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a b s t r a c t

The wireless mesh network (WMN) has been considered one of the most promising tech-
niques for extending broadband access to the last mile. In order to utilize multiple channels
to increase the throughput in WMNs, a variety of multi-channel MAC (MMAC) protocols
have been proposed in the literature. In particular, the dedicated control channel (DCC)
approach can greatly simply many design issues in multi-channel environments by using
a common control channel to exchange control signals. On the other hand, it allows each
sender–receiver pair to dynamically select a data channel for their data transmission in
an on-demand matter. However, the common control channel would become a bottleneck
of the overall performance. Besides, the selection of data channels would be highly related
to the final throughput. In this paper, we propose a new MMAC protocol, named the
release-time-based MMAC (RTBM) to overcome the control channel bottleneck and data
channel selection problems in the DCC approach. The RTBM consists of three major compo-
nents: (1) Control initiation-time predication (CIP); (2) Dynamic data-flow control (DDC); (3)
Enhanced channel selection (ECS). The CIP can predict a proper initiation time for each con-
trol process to reduce control overhead. The DDC can dynamically adjust the flow of each
data transmission to fully exploit the channel bandwidth. The ECS can achieve a higher
reusability of data channels to further enhance the throughput. Simulation results show
that the RTBM can substantially improve the throughput in both single-hop and multi-
hop networks.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The wireless mesh network (WMN) has been considered one of the most promising techniques for extending broadband
access to the last mile [1]. The WMN consists of a set of mesh access points (MAPs). A mobile station can access the network
by connecting to a nearby MAP. Each MAP acts as a wireless router to forward traffic hop-by-hop to destinations. Thus, by
deploying in such a fashion, a backhaul network can easily be built up without wired connection. Moreover, the network
capacity can be substantially improved by using multiple channels. The IEEE 802.11b/g and 802.11a standards provide up
to 3 and 12 orthogonal channels, respectively, in 2.4 GHz and 5 GHz spectrums. Nodes within the interference range of each
other can transmit on different channels simultaneously to increase the throughput.

In order to utilize multiple channels in WMNs, a key issue is to design a multi-channel medium access control (MMAC) pro-
tocol [2] to handle operations at the data-link layer. However, due to the limitation that a wireless card (for most commercial
. All rights reserved.
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devices) cannot perform on two different channels at a time, the design of many essential mechanisms, such as contention
resolution, hidden terminal avoidance, and broadcasting support, could be much more difficult in comparison with a single-
channel MAC (e.g. IEEE 802.11 DCF).

To overcome the above limitation, a prominent approach, called the dedicated control channel (DCC), was proposed [3–10].
In this approach, each node is equipped with a control interface and a data interface. The control interface is permanently fixed
on a common channel (called control channel) for sensing or exchanging control signals. On the other hand, the data interface
can switch among the remaining channels (called data channels) for data transmission. As shown in Fig. 1, if node u intends to
transmit to node v, it first initiates a control process with v on the control channel to coordinate a data channel. Then, nodes u
and v can communicate on that channel. Since the control channel is shared by all nodes, other competitors in the interfer-
ence range of u or v can be aware of the coordination. Besides, a link-layer broadcast can be easily achieved by emitting on
the control channel. Most importantly, since each node has an interface dedicated to listen to the control channel, nodes can
exchange control signals without any time synchronization mechanism.

However, designing a DCC-based MMAC protocol confronts two major challenges:

(1) Control channel bottleneck problem: As described above, using a common control channel can greatly simplify the
design of a MMAC. Nonetheless, if too many nodes contend on it, the control channel would become a bottleneck
of the overall performance. As shown in Fig. 2(a), three sender–receiver pairs {u, v}, {x, y}, and {w, z} are coordinating
on the control channel ch0. Besides, there are three data channels with bandwidth B. Ideally, the throughput can
achieve 3B if each pair transmits on a different data channel. However, since the time required for a control process
is about a half of a data transmission in this example, at most two data channels can be utilized at the same time,
resulting in a lower throughput of 2B. In other words, the throughput is saturated by the control channel’s bandwidth.
The bottleneck problem will become more serious as the number of data channels, data rates, or node’s density
increases [3].

(2) Data channel selection problem: The DCC approach allows each sender–receiver pair to select a data channel in an on-
demand matter. But, if the selection strategy were not carefully designed in concern with the reusability of channels,
the throughput would be lower. As shown in Fig. 2, assume that the sets of channels which are free to nodes y, x, u, and
v are as specified in Fig. 2(b). Clearly, the transmissions from y to x and from u to v can be active simultaneously on
different channels. But, if nodes u and v do not consider channel statuses at nearby nodes, they may select ch2 in prior
to nodes y and x, further degrading the throughput from 2B to B.

In this paper, we propose a new MMAC protocol to resolve the two challenges in the DCC approach, composing of the
following three components:(1) Control initiation-time prediction (CIP) reduces the control overhead by properly predicting
the initiation time of each control process to avoid unsuccessful channel coordination; (2) Dynamic data-flow control
(DDC) dynamically adjusts the amount of flow in each data transmission to balance the congestion in the control and data
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channels. (3) Enhanced channel selection (ECS) improves the reusability of data channels by selecting a channel that adds the
least total delay to the starting times of the transmissions at nearby nodes. The design of these components is primarily
based on exploiting the release times of channels and interfaces. Hence, we named this protocol the Release-Time-Based
MMAC (RTBM).

The rest of this article is organized as follows: In Section 2, we compare different types of MMAC approaches and review
existing protocols related to the DCC approach. Section 3 describes the basic operation of the RTBM protocol. The detailed
design of each component is present in Section 4. In Section 5, we conduct a series of simulations to evaluate the perfor-
mance. Concluding remarks are given in the last section.
2. MMAC approaches and related works

This section consists of two parts. First, we compare the pros and cons of different MMAC approaches. Next, existing pro-
tocols related to the DCC approach are reviewed.
2.1. MMAC approaches

A variety of MMAC protocols has been proposed in the literature. According to the way of coordinating data channels
[1,2,23], existing protocols can be classified into the channel fixed, receiver based, hybrid, spite control phase, dedicated control
channel, and single/parallel rendezvous approaches.

In the channel fixed approach [11,12], each interface is fixed on a channel permanently or for a long period of time. If a
node A wants to communicate with a neighboring node B, they must have some interfaces fixed on the same channel. Then,
A can send packet (e.g. RTS/CTS/DATA) directly to B, without additional control overheads to find a common channel. Besides,
since the channels are fixed, contention within each group of interfaces on the same channel can be resolved by a standard
MAC (e.g. 802.11 DCF). However, the fixed structure also limits the ability of using diverse channels. The number of channels
that can be used by a node is limited by the number of its interfaces. In addition, if there is no common channel shared by
two adjacent nodes, their traffic has to be relay through a longer path.

In contrast, the receiver based approach allows each node to utilize diverse channels with a single interface [3,13]. Each
node is specified a channel in advance. For communication, a node u can connect with any nearby node v by just turning
its interface the channel specified to v. However, since nodes are always fixed on the specified channels, some control signals
may lose. As shown in Fig. 3(a), nodes A, B, C, and D are specified ch1, ch2, ch2, and ch3, respectively. At the beginning, node A
intents to transmit to B. So, it exchanges the RTS-CTS with B using B’s channel. However, at the moment, node C has turned
its interface to ch3 for transmitting to D. Thus, node C cannot be aware of the CTS from B. As a result, after the current trans-
mission, node C may content for ch2 and incur a collision at B. It is the so called multi-channel hidden terminal problem [2].
Even worse, the lost signals may cause link failure. In Fig. 3(b), node C is sending requests to B using B’s channel. But, node B
has turned its interface to ch1 so that it cannot be aware of the request from C. Thus, node C may keep sending the RTSs until
it falsely concludes that its link to B has broken. It is the so-called deafness problem [2].

The hybrid approach employs two interfaces to overcome the problems in both channel fixed and receiver based ap-
proaches [23,24]. One interface is fixed on a specified channel for receiving tasks, and the other interface can be dynamically
switched on the channel of the fixed interface of the intended receiver. In this way a node can utilized diverse channel via its
switchable interface and keep trace of control packets via its fixed interface. Moreover, singe channels of fixed interfaces are
rarely changes, a channel switching can be made immediately without any coordination. However, this approach has two
drawbacks. First, although a node can utilize more diverse channels, not limited by the number of its interface, the commu-
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nication channel between two nodes is still fixed, which is not flexible when the channel of the intended receiver is highly
interfered. Second, a link-layer broadcast is hard to be implemented. A node should broadcast the same message on all chan-
nels to ensure the delivery.

The split control phase approach divides each beacon interval into a control phase and a data phase [14,15]. As shown in Fig. 4,
all nodes periodically rendezvous to a common channel in the control phase to sense carriers and coordinate channels for the
subsequent transmissions in the data phase. In this approach, nodes have the most flexibility to use diverse channels during
the data phase. Besides, the exchange of control packets and link-layer broadcast can be easily achieved during the control
phase. Nonetheless, the phase alignment relies on strict time synchronization so that it is hard to implement in practice.

The dedicated control channel approach does not require any time synchronization mechanism. With the control interface,
each node can access the control channel at anytime. However, as mentioned in Section 1, the throughput could be limited
by the bandwidth of control channel and influenced by the selection of data channels. Besides, the dynamic channel selection
means that more control overheads are required for the channel coordination. Hence, in this paper we focus on solving these
challenges.

Finally, in the common rendezvous approach [16], nodes not exchanging data hop through all channels synchronously. A
pair of nodes stops hopping as soon as they make an agreement for transmission and rejoin the common hopping pattern
subsequently after transmission ends. In comparison with the DCC, this approach can make use of all the channels for data
exchange and requires only one interface per node. However, it does not resolve the control bottleneck problem since only
one pair of nodes can make an agreement at the same time. The parallel rendezvous approach [17,18] overcomes this problem
by assigning different hopping sequences to nodes. In SSCH [17], each node picks multiple sequences and follows them in a
time-multiplexed manner. When node A wants to talk to node B, A waits until it is on the same channel as B. The McMAC [18]
improves SSCH by allowing a sender to temporally hop to the sequence of the receiver to avoid waiting. The major problem
in these rendezvous approaches is that they may incur large switching delay for channel hopping, and each node requires
synchronization mechanisms to track the hopping sequence of the others. Besides, a link-layer broadcast is hard to be imple-
mented in a hopping fashion.

2.2. Existing protocols for DCC approach

The concept of using separated channels or special devices (e.g. busy tones) to improve medium access control has been
extensively studied in works such as [19–22], but these researches consider only one data channel, i.e. designed for single-
channel MAC. The first MMAC protocol under the DCC approach was presented in [3] and named the dynamic channel assign-
ment (DCA). In this protocol, each node maintains a free channel list (FCL) to record unused data channels. As a node u intends
to transmit to a node v, it first sends a RTS to v carrying its FCL. Then, node v compares the received FCL with its own FCL to
select a common free channel. If there is any, the selected channel will be replied to u using a CTS. Once received the CTS,
node u emits a reserve-to-send (RES) to inhibit other nodes from using the same channel. Meanwhile, nodes u and v can start
to exchange the DATA and ACK frames on the selected channel. Integration with the power control technique was proposed
in [4].

Compared with the IEEE 802.11 DCF, the DCA needs an additional control frame (e.g. RES) to reserve the channel selected
at the receiver’s side. To avoid such overhead, the protocol in [5] suggests that each sender can firstly propose a free channel
in the RTS. If the channel is free to the receiver, the data transmission can be started immediately upon received the CTS.
Otherwise, it follows the same way in [3]. A similar protocol appears in [6], where the proposed channel in the RTS will
be replied by a reply-to-RTS (RRTS) that indicates whether the channel is free or not. The negotiation will continue until
a common free channel is found. Nonetheless, these protocols may spend more control bandwidth if the proposed channel
is not accepted by the receiver.

Another way to relieve the bottleneck problem is by using multiple control channels. Koubaa [7] showed that the number
of control channels required to achieve the maximal throughput is a function of the available channels and packet size. For
instance, with 12 channels and packet size of 1024 bytes, providing three control channels is optimal. Likewise, the protocol
in [8] employs an extra channel for replaying ACKs to improve the channel reusability. By replying the ACK in a separated
channel, a sender can be active simultaneously with its hidden terminals. Although using multiple control channels is ben-
eficial, coordinating on different channels could be more complicated.

The channel selection strategy in the DCA [3] is simply to find a communicable channel. Each sender–receiver pair coor-
dinates a channel that is free at the two sides. If there are multiple choices, one channel will be chose at random. The strategy
was slightly improved in [9,10]. In [9], the channel with the least received power will be chosen to avoid potential interfer-
ence. Similarly, in [10], the most robust channel will be selected according to the carrier-to-interference ratio. In other
words, [9,10] are concerned about not only the communicability, but also the quality of the selected channel.
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3. Protocol description

The RTBM is primarily based on the DCA protocol [3]. Similarly to the DCA, each sender–receiver pair has to exchange the
RTS-CTS-RES sequence on the control channel to coordinate and reserve a data channel for the subsequent transmission of
the DATA and ACK messages. The RTBM further incorporates with the following components to resolve the control channel
bottleneck and data channel selection problems in the DCC approach:

(1) Control initial-time prediction (CIP): In the DCA [3], each sender has to initiate a control process (e.g. the RES-CTS-RES)
with the intended receiver to coordinate a data channel that is free at two sides. If the coordination succeeds, the data
transmission (e.g. the DATA-ACK) can be started on the selected channel. However, if the coordination fails, the
expensed control bandwidth and time (including backoff timer, transmission time, inter-frame spaces, propagation
delay, and processing time) are wasted. The CIP can avoid unsuccessful channel coordination by properly predicting
the initiation time of each control process. The prediction will jointly consider the channels and interfaces statuses
at the sender and receiver.

(2) Dynamic data-flow control: (DDC): As shown in Fig. 2(b), the bottleneck problem from the common control channel
would lower down the utilization of data channels. To breakthrough this limitation, an intuitive way is to expend
the data flow (i.e. the number of packets to be sent) for each control process to increase the bandwidth usage [20].
However, if too many packets were transmitted with only a few control processes, the data channels could be occu-
pied by some node pairs for a long period of time, which may instead incur unfairness problem to other competitors
who are intended to access the data channels. Ideally, the above problems can be optimally solved by adjusting the
data flow such that both the control and data channels are fully utilized. For example, in Fig. 2(b), if node u sent
1.5 times of packets to node v by each control process, all channels can be fully exploited. However, due to the dynam-
icity in wireless environments, such as the variation in network traffic or topology, the optimal setting would be varied
from time to time. The DDC component can dynamically adjust the amount of flow in each data transmission to bal-
ance the congestion in the control and data channels.

(3) Enhanced channel selection: (ECS): The selection strategy in the DCA [3] is simply to find a communicable data channel
that is free to sender and receiver. If there are multiple choices, one channel will be chose at random. Succeeding
works in [9,10] also consider the quality of the selected channel, but none of them concerns the influence to nearby
transmissions. The ECS can improve the reusability of data channels. Each pair will cooperatively coordinate a free data
channel that will add the least total delay to the starting times of potential transmissions at nearby nodes. In other
words, the selected channel is not only communicable, but also has the least influence to the transmission opportu-
nities of nearby nodes.

In the following, we first define the statuses and symbols used in this protocol. Next, the basic operation is described. We
will focus here on how the RTBM interacts with the three components and defined statuses. The detail design of each com-
ponent will be presented in the next section.
3.1. Statuses and symbols

We assume that the network has a set of orthogonal channels H ¼ fhjh ¼ 0;1;2; . . . ;Hg. Each node has a control interface
and a data interface. The first channel (h = 0) is for control purpose, and the remaining channels (h = 1, 2, . . . , H) can be used
for data transmission. A channel (or interface) is released when it can be used for a transmission or reception. Each node u has
the following statues:

� ch_rel_time(u, h): the release time of the hth channel at u, h = 0, 1, . . ., H;
� if_rel_time(u): the release time of the data interface at u.

In addition, each node u maintains a channel release time table (CRTu) and an interface release time vector (IRVu) to record
the channels’ and interfaces’ statuses at nearby nodes. The fields CRTu(v, h) and IRVu(v), respectively, keep track of the latest
statuses about the ch_rel_time(v, h) and if_rel_time(v) for each neighboring node v. Moreover, a separate queue is created for
each 1-hop destination. The purpose is to avoid head-of-line blocking if two or more packets need to be sent for the same
node. Other time symbols that will be used in our protocol are listed in Table 1.
3.2. Basic operation

The basic operation of the RTBM is illustrated in Fig. 5. Consider node u. Let us see how node u operates with other nodes
in this protocol. In the beginning, node u creates a separate queue for nodes a and v. To avoid starvation, when some packets
arrived in queues the destination with the oldest packet will be chosen as the target. Assume that node u has decided to
transmit to node v. First of all, it applies the CIP to predict a control initiation time for v, denoted as ctrl_ini_time(u, v). The



Table 1
Time symbols used in the RTBM protocol.

Symbols Meanings

Tcurr Current time of a node
TDATAi

Time to transmit the i-th data packet in a queue
TRTS Time to transmit a RTS frame
TCTS Time to transmit a CTS frame
TRES Time to transmit a RES frame
TACK Time to transmit an ACK frame
BF Remaining backoff time
s Maximal propagation delay
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time indicates when node u can successfully initiate a control process with v. As shown in Fig. 5, ctrl_ini_time(u, v) = t2. The
prediction process will continue before the control process is actually started.

At ctrl_ini_time(u, v), node u starts the following control process. It first applies the DDC to determine the number of data
frames to be sent for v, denoted as Ku,v. According to the Ku,v, the network allocation vector required to exchange the DATA
and ACK messages can be set as
NAVDATA ¼
XKu;v

i¼1

ðTDATAi
þ SIFSÞ þ TACK þ 2s;
where TDATAi
is the time to transmit the ith data packet in the queue for v. As shown in Fig. 5, Ku,v = 3 and NAVDATA = t10�t6. So,

node u will transmit the first three packets to v during t6 to t10. Next, node u applies the ECS to evaluate the cost for trans-
mitting on each data channel h. The cost, denoted as Du(h), is the total increment to the starting times of possible transmis-
sions at u’s nearby nodes as if node u transmitted on channel h for a period of NAVDATA. Then, following the IEEE 802.11
backoff mechanism, if there was no carrier on the control channel in a DIFS plus the BF, node u sends a RTS to v, containing
the NAVDATA and the Du(h), for any h = 1, 2, . . . , H.

Once received the RTS, node v also applies the ECS to evaluate the cost Dv(h), for each data channel h, i.e. the total incre-
ment to the starting times of possible transmissions at v’s nearby nodes as if node v transmitted on channel h for a period of
NAVDATA � s. Combining the costs evaluated from the two sides, the total cost for communicating between u and v on a chan-
nel h, denoted as Du,v(h), is the sum of the Du(h) and Dv(h). The data channel that will be released to u and v and has the least
Du,v(h) will be selected. If such a channel can be found, denoted as h⁄, node v has to update the following statues for the forth-
coming data transmission on h⁄ such that
if rel timeðvÞ ¼ ch rel timeðv;h�Þ ¼ Tcurr þ 2SIFSþ TCTS þ NAVDATA:
For example, at Tcurr = t4, node v sets if_rel_time(v) = t9, and ch_rel_time(v, h⁄) = ch_rel_time(v, 2) = t9. Besides, node v sets two
timers as follows in its CTS.
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if durationðvÞ ¼maxf0; if rel timeðvÞ � Tcurr � ðSIFSþ TCTS þ sÞg;

ch durationðv ;hÞ ¼maxf0; ch rel timeðv; hÞ � Tcurr � ðSIFSþ TCTS þ sÞg; h ¼ 1;2; . . . ;H:
The if durationðvÞðch durationðv ;hÞÞ indicates the amount of time the data interface (data channel h) of node v will be re-
served. For example, at Tcurr = t4, node v sets
if durationðvÞ ¼maxf0; t9 � t4 � ðSIFSþ TCTS þ sÞg ¼ t9 � t5;

ch durationðv ;1Þ ¼maxf0; t8 � t4 � ðSIFSþ TCTS þ sÞg ¼ t8 � t5

ch durationðv ;2Þ ¼maxf0; t9 � t4 � ðSIF þ TCTS þ sÞg ¼ t9 � t5;

ch durationðv ;3Þ ¼maxf0; t1 � t4 � ðSIFSþ TCTS þ sÞg ¼ 0:
After waiting a SIFS, node v replies a CTS to u, containing the h⁄ (if there is any), if_duration(v), and ch_duration(v, h), for any
h = 1, 2, . . . , H.

Once received the CTS, if a channel h⁄ was indicated, node u also updates
if rel timeðuÞ ¼ ch rel timeðu;h�Þ ¼ Tcurr þ ch durationðv; h�Þ þ s;
for the forthcoming data transmission on h⁄ and sets two timers as follows in its RES.
if durationðuÞ ¼ maxf0; if rel timeðuÞ � Tcurr � ðSIFSþ TRES þ sÞg;

ch durationðu; hÞ ¼ maxf0; ch rel timeðu;hÞ � Tcurr � ðSIFSþ TRES þ sÞg; h ¼ 1;2; . . . ;H:
After waiting a SIFS, the h⁄ is rebroadcasted to nearby nodes along with a RES to reserve the channel. Meanwhile, node u can
start to send Ku,v packets to node v via channel h⁄. Finally, node v replies an ACK to node u at the end of the data transmission.

On the other hand, once an irrelevant node x (e.g. nodes a and b) received the CTS or RES from a node y (e.g. nodes u and
v), if a channel, i.e. h⁄, was indicated inside, node x has to inhibit itself from using the same data channel by setting
ch rel timeðx;h�Þ ¼maxfch rel timeðx;h�Þ; Tcurr þ ch durationðy; h�Þg:
Note that the NAVDATA has been implicated in both the ch_duration(v, h⁄) and ch_duration(u, h⁄). Hence, it is neither in the CTS
nor in the RES.

Moreover, to prevent nodes from disrupting the control process between u and v, an extra NAV is employed on the control
channel. More precisely, once an irrelevant node x (e.g. node a) received the RTS from u, it has to block its control channel for
a period of time by setting
ch rel timeðx;0Þ ¼ Tcurr þ NAVCTRL;
where NAVCTRL = 2SIFS+ TCTS + TRES + 2s, specifying the amount of time the control channel will be for the RTS-CTS-RES
dialogue.

Lastly, to maintain the statuses of nearby nodes, once a node x (e.g. nodes a, b, u, and v) receives a CTS or RES from a node
y (e.g. nodes u and v), it has to update its channel release time table (CRTx) and its interface release time vector (IRVx) as follows.
IRVxðVÞ ¼ Tcurr þ if durationðyÞ;

CRTxðy; hÞ ¼ Tcurr þ ch durationðy;hÞ; for any h ¼ 1;2; . . . ;H:
The above processes are in normal situation which could be interrupted in some circumstances. First, node u detected
some control signals before the BF expires. In this case, the RTS will not be sent out by u. Second, the RTS or CTS was collided
or the control channel of v was blocked by a NAVCTRL. In this case, node u will not receive the CTS from v within the timeout
period of SIFS + TCTS + 2s. Third, there was no data channel h⁄ in indicated in the CTS from v. In this case, the data transmis-
sion cannot be started by u. When some of these cases happened, the following process should be done: If the retry limited is
not reached, node u has to terminate the current control process, apply again the CIP, and restart the next attempt at the new
ctrl_ini_time(u, v); otherwise, node u has to abort any process with v an select a new target from its queues.

4. Components design

In this section, we present the detail design of the three components in our protocol.

4.1. Control initiation-time prediction

The CIP is designed to reduce unsuccessful channel coordination that would incur redundant control overhead. It is
achieved by properly predicting the initiation time of each control process, based on the information about the release times
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Fig. 6. Control initiation prediction process (a) without deferral, (b) with deferral and (c) invalid scenario.
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of channels and interfaces at sender and receiver. To explain the idea, let us see the example in Fig. 6(a).1 In the beginning,
node u has some packets for v at t0. At the moment, the release times of ch1, ch2, and ch3 at u and v are (t3, t1, t10) and (t14, t8, t17),
respectively. We know that two nodes can communicate with each other only if at least one data channel has been released to
both of them. Therefore, node u cannot send any data frame to v before t8 = min{max{t3, t14}, max{t1, t8}, max{t10, t17}}, i.e., the
release time of ch2. Moreover, no data frame can be transmitted until the data interfaces of both u and v have been released.
With the two considerations, we define the link release time of u and v as
1 To
 simplify our presentation, the propagation s will not be drawn in the hereafter figures.
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link rel timeðu;vÞ ¼max
min

h¼1;...;H
max

ch rel timeðu;hÞ;
CRTuðv ;hÞ

� �� �
;

if rel timeðuÞ;
IRVuðvÞ

8>>><
>>>:

9>>>=
>>>;
;

which means that all resources required for communicating on the virtual link between u and v will be released at link_rel_-
time(u, v). In Fig. 6(a), the link release time of u and v at t0 is t10 = max{t8, t10, t0}. Clearly, it is the earliest possible time that u
can start a data transmission with v.

With the observation, now we discuss when node u can initiate the control process with v. In the DCC approach, since
control frames (e.g. RTS/CTS/RES) and data frames (e.g. DATA/ACK) are exchanged using different interfaces and channels,
a control process can be started earlier before the virtual link (data channels and data interfaces) is released. Besides, the
data frames can be sent out once node u has received the CTS from v for a SIFS. Therefore, if node u intends to transmit
at the earliest time t10, it should initiate the control process in advance at t10 � (DIFS + BF + TRTS + TCTS + 2SIFS + 2s). However,
the backoff timer BF should be removed from the composition of (DIFS + BF + TRTS + TCTS + 2SIFS + 2s). Otherwise, other send-
ers waiting for the same resource (u’s data interface) may send their RTSs at the same time with u’s RTS, and thus incur col-
lision. In addition, node u cannot perform any control process until the control channel is released. Combining these facts, the
control initiation time of u and v is defined as
ctrl ini timeðu;vÞ ¼max
link rel timeðu; vÞ � pre ctrl;

ch rel timeðu;0Þ

� �
;

where pre_ctrl = DIFS + TRTS + TCTS + 2SIFS + 2s, denoting the preprocessing time. In this example, node u can apply this func-
tion at t0 and predict that the initiation time is t5 = max{t10 � pre_ctrl, t2}.

Note that, before the control process is actually started, the predicted time could be updated if the ch_rel_time(u, 0) or
link_rel_time(u, v) is changed. When such event occurs, the control process is deferred to the updated initiation time. For
example, in Fig. 6(b), node u received a RTS at t4 that changes the ch_rel_time(u, 0) to t7. So, the ctrl_ini_time(u, v) is deferred
from t5 to t7. Furthermore, node u received a CTS at t6, indicating that ch2 will be released at t18. Hence, the link_rel_time(u, v)
is changed from t10 to t14. Accordingly, the ctrl_ini_time(u, v) is further deferred from t7 to t11.

In addition, since the records in the CRTu and IRVu are not always the newest, the predicted time could be invalided. As
shown in Fig. 6(c), node v received a CTS with an updated ch_duration(v, 1) at t9 and the ch_rel_time(v, 1) is changed accord-
ingly. Normally, the control initiation time should be deferred from t11 to t13 to response to the change. But, since node v does
not send any control frame during t9 to t11, the change is invisible to u. As a result, node u will still initiate the control process
at t11 and the control process may fail. However, the CIP does ensure that any control process initiated before t11 must fail,
because for any channel h (or interface), if it is not released at CRTu(v, h) (or IRVu(v)) to u, it is also not released at ch_rel_ti-
me(v, h) (or if_rel_time(v)) to v. Thus, the CIP can help nodes to avoid unsuccessful channel coordination.
4.2. Dynamic data-flow control

The DDC can dynamically adjust the number of data packets being sent in each data transmission to balance the conges-
tion in the control and data channels. The DCC maintains a variable Ku,v for each 1-hop node v specifying the number of data
packets that will be sent in the next transmission from nodes u to v. Ku,v is initiated as 1 and will be dynamically adjusted
according to the idle statuses on the control and data interfaces.

Take a look at Fig. 7 to explain this idea. There are three sender–receiver pairs of {u, v}, {x, y}, and {w, z} with data flows
sustained during [t0, t3], [t1, t3], and [t1, t2], respectively. Besides, nodes u and v are in the interference range of nodes x and w,
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Fig. 7. Basic concept of the DDC component.
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receptively. Assuming that the time required for a control process is equal to the time required for sending one data packet,
we show how DDC adjusts Ku,v. In the beginning, Ku,v = 1. Thus, node u sends one data packet to v. Then, node u intends to
send the next packet to v. However, at this moment, the control processes for other two flows have started, so node u cannot
initiate a control process immediately with v. Consequently, u’s data interface experiences a period of idle status before the
next data transmission starts. In order to mitigate such influence from control channel, the DDC expends Ku,v in proportion to
the idle time experienced from u’s data interface (i.e. Ku,v = 1 + 2 = 3) to increase the utilization of data channels for the sub-
sequent data transmission to v. As shown in this example, by the end of the second data transmission, the next data trans-
mission can be started immediately without any idling. Nonetheless, during the third data transmission, since the data flow
between w and z has finished, the control channel becomes less congested at v, resulting in a period of idle status in u’s con-
trol interface before the next control process starts. In order to reflect such fact, the DCC shrinks Ku,v in proportion to the idle
time experimented from u’s control interface (i.e. Ku,v = 3 � 1 = 2). Finally, Ku,v converges to 2 and the congestion in control
and data channels are balanced. The process will continue if any further change occurred.

In summary, Ku,v is adjusted according to two idle timers: the data interface idle time, denoted as dif_idle_time(u, v), and
the control interface idle time, denoted as cif_idle_time(u, v). Therefore, below we give a more realistic example to show how
an idle status occurs in the RTBM. Then, the two idle timers and adjusting rule are formally defined. Lastly, we provide an
online algorithm for efficient maintenance.

In Fig. 8(a), node u has some packets for v at t0. At the moment, node u finds that the link release time link_rel_ti-
me(u, v) = t4 and control initial time ctrl_rel_time(u, v) = t4 � pre_ctrl = t2. Ideally, if there is no contention before t2, the data
transmission can start at t5 = t2 + pre_ctrl + BF (recall that BF is not in the pre_ctrl). However, at t1 an irrelevant RTS is de-
tected, so node u has to update ctrl_ini_time(u, v) = max{t4 � pre_ctrl, t1 + NAVCTRL} = max{t2, t3} = t3. Consequently, the data
transmission should be deferred from t5 to t7 = t3 + pre_ctrl + BF. The deferral will result in a period of idle status from t5

to t7 on u’s data interface. Therefore, we can estimate that dif_dile_time(u, v) = t7 � t5 at this time point.
Then, the control process starts at t3 (see Fig. 7(b)). During the BF, another RTS is detected, so node u has to suspend the

current process and update the new control initiation time to t8. Consequently, the data transmission should be further de-
ferred from t7 to t11 = t8 + pre_ctrl + BF, resulting in a longer period of idle status on u’s data interface from [t5, t7] to [t5, t11].
However, during the sub period [t6, t9], node u cannot transmit any data to node v even if the control channel is not con-
gested, since all data channels (ch1 and ch3 of node u and ch2 of node v) are blocked by some NAVs in this time interval. Thus,
the dif_idle_time(u, v) should be set as dif_idle_time(u, v) = (t11 � t5) � (t9 � t6) to reflect the deferral purely incurred by the
control channel congestion. We call the time interval [t6, t9] the non-idle time.

After a DIFS and BF, node u sends a RTS and waits for the CTS from v (see Fig. 8(c)). However, before the RTS arrived, the
control channel of v has been blocked by another RTS so that u cannot obtain any reply from v before the end of the time out
period at t10. As a result, the starting time of the data transmission is further deferred from t11 to t12. That is, the dif_idle_-
time(u, v) should be updated as (t12 � t5) � (t9 � t6). This example shows that the idle status of u’s data interface could be
incurred by the control congestion at both node u and node v.

Continuing the example, in Fig. 8(d), the data transmission starts at t12 and ends at t17 = t12 + NAVDATA. During this period,
the control interface of u is released after sending the RES and reserved for the next control process after t16 = t17 � pre_ctrl.
In addition, the control channel is contended during the sub-period from t14 to t15. Therefore, the control interface idle time
is the sum of the two periods from t13 to t14 and from t15 to t16, i.e. cif_idle_time(u, v) = (t16 � t15) + (t14 � t13).

Now, we formally define the two idle timers based on the above observations. Let data_tx_time⁄(u, v) and data_tx_ti-
me(u, v) stand for the earliest and the actual starting times of a data transmission from u to v, respectively. At any time t,
the data interface of u is idle if and only if

(i) data_tx_time⁄(u, v) 6 t < data_tx_time(u, v);
(ii) link_rel_time(u, v) < t.

For a transmission from u to v, dif_idle_time(u, v) is the total time satisfying (i) and (ii). In Fig. 8, data_tx_time⁄(u, v) = t5, and
data_tx_time(u, v) = t7, t11, and t12, respectively, in Figs. 8(a)–(c). The period of time not satisfying (ii) is [t6, t9], i.e. the non-
idle time. Similarly, at any time t, the control interface of u is idle if and only if

(i) data_tx_time(u, v) + TRES + s < t < data_tx_time(u, v) + NAVDATA � pre_ctrl;
(ii) ch_rel_time(u, 0) � Ttype < t, where type is the type of the received control frame.

For a transmission from u to v, the cif_idle_time(u, v) is the total time satisfying (iii) and (iv).
With the two idle timers, at the start point of each control process (i.e. t3, t8, and t10), Ku,v can be updated as
Ku;v ¼ min
16k6Qv

Xk

i¼1

ðTDATAi
þ SIFSÞP Lu;v þ dif dile timeðu; vÞ

( )
;

where Qv is the number of data packets remaining for v, and Lu,v is the time of the previous data transmission. As shown in
Fig. 8(c), Ku,v = 3 at t10, since
ðTDATA1 þ SIFSÞ þ ðTDATA2 þ SIFSÞ þ ðTDATA3 þ SIFSÞP Lu;v þ ðt12 � t9Þ þ ðt6 � t5Þ:
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On the other hand, at the end point of each data transmission (i.e. t17), Ku,v can be updated
Ku;v ¼ max
16k6Qv

Xk

i¼1

ðTDATAi
þ SIFSÞ < Lu;v � cif dile timeðu; vÞ

( )
:

Note that Lu,v should be updated according to the time of the previous data transmission when used. As shown in Fig. 8(d),
Lu,v = t17 � t12, and Ku,v = 2 since
ðTDATA4 þ SIFSÞ þ ðTDATA5 þ SIFSÞ < Lu;v � ðt16 � t15Þ þ ðt14 � t13Þ:
In accordant with the above definitions, an algorithm is presented below to maintain the Ku,v. Additional time symbols
used in this algorithm are listed in Table 2. The corresponding values for Fig. 8 are shown in Table 3. The algorithm is de-
signed in an online fashion and takes only constant time in each step. Thus, it is very efficient and practical.
Online algorithm: DDC Component

Initial:

Ku,v = 1; Lu,v = TDATAi + SIFS + TACK + 2s;

Whenever node v is chosen as a target at Tcurr:

ctrl_ini_time⁄(u, v) = max{Tcurr, link_rel_time(u, v) � pre_ctrl};
data_tx_time⁄(u, v) = ctrl_ini_time⁄(u, v) + pre_ctrl + BF;

dif_nid_end(u, v) = data_tx_time⁄(u, v);

dif_nid_time(u, v) = 0;

Before ctrl_ini_time(u, v):

Once the link_rel_time(u, v) is deferred at Tcurr, update

dif_nid_time(u, v) = dif_nid_time(u, v) + link_rel_time(u, v) �max{Tcurr, dif_nid_end(u, v)};

dif_nid_end(u, v) = max{data_tx_time⁄(u, v), link_rel_time(u, v)};

At ctrl_ini_time(u, v):

data_tx_time(u, v) = ctrl_ini_time(u) + pre_ctrl + BF;

dif_idle_time(u, v) = data_tx_time(u, v) � data_tx_time⁄(u, v) � dif_nid_time(u, v);

Ku;v ¼ min16k6Qv f
Pk

i¼1ðTDATAi
þ SIFSÞP Lu;v þ dif dile timeðu;vÞg;

At data_tx_time(u, v):

cif_nid_time(u, v) = 0;

cif_nid_end(u, v) = data_tx_time(u, v) + TRES + s;

Before data_tx_time(u, v) + NAVDATA � pre_ctrl:

Once the ch_rel_time(u, 0) is deferred at Tcurr, update

cif_nid_time(u, v) = cif_nid_time(u, v) + ch_rel_time(u, 0) �max{Tcurr � Ttype, cif_nid_end(u, v)};

cif_nid_end(u, v) = max{data_tx_time(u, v) + rres, ch_rel_time(u, 0)};

At data_tx_time(u, v) + NAVDATA � pre_ctrl:

cif_idle_time(u, v) = NAVDATA � pre_ctrl � cif_nid_time(u, v);

Lu;v ¼
PKu;v

i¼1 ðTDATAi
þ SIFSÞ þ TACK þ 2s;

Ku;v ¼ max16k6Qv f
Pk

i¼1ðTDATAi
þ SIFSÞ < Lu;v � dif dile timeðu;vÞg;
4.3. Enhanced channel selection strategy

The ECS aims at improving the reusability of data channels. The main idea is based on exploiting the release times of chan-
nels and interfaces at neighboring nodes to select a free data channel that will cause the least influence to nearby
transmissions.



Table 2
Time symbols in the online algorithm of the DDC component.

Status Meaning

ctrl_ini_time⁄(u, v) Earliest control initiation time with v
dif_nid_time(u, v) Non-idle time of u’s data interface before a data transmission to v
dif_nid_end(u, v) End point of the non-idle status of u’s data interface before a data transmission to v
cif_nid_time(u, v) Non-idle time of u’s control interface during a data transmission to v

Table 3
Corresponding values of the used statues for Fig. 8.

ctrl_ini_time⁄(u, v);
ctrl_ini_time(u, v)

data_tx_time⁄(u, v);
data_tx_time(u, v)

dif_nid_time(u, v);
cif_nid_time(u, v)

dif_nid_end(u, v);
cif_nid_end(u, v)

dif_idle_time(u, v)
cif_nid_time(u, v)

Ku,v

t2 t5 0 t5 0 1
t3 t7 0 t5 (t7 � t5) 2
t8 t11 (t9 � t6) t9 (t11 � t5) � (t9 � t6) 2
t9 t12 (t9 � t6) t9 (t12 � t5) � (t9 � t6) 3
t17 – (t15 � t14) t15 (t16 � t13) � (t15 � t14) 2
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The concept is shown in Fig. 9. Nodes a and c are in the interference range of node u, and nodes b and d are in the inter-
ference range of node v. According to the specified NAVs, nodes a, b, c, and d cannot transmit to any other node, respectively,
before t6, t9, t2, and t7, since prior to these time points, there is neither an interface nor a channel released (note that the
interface of node d will be released by t7). In other words, the earliest possible time to start a transmission from a, b, c,
and d are t6, t9, t2, and t7, respectively. Assume that nodes u and v have decided to communicate on ch1. See what happen
to nearby nodes. Since ch1 is not the first channel released to node a, node a can still transmit at t6. Likewise, the earliest
possible starting time of node d remains t7. However, to nodes c and d, since ch1 is no longer the first channel released to
them, they cannot start any transmission before ch2 and ch3 are released to them at t8 and t9, respectively. As a result,
the earliest possible starting times of b and c are increased (postponed). Our goal is to coordinate a data channel that is
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not only free to the sender and receiver themselves, but also adds the least total delay to the starting times of possible trans-
missions at nearby nodes.

Now, we formally describe the ECS below. Consider a sender u and a receiver v. As the control process is initiated at ctrl_i-
ni_time(u, v), node u firstly identifies a list of data channels that will be released to itself at the expected starting time of the
transmission to v as follows.
FCLðuÞ ¼ fh�H j ch rel timeðu;hÞ 6 ctrl ini timeðu; vÞ þ pre ctrlþ BFg:
Note that by definition of the CIP, FCL(u) must be non-empty at ctrl_ini_time(u, v). In addition, let Nu denote the set of nodes
in u’s interference range. For each w e Nu � {v}, node u calculates the time that at least one data channel will be released to w
as
CRuðwÞ ¼minfCRTuðw;hÞj h�Hg:
The CRu(w) is called the critical channel release time of w, and the first data channel released to w is called the critical channel
of w. Combining with the interface release time of w in IRVu, we define
NRuðwÞ ¼maxfCRuðwÞ; IRVuðwÞg:
It is called the node release time of w. Clearly, node w cannot start any transmission before NRu(w).
Next, node u evaluates the cost for transmitting on each h e FCL(u). For each w e Nu � {v} and h e FCL(u), if nodes decided

to transmit on channel h for a period of NAVDATA, the CRu(w) could be enlarged (at least equally), and the new critical release
time of w can be formulated as
CRþu ðwjhÞ ¼min
max

CRTuðw; hÞ;
Tcurr þ ðpre ctrlþ BFÞ þ NAVDATA

� �
;

min CRTuðw; h0Þjh0�H� fhg
� �

8><
>:

9>=
>;:
The above equation indicates that the original CRu(w) could be replaced by the release time of another channel h0 e H � {h},
if the release time of the original critical channel of w is enlarged so that it is no longer critical to w. As shown in Fig. 9, at t1,
CRu(c) = t2, but CRþu (c|1) = t8 The gap between t2 and t8 is due to the fact that the critical channel of c will be altered from ch1

to ch2 if u transmits on ch1. Similarly, the corresponding node release time of w can be wrote as
NRþu ðwjhÞ ¼maxfCRþu ðwjhÞ; IRVuðwÞg:
Using these terms, the increment to the node release time of w resulted from transmitting on channel h can be charac-
terized as
Duðw;hÞ ¼maxfNRþu ðwjhÞ; Tcurr þ rresg �maxfNRuðwÞ; Tcurr þ rresg;
where rres = pre_ctrl + BF + TRTS + s, denoting the duration before other nodes can receive the RES from u. Notice that the
Du(w, h) neglects the increment before ctrl_ini_time(u, v) + rres, since the transmission is not influential to w before the
RES is received by w. As shown in Fig. 9, although NRu(c) = CRu(c) = t2 and NRþu (c|1) = CRþu (c|1) = t8, since the RES will arrive
at t5, the Du(c, 1) is (t8 � t5) instead of (t8 � t2). Accordingly, if node u transmits on channel h, the total increment to the nodes
release time of all neighboring nodes can be defined by
DuðhÞ ¼
X

w�Nu�fvg
Duðw;hÞ:
The Du(h) will be sent to v along with a RTS frame for any h e FCL(u).
When node v received the RTS, it performs the same evaluation for each h e FCL(v) \ FCL(u) and w e Nv � {u} � Nu, where
FCLðvÞ ¼ fh�Hjch rel timeðv ;hÞ 6 Tcurr þ 2SIFSþ TCTS þ sg:
That is, node v calculates
CRþv ðwjhÞ ¼min
max

CRTvðw;hÞ;
Tcurr þ ðrcts þ SIFSÞ þ ðNAVDATA � sÞ

� �
;

min CRTvðw;h0Þjh0�H � fhg
� �

8><
>:

9>=
>;;

Dvðw;hÞ ¼maxfNRþv ðwjhÞ; Tcurr þ rctsg �maxfNRvðwÞ; Tcurr þ rctsg;
and
DvðhÞ ¼
X

w�Nv�fug�Nu

Dvðw;hÞ;
where rcts = SIFS + TCTS + s, denoting the duration before other nodes can receive the CTS from u.
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Then, combining the transmission costs from the two sides, the total cost for communicating between u and v on a chan-
nel h can be defined as
Du;vðhÞ ¼ DuðhÞ þ DvðhÞ:
The Du,v(h) is the total increment to the node release time of all neighbors of u and/or v. In Fig. 9,
Du,v(1) = Du(1) + Dv(1) = Du(a, 1) + Du(c, 1) + Dv(b, 1) + Dv(d, 1) = (t5 � t5) + (t8 � t5) + (t8 � t10) + (t7 � t7) = (t8 � t5) + (t8 � t10).
= Du(a, 1) + Du(c, 1) + Dv(b, 1) + Dv(d, 1) = (t5 � t5) + (t8 � t5) + (t8 � t10) + (t7 � t7) = (t8 � t5) + (t8 � t10). Similarly, we can find
the Du,v(2) and Du,v(3). Finally, a channel h e FCL(v) \ FCL(u) that has the least Du,v(h) will be chosen as the communication
channel, i.e. the h⁄. The selected h⁄ will be sent back to u using the CTS. By definition, the h⁄ will be released to both u and v
and has the least total increment to the node release times (starting times of possible transmissions) of potentially interfered
nodes.

5. Simulations

In this section, we conduct simulations using the ns2 simulator. In order to evaluate how much performance gain each of
the three components obtains, we have implemented the following versions for the RTBM:

� RTBM (CIP) consists of CIP only, has no flow control (i.e. Ku,v = 1), and follows the random channel selection strategy in [3].
� RTBM (CIP + DDC) is akin to the first version except that DDC is applied.
� RTBM (CIP + DDC + ECS) employs all designed components.

Note that DDC cannot be applied without CIP, since Ku,v depends on the link release and control initiation times updated from
CIP. Besides, if Ku,v was always fixed on 1, the discrepancy between different data channels h’s would be insignificant in terms
of their communication costs Du,v(h)’s. Hence, we do not individually test DDC and/or ECS for the RTBM.

In addition, due to transmission failures or delays in updating control messages, the values stored in CRTu and IRVu could
be stale or incomplete. The inaccuracy may lead to a series of invalid decisions in the RTBM (as shown in Fig. 6(c)). For this
reason, we provide an ideal version, denoted as RTBM⁄(CIP + DDC + ECS), where each node can directly access the information
in its neighbors, to show how the performance degrades due to inaccurate information.

On the other hand, we compare the RTBM with the representative DCC-based protocol (DCA) in [3] and the parallel ren-
dezvous protocol (McMAC) in [18]. The primary goal of McMAC is also to overcome the control bottleneck problem. The dif-
ference is that McMAC disperses control traffic across all available channels by allowing a sender switch to the hopping
sequence of the intended receiver with a probability p. Here, we set p as the default setting in [18]. For all of our evaluations,
the IEEE 802.11 DCF serves as the baseline protocol.

For each network under test, we generate 100 static nodes uniformly distributed on a 1500 m � 1500 m region. Each node
is equipped with two interfaces, each with a default transmission range of 250 m. The interference range is assumed to be
twice the transmission range. On the other hand, we provide 12 orthogonal channels. One of them is used for control pur-
poses and the others are used for data transmission. The default channel bit rate is 11 Mbps.

On top of each generated network, we consider the throughput under two circumstances. In single-hop communication, we
establish UDP flows with a variable bit rate over 200 random node pairs (i.e. each node communicates with four 1-hop nodes
on average). Each communication pair is confined within the transmission range of each other. This case is intended to eval-
uate the link-layer performance. In multi-hop communication, we establish UDP flows with a constant bit rate over 20 ran-
domly chosen node pairs. All sources and destinations are distinct nodes. Each packet is forwarded along with a shortest path
in terms of the hop count. In both cases, the (average) packet arrival rate is 1 Mbps and the packet length is 1024 bytes. The
throughput is defined as the total size of data packets successfully received by all destinations divided by the simulation time
(100 s). Besides, each node u maintains a 50-packet queue for any 1-hop node v, i.e. Qv 6 50.

Table 4 lists the frame sizes of each compared protocol under H = 11. In addition to those in IEEE 802.11 DCF specifications
(i.e. 20 bytes for RTS, 14 bytes for CTS, and 14 bytes for ACK), the DCA needs a 2-byte bitmap to carry the free channel list in
RTS, and 2 bytes to indicate the selected channel and a parameter in CTS (see [3]). Thus, the frame sizes of RTS and CTS in
DCA are 22 bytes (i.e. 22 = 20 + 2) and 16 bytes (i.e. 16 = 14 + 2), respectively. About the RTBM, its RTS additionally needs
Table 4
Frame sizes under H = 11 and system values of DSSS PHY.

802.11 DCF/McMAC DCA RTBM

RTS length 20 bytes 22 bytes 44 bytes
CTS length 14 bytes 16 bytes 39 bytes
RES length – 16 bytes 39 bytes
ACK length 14 bytes
Propagation delay 5 ls
Backoff slot time 20 ls
SIFS 10 ls
DIFS 50 ls
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2 bytes to encode the communication Du(h) for each data channel h. Thus the size of RTS under H = 11 is 44 bytes (i.e.
44 = 20 + 2 + 2 � 11). Moreover, the CTS and RES needs 2 bytes for each duration of if_duration(v) and ch_duration(u, h),
and 1 byte for the selected channel h⁄ (see Section 3.2). Thus, the sizes of the later two frames under H = 11 are 39 bytes
(i.e. 39 = 14 + 2 + 2 � 11 + 1). Other system values specified for the DSSS PHY are also listed in Table 4. Although the RTBM
needs larger frame sizes, as shown later, the benefit from our components can wholly compensate for such a drawback.
The above contexts are the default settings. We also vary some parameters one at a time to assess the performance under
different scenarios. Any result point of the following figures is averaged from 20 networks.

Fig. 10 reports the throughput versa the number of data channels (H). In comparison with the single-channel 802.11 DCF,
the DCA can use multiple data channels to increase the throughput. When H = 2, it achieves a 28.98% gain in single-hop case
and a 44.72% gain in multi-hop case. However, the improvement becomes very limited as more channels are provided. With
11 channels, the DCA obtains merely a 40.08% and 79.59% gain in the two cases, respectively. The results indicate that only a
small portion of data channels were utilized due to the bottleneck in control channel.

The bottleneck problem can be mitigated by CIP. As shown in Fig. 10, the RTBM(CIP) has 4–42% throughput increments over
the DCA. The reason is that CIP can prevent nodes from sending redundant RTSs and thus avoid unnecessary blocking from
NAVCTRL. Notice that CIP is particularly useful for small H, because a coordination process may fail when two nodes have no free
data channels in common, and there are relatively fewer common channels when H is small. Nonetheless, CIP cannot entirely
break through the limitation of the control channel, since a coordination process is still required before sending each data packet.

The DDC can substantially resolve this problem. As shown in Fig. 10, RTBM(CIP+DDC) has improved the baseline through-
put by over 2.26 times in single-hop case and 3.49 times in multi-hop case, with just one additional data channel, i.e. H = 2.
Moreover, for H = 4, it can further gain 2.86 times and 5.17 times performance in the two cases. However, since the traffic
load is not quite heavy in default, the throughput reaches the limit when H P 6. As shown in Fig. 11, by pressuring nodes
Fig. 10. Variation in the number of data channels.

Fig. 11. Variation in the number of flows (H = 11).
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with more data flows, the throughput is almost linear to the number of flows under H = 11. Contrarily, other protocols with-
out DDC even degrade the throughput as the number of flows exceeds a certain limit.

The bottleneck problem is also resolved by McMAC. As shown in Fig. 10(a), the throughput of McMAC increases signifi-
cantly when H raises. However, when H is small, McMAC does not perform well (even worse than the original DCC when
H = 2). One reason is that the congestion in each channel is still heavy for a small H. In contrast, DDC can dynamically adjust
the number of data packets being sent to balance the congestion in both control and data channels no matter how many
channels are provided. Another reason is that the DCC-based approach can separate control and data traffic into different
channels so that control and data signals are not interfering to each other. Note that although RTBM needs one additional
channel for control purposes, we can see that the throughput of RTBM(CIP + DDC) with h channels is higher than that of
McMAC with h + 1 channels in all cases. Moreover, McMAC has no significant improvement in a multi-hop case, because
a node may frequently depart to different hopping sequences to forward messages, which however are always not visible
to other nodes in the interference range, incurring a serious collision problem. In contrast, RTBM allows each node to acquire
the status of other nodes and channels at any time.

The ECS can further enhance the throughput. As shown in Fig. 10, RTBM(CIP + DDC + ECS) shows clear gains over
RTBM(CIP + DDC), especially when more data channels are provided. One observation explains this tendency: When H is large,
each sender u and receiver v have more choices to find a data channel h which has a lower cost Du,v(h). Particularly, under 11
data channels and 500 flows, ECS additionally contributes 26.37% of throughputs in single-hop case (15.41% in multi-hop case).

In Fig. 12, we vary the channel bit rate (R) to show how raw channel capacity relates to the throughput. As R is raised from
0.5 Mbps to 11 Mbps, we can see that 802.11 DCF gains approximately 9–10 times throughput, but there are relatively lower
gains (no more than 4 times) for DCA and RTMB(CIP). The lower growth rates are caused by the following reason: with a high-
er channel bit rate, the data transmission is faster, which implies that a node may initiate more control processes within a
shorter period of time. As a result, contention in the control channel becomes more intensive. RTBM can get rid of such lim-
itations by using DDC. As shown in Fig. 12, RTMB(CIP + DDC + ECS) obtains 8.22 times throughput in the single-hop case and
9.39 times throughput in the multi-hop case as long as R is raised from 0.5 Mbps to 11 Mbps, which are very close to those
achieved by 802.11 DCF, where no control bottleneck exists. The reason for this is that DDC can dynamically send multiple
data frames to prolong the data transmission whenever the control channel is congested, i.e. data interface’s idle time rises.
Besides, ECS can provide more enhancements when R is large, because the greater the channel bit rate is, the more free data
channels exist, providing more choices for finding the lower communication cost.

Fig. 13 demonstrates the impact of increasing transmission (interference) range We can see that the throughputs of
802.11 DCF, DCA, and RTBM(CIP) degrade drastically as the range increases. In contrast, RTBM(CIP + DDC) has only suffered
a slight decrement in its throughput, since DDC can dynamically adapt to any increasing interference in the control channel.
Moreover, ECS can help nodes to achieve better channel reusability. Hence, RTBM(CIP + DDC + ECS) is almost not affected by
this factor. Surprisingly, the throughput can be even better when the range is more than 250 m. This phenomenon possibly
stems from the fact that a larger transmission (interference) range can avoid the presence of hidden terminal nodes in the
control channel.

Now let us compare with the ideal version. We can see that the throughput of RTBM(CIP + DDC + ECS) is very close to that
of RTBM � (CIP + DDC + ECS) especially when H is large (see Fig. 10), because the change of a channel release time can be less
frequent if more other channels are offered. Besides, the throughput degradation is very small even under a heavy loading
(see Fig. 11). Therefore, the inaccuracy of information has a little impact to our protocol.

Fig. 14 shows the normalized control overhead for each protocol (the total size of control messages being sent divided by
that of the 802.11 DCF) over different number of flows. Consider the single-hop case: By comparing Fig. 11(a), we can see
Fig. 12. Variation in channel bit rate (H = 11).



Fig. 13. Variation in transmission range (H = 11).

Fig. 14. Normalized control overhead (H = 11).

Fig. 15. Throughput under protocol vs. physical interference model (H = 11).
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that the control overhead of McMAC goes up in accompany with more data throughput, because McMAC can spread control
loading over different channels. By contrast, the throughput of DCA is saturated by a small number of flows, since the control
overhead is congested in a single channel. Compared with DCA, although RTBM needs larger control frames sizes, it incurs
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lower control overhead and achieves higher throughput in the three versions, because CIP can offer a better utilization of the
control channel and DDC can increase the number of data packets being sent followed by each control process. Consider the
multi-hop case: McMAC has the lowest control overhead and lower throughput, while RTBM(CIP + DDC + ECS) has the highest
control overhead and throughput. The results indicate that the impact from data channels could be more serious in a multi-
hop case.

Fig. 15 shows the throughout under protocol interference model versa physical interference model based on SINR. We can
see that our protocol has only a slight degradation under the physical model especially when ECS is applied, while McMAC
has a larger degradation in throughput. The reason is that ECS is designed to increase the reusability of data channels so that
the interference problem is less serious under both of the two models. Note that the throughput degradation becomes more
significant in multi-hop case for each protocol because in multi-hop case the physical model not only incurs more serious
interference among different communication pairs (i.e. the inter-flow interference) but also worsens the interference be-
tween hops of the same flow (i.e. the inter-hop interference). Besides, for a transmission, there are more hidden terminal
nodes in both control and data channels when multi-hop flows exist.

6. Conclusion

In this paper, we have proposed a release-time-based MMAC protocol to overcome the control channel bottleneck prob-
lem and the dynamic channel selection problem for the DCC approach. Three components have been investigated and incor-
porated into this protocol. The control initiation-time predation can reduce the redundant control overhead by properly
predicting the control point to increase the chance for a successful coordination. The dynamic data-flow control can dynam-
ically adjust the number of data packets to be sent according to the real-time condition of both the control and data inter-
faces. The enhanced channel selection can gain better channel reusability by selecting the channel that has the least
influence to the transmission starting times of nearby nodes. Simulation results have shown that our protocol with these
components achieves significant improvement in comparison with previous works, especially when the number of channels,
data frame size and data rates of data channels are large. Both McMAC and RTBM with DCC can overcome the control channel
problem. However, RTBM can provide higher throughput due to channel selection strategy. Besides, RTBM is a more suitable
to a complex environment where multi-hop transmission and frequent link-layer broadcasting exist.

For future research, it is worthy to evaluate the performance of mobile nodes. In this circumstance, the quality of a chan-
nel selection strategy could be more influential to the final results. In addition, the bottleneck problem can be further alle-
viated if a candidate control channel is used, but the design is expected to be more complicated.
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