutions. Recall that a useful framework for discussing equation (2)  is the 
parametrization 

coupled with the so-called A.-ansatz of Atiyah and Ward [5,6] which is briefly recapitulated 
in the following. 

It has been shown [6] that if a given J is a solution to equation (Z), then so are the 
following two transforms of J :  

The A,-ansatz [7] is defined to be the set of J for which the following relations hold 

~y = 4i ~z = -4j P j  = 42 fii = - 4 y  (5)  

(and, hence, byye + @zi = 0). (6) 

The Al-ansatz automatically satisfies equation (2). For n 2 2, the A,-ansatz can be defined 
inductively by I-transforming, followed by B-transforming, the A,-’ -ansatz: 

I B I B I B 
A I +  +Az- -A3+ + .... 

We find it convenient to add an Ao-ansatz to the left end of the above sequence. A general 
representation of the Ao-ansatz is 

where h ( i )  is an arbitrary function of y ,  z(j, i), and 4 satisfies equation (6). 
A distinct characteristic for the Ao-ansatz solutions is that they are always associated 

with vanishing Lagrangian density. Indeed, every F,, can be shown to be proportional to 
a single nilpotent matrix, making FpUFab = 0 for any p,  w ,  a, p ,  implying, in particular, 
trFgvFfiY = 0. Hence, an Ao-ansatz solution by itself will usually not be one of the 
immediately interesting solutions we are seeking, but an appropriately chosen solution in 
the Ao-ansatz could be converted through the ZB transformation into an interesting solution 
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in the AI-ansatz, such as ' t  Hooft's or Getmanov's solutions. For this reason, we will call 
a potentially useful Ao-ansatz solution a presolution. For example, we may take 6 = 1, 
h = -1 and @ = 1 + f"' in equation (7), where 

(i) for &space, 

containing 5N parameters and satisfying (8; + 8; + 8: + 8:) f (N) = 0; 
(ii) for M4-space, 

where [I]  

sj = ~ j m j  [nj . (x  - x j ) ]  

wj = (sj  - mj ( x  - x j )  } 2 2  2 112 

with 
parameters and satisfies (3; - 8; - a; - a?)f") = 0; and 

= f l ,  mj > 0, nj = time-like unit vector in M4, f") contains 9N continuous 

(iii) for D4-space, 

N 

f"' = ~ c j z o ( s j ) I o ~ u J j ~  (Cj > 0)  
j=1 

where 20 is the standard modified Bessel function Io 

with (n j ,  k j ,  n:, k;) forming an orthonormal basis in D4, (n;)' = 1 and (k;)' = -1.  f") 
contains 12N parameters and satisfies (8: - 8; + 8: - a:)f") = 0. This solution is derived 
using an analogy with Getmanov's solution (9Hll). 

The Ao-ansatz solution 

in each of the above three cases is a presolution, since it can be readily ZB transformed 
into the N-instanton or N-soliton-type solutions in the At-ansatz. 

A common criterion for choosing the solutions to equations (S), (9), and (12) is that, for 
these solutions in the AI-ansatz (with @ = 1 + f"'), there exists a gauge in which every 
component of the gauge field A; is manifestly regular everywhere in the real space. This 
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assertion can be doubly checked by inspecting the analyticity of tr F,,,F@", which can be 
shown to be proportional to OCllog@. 

Now we briefly describe the 'one-soliton'-type solution in D4-space. (Note that we call 
these solutions soliton-type solutions because of a lack of better names. These solutons 
do not necessarily have all the nice properties of the usual solitons.) For simplicity, we 
may choose nt = (1,0,0,0), n: = (O,O, 1, O), ki  = (0, I , O , O ) ,  k: = (O,O, 0 , l )  and 
X I  = (0, 0, 0,O) in equations (1  3) and (14). Then 

4 2 I/Z 
SI = ml[(x')2 + ( x  ) I 1'2 

f ' l '  = C I ~ O ( ~ I ) ~ O ~ U J I ) .  

UJI = m,[(xZ)Z + ( x  ) ] 

and 

The SU(2) one-soliton-type solution in D4-space is then explicitly given by 

~ ; = ~ ~ ~ ~ a ~ l o g [ i + f ( ' ) ]  (a=  1 , 2 , 3 ; p =  1 , 2 , 3 , 4 )  

where 

' l o p u  = k,,g,4 - g.,g,4 - &npv4) ' C O  

with 

Ca = 1 for a = 2 {. = -i for a = 1 or 3 &I234 = +l. 

Here, qOpv is just the D4-space version of the 't Hooft tensor. Thus, A; is manifestly 
regular everywhere in D4-space. Note that if we replace the gauge group SU(2) by SU(I,IJ,  
A; would become completely real. 

An interesting question is whether there are Backlund transformations (STS) for the 
solutions of the SDYM equations, i.e. whether one can systematically generate new solutions 
to the SDYM equations starting from a given solution? We have just mentioned two such 
examples in the I- and E-transformations described in equations (3) and (4). There have 
been several other successful constructions of such BTs by Belavin ef al [8], Forgacs et 
al [9], Ueno er al [lo], Mason et al [ I  I] and by the present authors [12], all of which, 
although different in formulation, follow more or less the same spirit in their schemes and 
are probably related to each other in some implicit way. 

In particular, we would like to know whether BT can actually bring the N-soliton solution 
into the ( N +  1)-soliton solution. This turns out to he a non-hivial problem. However, if we 
do not attack the problem directly in terms of the N-soliton solutions per se, but instead deal 
with their presolutions in the Ao-ansatz, then the problem becomes much more manageable. 
Forgacs et a1 [9] and Ueno et al [ 101 have shown how this can be achieved for 't Hooft's 
N-instanton solution in E4 and in the following we will show the same for Getmanov's 
N-soliton-type solution in M4. However, we have difficulties in carrying out a supposedly 
corresponding procedure for the N-soliton-type solution in D4. 

First, in E4-space, we organize the procedure of generating ( N  + l)-soliton solutions 
from N-soliton solutions. Instead of the presolution J ( N )  of equation (15), we will replace 
it with an even simpler version from now on which is just a similarity transform of 
equation (15) (no longer in the Ao-ansatz): 

1 0 J'"' 1 1 f"' 
JCN)+[-* I ]  [ l  ;]=[o 1 1 .  
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Thus, we want to describe a scheme that can bring 

J ( N )  = [ o  1 f"' ] 
into J""). The whole BT can be schematically represented as 

N-soliton solution - (N + 1)-soliton solution 

presolution 
I I E  

I 
presolution 

gauge tr. I gauge ti-. 

similarity-transformed RH 
presolutions 

similarity -transformed - transform presolutions. 

Given the solution J = J ( N ) ,  equation (16), we first solve for its wavefunction Y(A) which 
is a 2 x 2 invertible matrix depending on a parameter A and satisfying the linear equations 

Note that Y(A) is determined only up to a multiplication from right by an arbitrary invertible 
matrix g(A) satisfying 

D i g @ )  = 0 i = 1,2. (18) 

Also note that Y(O)-' may be taken to be a solution for J .  Ueno and Nakamura's BT [lo] 
is in fact a Riemann-Hilbert (RH) transformation for the wavefunction Y(1) ,  which we now 
briefly describe. 

Let C be a closed contour in the complex Lplane and U(1) a chosen non-singular 
matrix function analytic on C, satisfying DiU(1) = 0. Let H ( A )  = Y(A)U(A)[Y(A)]- '  for 
A on C, where Y ( A )  is the input wavefunction provided by (17). The RH problem in this 
case is to find a decomposition H ( A )  = [Xt(A)]-' .X-(A)  such that X+(1) is holomorphic 
and non-singular inside of C ;  and X-(A) outside of C. If the RH problem is solved, then 
define the output wavefunction ?'(A) by 

?'(A) X + ( A ) Y ( A )  for A inside of C. 

Then J' = E'@-' can be shown to be a new solution to the SDYM equations, and, in the 
meantime, F(A) is its comesponding wavefunction. 

For the N-instanton problem in E 4 ,  Ueno and Nakamura [IO] have chosen (we have 
changed some of their notation) 
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and 

where 

and 

It is easy to check that ~ ~ = l ( a j / c u j ) @ " ) ( ~ j )  = f") of equation (8) and, hence, Y(O)-' = 
J IN) ,  The result of RH-decomposing H ( h )  is such that the following output wavefunction 
is obtained which corresponds to a new solution of the SDE J' = ?(O)-' = JcN"): 

The above procedure can, of course, be iterated, but, before doing so, the new wavefunction 
?(A) must be modified by replacing +(Nti)(h) in (21) with 4(N+z)(h), in conformity with 
the general form equation (20) for the next-step input wavefunction. This modification 
of the wavefunction is simply an exercise in the free choice of wavefunctions discussed 
between equations (17) and (18). 

Now, in M4-space, we describe a similar procedure for transforming the N-soliton-type 
solution into the ( N  + 1)-soliton-type solution. We first introduce a set of notation for 
convenience. From equations (IO) and (II) ,  we define p, ,  q j ,  r j ,  F, by 

sj = ejmj1nj , ( x  - x i ) ]  
(22) = &jmj[pj(Z - Z j )  - qj(z - z j )  - rj(7 - 7j) - f j ( y  - y j ) l  

where 

2 
pjqj - rjFj = 1 since nj  = 1 .  

Then 

w; = sj' + m@(y - y j ) ( j  - p i )  +2(r - z j ) ( i  - i j ) ] .  (23) 

Suppose a solution J = J(N),  equation (16), is given where f") is defined by equations (9), 
(22), and (23). Similarly to equations (19) and (20). we may take 
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where 

and 

Note that 

Carrying out Ueno and Nakamura's procedure eventually leads to the output wavefunction 

corresponding to a new solution J' = f ' (O)- I  = J"+'), which is desired. We have found 
the above particular choice of a,, ,9j and @ ) ( A )  through a generalization of the results in 
[I21 on a BT for monopole solutions. In fact, a, and p j  are the two roots of the following 
algebraic equation in A: 

[A(y - y j )  + (i - i j ) ]  + [i(~ - z j )  - (i - i j ) l  = 0. 

For the D4-space, a similar procedure to the above for transforming the N-soliton- 
type solution into the (N + 1)-soliton-type solution should, in principle, be achieved 
straightforwardly. However, so far we have not been able to find the correct wavefunction 
@ ) ( A )  and poles a j ( y ,  z ,  1,i) and Bj(y,  z ,  j,i) for this to succeed. 
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