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In this paper, a simple recurrent neural network (SRNN) is employed to model the prosody of 
continuous Mandarin speech to assist tone recognition. For each syllable in continuous speech, 
several acoustic features carrying prosodic information are extracted and taken as inputs to the 
SRNN. If proper linguistic features extracted from the context of the syllable are set as output 
targets, the SRNN can learn to represent the prosodic state of the utterance at the syllable using its 
hidden nodes. Outputs of the hidden nodes then serve as additional recognition features to assist 
recognition of the tone of the syllable. The performance of the proposed tone recognition approach 
was examined by simulation on a multilayer perception (MLP)-based speaker-dependent tone 
recognition task. The recognition rate was improved from 91.38% to 93.10%. The SRNN prosodic 
model is further analyzed to exploit the linguistic meaning of prosodic states. By vector quantizing 
the outputs of the hidden nodes of the SRNN, a finite-state automata that roughly represents the 
mechanism of human prosody pronunciation can be obtained. 

PACS numbers: 43.72.Bs 

INTRODUCTION 

In Mandarin speech, each written character is pro- 
nounced as a monosyllable with a tone. Monosyllables are 
distinguished not only by their phonemic constituents but 
also by their tones. This means that monosyllables with the 
same phonemic structure may have different meanings speci- 
fied by their tones. Speech recognition for 1300 Mandarin 
monosyllables can therefore be conveniently decomposed 
into the recognition of 411 base syllables and lexical tone 
recognition. For the case of isolated syllable recognition, 
tone recognition can be run in parallel with base-syllable 
recognition. But in continuous Mandarin speech recognition, 
tone recognition usually follows base-syllable recognition so 
that syllable boundaries are determined before recognition 
features are extracted from the fundamental frequency (F0) 
and energy contours of syllables. 

There are only five lexical tones in Mandarin speech: the 
high-level, midrising, midfalling-rising, high-falling, and 
neutral tones. For simplicity, these tones are commonly la- 
beled in sequence from tone 1 to tone 5. The tone of a Man- 
darin monosyllable is mainly characterized by the shape of 
its F0 contour. Linguistics researchers therefore call Manda- 
rin Chinese a "contour-tone" language (Chao, 1968). A pre- 
vious study (Chao, 1968) concluded that the F0 contour of 
each of the first four tones can be represented by a single 
standard pattern, as shown in Fig. 1. The pronunciation of 
tone 5, on the other hand, is usually highly context depen- 
dent, so its F0 contour shape is relatively arbitrary. Tone 5 is 
always pronounced short and light, however. 

In tone recognition of isolated Mandarin syllables, only 
the first four tones need to be recognized because syllables 
with tone 5 are rare. In the past, many recognizers have been 
introduced for isolated Mandarin monosyllable tone recogni- 
tion based on discriminating the F0 contour patterns of syl- 

lables. A recognition rate of 94% has been achieved by using 
a multilayer perceptron (MLP)-based tone recognizer (Chang 
et al., 1990). 

But tone recognition of continuous Mandarin speech is 
much more complicated, because the F0 contour of a syl- 
lable in continuous speech is subject to various modifica- 
tions. First, both its shape and its level may be seriously 
affected by the tones of neighboring syllables. This effect is 
generally known as sandhi rules (Chao, 1968; Lee et al., 
1989). Second, coarticulation with neighboring syllables 
may bring about further modifications. This is especially true 
when adjacent tones are of different F0 values. Third, the 
F0 level will be adjusted to conform to the intonation pattern 
of the sentence. For example, the F0 contour of a declarative 
utterance usually declines gradually. This is known as the 
declination effect (O'Shaughnessy and Allen, 1983; Lee 
et al., 1989). Last, the F0 level will also be seriously af- 
fected by the prosody of the utterance. This is the major 
effect that is studied in this paper. 

In the past few years, several researchers have investi- 
gated tone recognition of continuous Mandarin speech. Wang 
(Wang, 1988) used a DHMM-based approach to recognize 
tones for disyllabic and trisyllabic words. Wang et al. (Wang 
et al., 1990) proposed a rule-based approach that considers 
both the declination effect and the accent effect based on 

Fujisaki's model (Fujisaki et al., 1988). A recognition rate of 
93% was achieved for tone recognition of four-syllable idi- 
oms. Wang and Chen (Wang and Chen, 1994) proposed a 
tone recognizer that uses context-dependent HMM models to 
compensate for the effect of sandhi rules and used a two- 
level network structure to model the declination effect of 

sentential utterances. Wang and Chen (Wang and Chen, 
1993) introduced an MLP-based approach to compensate for 
both the coarticulation effect and sandhi rules caused by 
neighboring syllables by directly incorporating contextual 

2637 J. Acoust. Soc. Am. 96 (5), Pt. 1, November 1994 0001-4966/94/96(5)/2637/9/$6.00 ¸ 1994 Acoustical Society of America 2637 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  140.113.38.11 On: Thu, 01 May 2014 12:12:42



Fundamental Frequency 

I I I 

Time 

FIG. 1. Standard F0 contour patterns of the first four tones. 

features as additional input features to aid in tone recogni- 
tion. Although promising results were obtained in these stud- 
ies, high-level factors such as prosodic information and syn- 
tactic and semantic features were still not properly 
considered. Since the F0 contours of syllables are seriously 
affected by such high-level factors, we believe that modeling 
these factors will surely help tone recognition. This moti- 
vates our attempt to use a prosodic model to assist tone rec- 
ognition. 

Continuous speech includes suprasegmental information 
such as stress, intonation pattern, and timing structure 
(tempo). This information is generally referred to as the 
prosody of the speech, which in turn is affected by the sen- 
tence type, the syntax structure, semantics, and the emotion 
and encompassing attitude of the speaker. According to a 
previous study (Lea, 1980), the prosody of a speech is a 
dominating factor that determines the energy level, the 
length of silence between syllables, the duration of the 
vowel, and the F0 level of syllables. As far as tone recogni- 
tion is concerned, the prosodic effects on the F0 and the 
energy contours of a syllable will be superimposed on the 
tonal F0 from the syllable and the neighboring syllables 
(O'Shaughnessy and Allen, 1983). Figure 2 illustrates the 
hierarchical structure of these effects on the F0 contour for a 

declarative utterance. First, the global intonation pattern at 
the utterance level is shown in Fig. 2(a). Then, at the phrase 
or clause level, a local declination is shown in Fig. 2(b). 
Finally, within a phrasal segment, each syllable has its own 
F0 pattern, as shown in Fig. 2(c). This F0 modulation phe- 
nomenon in Mandarin speech is like a ripples-on-the-wave 
pattern (Chao, 1968). Obviously, high-level effects will 
destort the F0 pattern of a tone, causing it to deviate from its 
standard pattern and therefore hampering tonal discrimina- 
tion. A good prosodic model is expected to compensate for 
the prosodic effect and improve tone recognition. 

In this paper, a neural network-based approach is 
adopted to model the prosody of continuous Mandarin 
speech so as to improve tone recognition. The basic idea is to 
employ a simple recurrent neural network (SRNN) to infer 
prosodic states of syllables from acoustic features. The 
SRNN prosodic model can be regarded as a system that iden- 
tifies articulary mechanisms of prosody from speech. Figure 
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FIG. 2. The hierarchical structure of the F0 contour of a sentential utter- 
ance. 

3 shows a schematic diagram of the SRNN prosodic model. 
The SRNN is used to learn the relationship between the se- 
quence of acoustic features carrying prosodic information 
extracted from the input utterance and the linguistic features 
extracted from the text associated with the utterance. 

Through training with a large set of utterances with texts, 
rules for inferring prosodic states from acoustic features can 
be automatically learned and implicitly memorized by the 
SRNN. Hidden nodes of the SRNN are organized to repre- 
sent the prosodic state of the utterance at the syllable being 
processed. We can therefore take outputs of these hidden 
nodes as additional recognition features to assist in tone dis- 
crimination 

(a) Utterance level 

(b) Phrase/clause level 

(c) syllable level 

FIG. 3. The block diagram of the Mandarin speech recognition system 
assisted with the proposed prosodic model. 
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This paper is organized as follows. Section I describes 
the speaker-dependent speech database used in this study. 
Section II presents the proposed SRNN prosodic model. Sec- 
tion III evaluates the effectiveness of the proposed prosodic 
model. An MLP-based tone recognizer is adopted in this 
study. Finally, conclusions are stated in the Sec. IV. 

I. SPEECH DATABASE 

A continuous Mandarin speech database read by a single 
male speaker was used in this study. The database consists of 
two pans. The first part contains 240 short sentences. The 
second part contains 103 newspaper paragraphs. The number 
of syllables in an utterance in the first part ranges from 5-81, 
including punctuation marks, and the number in the second 
part ranges from 30-431. All utterances were spoken natu- 
rally at a speed of 3.5-4.5 syllables per s. Note that the 
speaking rate influences the F0 patterns of tones. The F0 
contour shapes follow their standard tone patterns in slow 
speech, but they may become seriously distorted when the 
speaking rate exceeds 4.5 syllables per s. The database con- 
tains, in total, 18960 syllables and 1971 punctuation marks. 
The database is composed of 1196 phonetically different syl- 
lables out of the 1319 possible syllables in Mandarin. 

All speech signals were digitally recorded with a 20-kHz 
sampling rate. They were then divided into 4-ms frames and 
manually segmented into silence, unvoiced, and voiced parts 
based on waveform, energy, zero crossing rate, LPC coeffi- 
cients, cepstrum, and delta cepstrum. Three acoustic features, 
fundamental frequency (F0), log energy, and zero-crossing 
rate, were then extracted from the down-sampled 10-kHz 
speech signal for prosodic and tone information analysis. 
The F0 contour was estimated by using the simple inverse 
filter tracking (SIFT) algorithm (Markel and Gray, 1972) 
with manual error correction. The window size for F0 analy- 
sis was 40 ms with 10-ms window shift, and the window size 
for both log-energy and zero-crossing rate analysis was 20 
ms. 

Finally, all texts were segmented into lexical words us- 
ing a Chinese lexicon (supplied by a local computer com- 
pany working on machine translation). Words in the lexicon 
are one to five syllables long. The text was then further pro- 
cessed manually to find proper nouns and words missing in 
the lexicon. After all word sequences were obtained, linguis- 
tic features were extracted from each syllable to be used as 
targets for training the SRNN. 

II. THE SRNN-BASED PROSODIC MODEL 

An SRNN was used in this study to model the prosody 
of Mandarin speech. The motivation of using an SRNN- 
based approach follows the work of Elman (Elman, 1990), in 
which an SRNN was employed to model a hidden mecha- 
nism generating an infinite corpus of data sequences. The 
structure of the SRNN used in this study is shown in Fig. 4. 
It is a three-layer network with one hidden layer. All outputs 
of a hidden layer are fed back to the input layer with unit- 
time delays. The output of each neuron is a nonlinear func- 
tion of the weighted sum of the input signals. Let the output 
of the kth neuron in the ith layer be denoted by o•i)(n) and 
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FIG. 4. The architecture of the SRNN prosodic model. 

the connection weight from the jth neuron in the i• h layer to 
the kth neuron in the i• h layer be denoted by w(•i,3 'ix) , where 
n is the time index. Then, 

O?)=f(net?)(n)), 

net?)(n) = • ';•A3'2)tn(2)(n), 
J 

052)=f(net52)(n)), 

net52)(n)=E uA2'l)II(n)+ E W(j•l',2)OI,2)(n-1), (1) rr j,l 
l l • 

where I I(n ) represents the input signals and f is a sigmoid 
function defined as 

1 

f(x) = 1 + e -x' (2) 
The SRNN has the ability to model finite state machines and 
to simultaneously represent similarity and difference be- 
tween several sequences (Servan-Schreiber et al., 1991; El- 
man, 1991). As pointed out by Rumelbert (Rumelbert et al., 
1987), the pattern of activations on the hidden units corre- 
sponds to an "encoding" or "internal representation" of the 
input sequence. The hidden units are called the context units. 
In this study, the SRNN is employed to explore the internal 
representation of a sequence of acoustic feature vectors 
which convey prosodic information. The embedded prosodic 
states of the utterance are expected to be sequentially cap- 
tured by the SRNN and implicitly represented by the context 
units. Outputs of the context units are then used to assist tone 
recognition. In the following, the SRNN prosodic model is 
discussed in more detail. 

First, let us discuss the selection of proper input acoustic 
features. It is known from previous studies that many acous- 
tic features are affected by the prosody of speech (Shimo- 
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TABLE I. The recognition results of the SRNN prosodic model (unit: %). 

Recognition result 

Intraword Interword P.M. 

Intraword 73.95 25.90 0.14 

interword 23.35 72.89 3.79 

P.M. 1.12 7.23 91.65 

daira and Kimura, 1992; Hieronymus et al., 1992). For in- 
stance, the level and the dynamic range of the F0 contour 
and the energy level of a vowel are related to the stress level 
of a syllable; the energy dip and the duration of silence be- 
tween syllables are related to the tempo and rhythm; and the 
duration of a vowel is related to both tempo and stress. All 
these acoustic features can be used as input features of the 
SRNN to model the prosody. In the bottom-up tone recogni- 
tion task of this study, only some basic acoustic features 
carrying prosodic information were used. These were: (1) the 
log-energy mean and (2) the duration of the silence between 
the processing syllable and the following syllable; and (3) 
the normalized log-energy mean, (4) the lengthening factor 
(Price et al., 1991), and (5) the F0 mean of the vowel of the 
processing syllable. Among these features, the silence dura- 
tion is an important cue to indicate the degree of conjunction 
between two consecutive syllables and is normalized by the 
type of initial in the following syllable. The normalization is 
used to compensate for the large variation in silence duration 
due to different types of initial of the following syllable. For 
instance, a longer silence duration always exists before a 
plosive initial. The lengthening factor is defined as the nor- 
malized duration of the vowel. It carries some syntactic in- 
formation, such as clause and phrase boundaries (Price et al., 
1991). The log-energy mean and the F0 mean of the vowel 
carry information about the intonation of the utterance and 
the stress pattern of the phrase. 

The three low-level linguistic features are selected as the 
target function of the SRNN, which specify whether an intra- 
word, inter-word, or punctuation mark (PM) follows the pro- 
cessing syllable. According to the criterion of minimizing the 
mean-square error between actual outputs and desired output 
targets, the SRNN can be trained by the recursive back 
propagation learning rule for recurrent neural networks (Lee 
et al., 1991). 

All the data in the database described above were used 

to train the SRNN. There are a total of 18617 output target 
vectors in the database, including 7675, 9158, and 1784 vec- 
tors for intra-word, inter-word, and punctuation mark indica- 
tors, respectively. The number of context units was empiri- 
cally set to be 25. Table I shows the intra-word/inter- 
word/PM recognition results. It can be seen from Table I that 
the recognition rate for punctuation marks is very high. Most 
errors in recognizing punctuation marks resulted from marks 
that do not cause long silences in the pronunciation, such as 
quotation marks and colons. The recognition rates for both 
interword and intraword detection were around 73%. This 

shows that many tokens of interword and intraword are in- 
distinguishable. Nevertheless, using word segmentation in- 
formations causes no harm to our mission because the out- 

puts of the hidden layer rather than the outputs of the output 
layer are used as additional recognition features in the fol- 
lowing tone recognition tests. 

A. Analysis of the prosodic model 

In order to identify the characteristics of the inferred 
prosodic model, we shall now analyze the SRNN in detail by 
examining the prosodic state sequence stored in the context 
units of the SRNN. By clustering all output vectors of the 
context units into a finite number of sets and associating each 
set with a state (Servan-Schreiber et al., 1991), we can ob- 
tain a finite state automata to roughly display the mechanism 
of prosody. Figure 5 depicts the resulting 8-state prosodic 
model in which only the first two or three most significant 
state transitions are drawn. Detailed initial state probabilities 
and state transition probabilities are listed in Table II. If the 
prosodic state sequences produced by the model for some 
training utterances are examined closely, a linguistic inter- 
pretation of these eight quantized states can be found. States 
3 and 8 always occur at the beginning of a sentential utter- 
ance or a clause. State 3 may also appear at the beginning of 
a major phrase. State 6 is associated with the ending syllable 
of a sentential utterance. State 2 is usually associated with 
the ending syllable of a polysyllabic phrase preceding a long 
silence. State 4 is usually associated with the beginning of a 
minor phrase or word that follows a short silence. States 1 
and 5 usually follow state 3 or 8. State 5 is also often asso- 
ciated with the ending syllable of a word. State 7 is an un- 
important state which appears relatively infrequently. More- 
over, states 1 and 7 are associated with intermediate syllables 
of phrases or words. Figure 6 shows a typical example of the 
state sequence produced by the SRNN prosodic model for a 
paragraph. The utterance consists of 41 syllables and two 
punctuation marks: "ying-1 jiun-l" (British army) "fa-1 
yian-2 ren-2" (spokesman) "ou-1 uen-2" (name of the 
spokesman) "tze-2" (on the other hand) "jeng-4 shy-2" 
(prove) "," (comma) "i-2 jia-4" (one classifier) "ying-1 
jiun-l" (British army) "jy-2 sheng-1 ji-l" (helicopter) 
"tsuei-2 huei-3" (destroy) "i-1 la-1 ke-4" (Iraq) "hai-3 jiun- 
1" (navy) "i-4 shou-l" (one classifier) "pei-4 bei-4" (fitted 
with) "u-3 ting-3" (five classifier) "ji-1 pau-4" (machine 
gun) "de-5" (particle) "su-1 lian-2 jy-4" (made in Russia) 
"kuai-4 su-4" (fast) "shiun-2 luo-2 ting-3" (patrol boat) "." 
(period). The utterance starts with state 8. The first sentence 
ends at the tenth syllable, associated with state 6. The second 
sentence starts at the eleventh syllable, associated with state 
3. Other syllables with state 3 are usually located at the be- 
ginning of major phrases. Most ending syllables of phrases 
are associated with state 2. Some minor phrases start at syl- 
lables associated with state 4. We can conclude that many 
prosody characteristics have indeed been inferred by the 
SRNN. 

III. TONE RECOGNITION ASSISTED WITH THE 
PROSODIC MODEL 

We now examine the effectiveness of the prosodic 
model in improving the performance of tone recognition by 
simulating a speaker-dependent continuous-speech tone rec- 
ognition task. The database described previously was first 
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FIG. 5. The finite state automata built by vector quantizing the context units of the SRNN prosodic model. 

preprocessed to telabel some syllables of tone 3 as tone 2 
that merges sequences of tone 3-tone 3 with tone 2-tone 3 by 
carefully listening examination. Some tone 3's are actually 
tone 2's as the result of a tone sandhi ruler (Chao, 1968). The 
database was then split into two sets, one for training and the 
other for testing. The training set consisted of 287 utterances 
with 15 953 syllables and the test set consisted of 56 utter- 
ances with 3015 syllables. The distributions of the five tones 
in these two sets is listed in Table III. 

A. The basic MLP-based tone recognizer 

The basic tone recognizer used in this study was an LR 
context-dependent, neural net-based tone recognizer (Wang 
and Chen, 1993) which uses some local acoustic features as 
input recognition features. The network structure was a feed- 
forward multilayer perceptton (MLP) with a single hidden 
layer. There are a total of 36 input features used in the basic 
tone recognizer, including 10 features extracted from the pro- 
cessing syllable, 16 contextual features, and 10 binary fea- 
tures representing the tones of the two nearest neighboring 
syllables. The 10 features extracted from the processing syl- 
lable are the duration of the F0 contour, means of three 
uniformly divided log-energy subcontours, and means and 
slopes of three uniformly divided F0 subcontours (Chang 
et al., 1990). The 16 contextual features include (1) three 
features (i.e., log-energy, F0 mean and slope) extracted from 
the last segment of the preceding syllable, (2) three features 
extracted from the first segment of the following syllable, (3) 
duration of the silence as well as (4) log energies, zero cross- 
ing rates, and durations of the unvoiced segments located 

before and after the processing syllable, and (5) two binary 
indicators showing whether the processing syllable is the 
first or the last syllable of the testing utterance. Among these 
16 contextual features, the first 6 features in (1) and (2) are 
the primary features for coping with the effect of neighbor- 
ing F0 contours. The following two features in (3) are used 
to implicitly represent the tightness of relations between the 
processing syllable and the two nearest neighbors. The tones 
of the two nearest neighboring syllables are also used be- 
cause the F0 contour shape of the processing syllable may 
be seriously affected by them due to the sandhi rule and the 
coarticulation effect. Because the tones of neighboring syl- 
lables are either not known in advance or can only be esti- 
mated from previous recognition, tone recognition tests for 
syllables in an input utterance cannot be done independently. 
A recognition procedure based on the decision rule of mini- 
mal total risk is employed here to simultaneously recognize 
tones of all syllables in a sentential utterance. The steps of 
the recognition procedure are as follows. First, rather than 
directly taking the MLP as a tone recognizer, we regard it as 
a mechanism for calculating the risk of each tone-trigram 
composed of the tones of the processing and the two nearest 
neighboring syllables. Second, we define an objective func- 
tion for each candidate tone sequence for the whole input 
utterance by accumulating the risks of all tone-trigrams in 
the tone sequence. Specifically, given the feature vector se- 
quence, (X(j))j=•,iv, of the input utterance with N syllables, 
the objective function for the candidate tone sequence 
(T(j))j=•,iv is defined as 
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TABLE II. The initial and transition probabilities of the 8-state automata built from the SRNN prosodic model. (a) Initial probability: Pr(state of the first 
syllable of an utterance). (b) Transition probability: Pt(from state i to state j). 

(a) State i 2 3 4 5 6 7 8 

(b) 

Intra 0 0.03 0.70 0 0 0 0 0.27 

Inter 0 0.04 0.64 0.01 0 0 0 0.34 

P.M. 0 0 0 0 0 1.00 a 0 0 

State j 

State i 1 2 3 4 5 6 7 8 

Intra 

1 Inter 

P.M. 

Intra 

2 Inter 

P.M. 

Intra 

3 Inter 

P.M. 

Intra 

4 Inter 

P.M. 

Intra 

5 Inter 

P.M. 

Intra 

6 Inter 

P.M. 

Intra 

7 Inter 

P.M. 

Intra 

8 Inter 

P.M. 

0.28 0.43 0.06 0.05 0.12 0.03 0.08 0.03 

0.47 0.23 0.18 0.15 0.05 0 0.08 0.01 

0.02 0.10 0 0 0.07 0.87 0.07 0 

0.08 0.25 0.23 0.36 0.02 0.07 0.02 0.04 

0.02 0.07 0.30 0.54 0 0 0.01 0.06 

0 0.04 0.01 0.01 0 0.94 0 0 

0.42 0.14 0 0.01 0.35 0.01 0.07 0 

0.59 0.07 0.01 0.02 0.30 0 0.09 0 

0.06 0.18 0 0 0.03 0.73 0 0 

0.04 0.27 0.01 0.17 0.35 0.09 0.07 0.03 

0.08 0.11 0.04 0.44 0.28 0 0.04 0.01 

0 0.02 0 0 0 0.97 0 0 

0.06 0.30 0.06 0.37 0.06 0.08 0.03 0.03 

0.06 0.09 0.12 0.66 0.01 0 0.02 0.04 

0 0.04 0 0 0.07 0.96 0 0 

0.02 0.10 0.66 0.06 0 0.01 0.01 0.14 

0.02 0.02 0.70 0.07 0 0 0 0.19 

0 0.19 0.22 0 0 0.52 0 0.07 

0.10 0.19 0.01 0.02 0.64 0.02 0.03 0 

0.33 0.13 0.03 0.03 0.37 0.01 0.08 0.02 

0 0.12 0 0 0.06 0.82 0 0 

0.35 0.09 0 0 0.49 0 0.06 0 

0.49 0 0 0.01 0.39 0.01 0.11 0 

0.17 0.06 0 0 0.11 0.67 0 0 

aOnly 2 P.M. were found. 

R ( (T(j))j= (X(j))j_ •,•v) 
N 5 

=• • {(Oi(X(j),T(j-1),T(j+ 1))-ti(j)):}. 
j=l i=1 

(3) 

Here, the output of the neural network, 
Oi(X(j),T(j-1),T(j + 1)), is a function of the tone trigram 
(T(j-1), tone i, T(j+ 1)); and the desired output, ti(j), of 
the network for the j th syllable is given by 

1, if T(j)=tone i (4) ti(j)= O, if T(j)-•tone i. 

The tone recognition test then becomes the problem of find- 
ing the best tone sequence (•(J))j=•,•v that minimizes the 
objective function. In implementation, this function can be 
efficiently solved by dynamic programming. We note that an 
extra linguistic constraint is added in the search for the best 
tone sequence for an input utterance to inhibit the tone of the 
first syllable from being tone 5 because this can never occur 
in natural Mandarin speech. The performance of the basic 
MLP tone recognizer was first examined by simulations us- 
ing the database described earlier. A benchmark recognition 
rate of 96.07% and 91.11% for inside and outside tests was 

achieved when 80 hidden neurons was used. 

B. Tone recognition assisted with the SRNN prosodic 
model 

We now incorporate the SRNN prosodic model into the 
basic MLP recognizer to assist tone recognition. The hidden 
units of the SRNN prosodic model were fed into the MLP 
tone recognizer as additional input features via a concentra- 
tion layer. The concentration layer is used as a buffer to 
relieve the expansion on the input dimension of the MLP 
tone recognizer. The number of neurons in the concentration 
layer was empirically chosen to be 4. The block diagram of 
the new tone recognizer is shown in Fig. 7. We note that 
special treatment must be given to the last syllable of each 
utterance because there are no prosodic states associated with 
it. Since fact that state 6 roughly represents the ending of a 
sentential utterance, we take the average output vector of 
context units of all' instances of state 6 in the training set as 
the prosodic state of the last syllable. A recognition rate of 
97.07% and 92.80% for inside and outside tests was 

achieved when 110 hidden neurons were used. Compared 
with the basic tone recognizer, 19% of the errors in the out- 
side test were corrected. 

In order to check the relation between prosodic states 
and tone recognition errors, the error rates in the eight quan- 
tized prosodic states were calculated (see Fig. 8). All of the 
errors in both the inside and the outside tests were included. 
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FIG. 6. An example of a prosodic state sequence produced by the SRNN prosodic model for an input paragraph. 

It can be seen from Fig. 8 that the error rates in all prosodic 
states were improved when the prosodic model was used to 
assist tone recognition. The improvement was more signifi- 
cant for state 3, state 4, and state 8. As discussed above, these 
three states correspond to the beginning of sentences and 
phrases. Variations in the F0 level in these three states are 
larger and hence potentially hamper the tone recognition. 
This result shows that the SRNN prosodic model can capture 
the prosody of speech so as to partially compensate for the 
effect of large F0 variation on tone recognition. 

Finally, the tone recognizer was fine tuned by using a 
generalized probabilistic descent (GPD) algorithm (Katagirl 
et al., 1991) to discriminatively adjust all its parameters. In 
the GPD algorithm, the outputs of the MLP tone recognizer 
are taken as discriminant functions of the five tone classes. A 

misclassification measure for the j th syllable is then defined 
as 

d(j) = - net13)(j) + max net(n3)(j), (5) 
n-• i 

to judge the goodness of the current decision. Here tone i is 
the correct tone class of the j th syllable. Then a loss function 
for evaluating the cost of the current decision for the j th 
syllable is defined as 

l(j)=f(d(i)), (6) 

where f is a sigmoid function. The objective can then be 
formulated as an optimization procedure to find the best tone 
sequence, (•(J))j=l,•V, that minimizes the summation of the 
loss functions of all syllables in each input training utterance 

TABLE III. The distributions of the five tones in the training and the test data sets. 

Tone 1 Tone 2 Tone 3 Tone 4 Tone 5 Total 

Training set 3358 3655 2935 5277 720 15 953 
Test set 707 645 516 1036 109 3015 
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FIG. 7. The block diagram of the MLP tone recognizer assisted with the 
SRNN prosodic model. 
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The GPD algorithm is an iterative procedure that adjusts all 
parameters of the MLP recognizer using the steepest descent 
method to realize the optimization procedure. Initialized with 
the parameters obtained in the previous tone recognition test, 
the MLP tone recognizer can be fine tuned by the GPD al- 
gorithm with the goal of minimizing an approximation of the 
tone recognition errors. Recognition rates of 97.73% and 
93.10% were achieved for the inside and the outside tests, 
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FIG. 8. Error rates of tone recognition for different prosodic states. 

TABLE IV. Confusion table for tone recognition using the recognizer as- 
sisted with the prosodic model (unit: %). 

Recognition result 

Tone 1 Tone 2 Tone 3 Tone 4 Tone 5 

Tone 1 93.2 4.5 0.0 1.9 0.4 

Tone 2 3.2 91.9 3.1 0.6 1.3 

Tone 3 0.4 4.6 90.7 1.5 2.6 

Tone 4 1.2 0.7 1.4 96.2 0.6 

Tone 5 0.9 7.3 9.1 1.8 80.9 

respectively. The confusion table for the outside test is given 
in Table IV. It can be seen from the table that the recognition 
rate of tone 5 is still far below average. Though detailed error 
analysis, we found that the most probable error for tone 5 is 
to recognize it as tone 3. This error mainly resulted from the 
similarity of the F0 contour patterns of many tone 5 syl- 
lables to the standard tone pattern of tone 3. In fact, the F0 
contour pattern of tone 5 is generated by using a shorter 
version of the tone 3 pattern in Lee's Mandarin text-to- 
speech system (Lee et al., 1989). Finally, for a performance 
comparison, the basic MLP tone recognizer was also dis- 
criminatively trained by the GPD algorithm. Recognition 
rates of 96.38% and 91.38% were obtained for the inside and 

the outside tests, respectively. So, for the outside test, the 
proposed prosodic model reduces errors by about 20% over- 
all. 

IV. SUMMARY 

In this paper, an SRNN-based approach to modeling the 
prosody of Mandarin speech from acoustic features has been 
studied. By using acoustic features carrying prosodic infor- 
mation as inputs and setting some simple linguistic features 
as output targets, we can train the SRNN to learn the pro- 
sodic characteristics of Mandarin speech. Experimental re- 
sults confirm that the prosody states of an input utterance can 
be sequentially captured by the SRNN model and implicitly 
represented by the hidden units. By incorporating the SRNN 
prosodic model into an MLP tone recognizer to assist tone 
recognition, we improved a Mandarin tone recognition rate 
from 91.38% to 93.10%. 
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