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Abstract—In this paper, a Takagi–Sugeno–Kang (TSK)-type-
based self-evolving compensatory interval type-2 fuzzy neural
network (FNN) (TSCIT2FNN) is proposed for system modeling
and noise cancellation problems. A TSCIT2FNN uses type-2 fuzzy
sets in an FNN in order to handle the uncertainties associated with
information or data in the knowledge base. The antecedent part
of each compensatory fuzzy rule is an interval type-2 fuzzy set
in the TSCIT2FNN, where compensatory-based fuzzy reasoning
uses adaptive fuzzy operation of a neural fuzzy system to make
the fuzzy logic system effective and adaptive, and the consequent
part is of the TSK type. The TSK-type consequent part is a linear
combination of exogenous input variables. Initially, the rule base
in the TSCIT2FNN is empty. All rules are derived according
to online type-2 fuzzy clustering. For parameter learning, the
consequent part parameters are tuned by a variable-expansive
Kalman filter algorithm to the reinforce parameter learning abil-
ity. The antecedent type-2 fuzzy sets and compensatory weights
are learned by a gradient descent algorithm to improve the
learning performance. The performance of TSCIT2FNN for the
identification is validated and compared with several type-1 and
type-2 FNNs. Simulation results show that our approach produces
smaller root-mean-square errors and converges more quickly.

Index Terms—Compensatory operation, fuzzy identification,
online fuzzy clustering, type-2 fuzzy systems.

I. INTRODUCTION

R ECENTLY, fuzzy neural networks (FNNs) have become
popular in applications in control, identification, predic-

tion, pattern recognition, and bioengineering. FNNs inherit
their learning ability from neural networks and their infer-
ence technology from fuzzy systems and are used for solving
the aforementioned characteristic behaviors [1]–[12], such as
in the control of robot manipulators [4], temperature control
[5], pattern classification [6], ventricular premature contraction
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(VPC) detection [7], energy conversion [8], and hardware im-
plementation [9]. FNNs are an effective tool for dealing with
complex nonlinear processes. Some well-known feedforward
FNNs include an adaptive neuro-fuzzy inference system [2],
an online self-constructing neural fuzzy inference network
(SONFIN) [3], and fuzzy wavelet neural networks (FWNNs)
[10]–[12].

Moreover, the aforementioned FNNs use only a static fuzzy
inference mechanism, such as a Min or Max operator, to
achieve fuzzy reasoning. There are two disadvantages to using
fixed fuzzy operators. The first is that there are not enough
free variables to adjust the fuzzy operator, and the second
is that fixed fuzzy operators cannot optimize the fuzzy logic
reasoning. In [13], Zimmermann and Zysno first defined the
essence of a compensatory operator in order to the overcome
aforementioned disadvantages. The enhanced compensatory
operation was presented according to whether a pessimistic
or optimistic operation was to be taken [14]. Many studies
[15]–[19] have dealt with the optimization of the fuzzy mem-
bership function (MF), as well as defuzzification via parameter
learning algorithms. In [20]–[24], compensatory attempts were
widely used in a variety of FNNs. As there are fewer type-2
fuzzy logic systems (FLSs) using a compensatory fuzzy infer-
ence mechanism, we will extend the compensatory mechanism
to type-2 FLSs in this study.

The type-2 fuzzy set is an extension of the type-1 fuzzy
set, as first introduced by Zadeh [1]. Theoretical developments
in type-2 sets have been widely reported in the literatures
[25]–[29]. Indeed, studies on type-2 FLSs [30]–[33] have drawn
great attention because type-2 fuzzy sets seem to be a more
effective approach for handling uncertainties in the rule base
associated with information and data, with successful applica-
tions in a variety of areas, such as control [34]–[36], medical
applications [37], and noise tolerance analysis [38]. However,
generalized type-2 FLSs are more complex than type-1 FLSs.
The theory of interval type-2 fuzzy sets has been proposed
[26] in order to improve the computational complexity and
load. Many researchers have considered using interval type-2
fuzzy systems. Therefore, the design of an interval type-2
FNN has drawn considerable efforts. In [39]–[42] and [65], the
authors proposed the parameter learning of an interval type-2
fuzzy system using Gaussian primary MFs with uncertain
means. In [39], the optimal training of an interval type-2 FNN
using the gradient descent algorithm is discussed. In [43], a
hybrid learning algorithm for interval type-2 FNNs is presented.
Recently, some interval type-2 FNNs have been proposed for
the automatic design of type-2 FLSs [44]–[51]. In [44], a
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self-evolving interval type-2 FNN (SEIT2FNN) model uses
interval type-2 sets with uncertain means in the antecedent parts
and interval type-1 Takagi–Sugeno–Kang (TSK) fuzzy sets in
the consequent parts. In a further study described in [46], the
type-2 FNN uses two forms of interval type-2 fuzzy sets, one
with uncertain means but fixed standard deviations (STDs) and
the other with uncertain STDs but a fixed mean, and compares
their performances. Some type-2 FNNs [44], [46], [51] are
trained using a Kalman filter algorithm to improve the learning
performance. In [48], the author proposed a novel type-2 TSK-
based fuzzy neural structure (FNS) for the identification and
control of dynamic plants. The design of two-axis motion
control using an interval type-2 fuzzy set was proposed in [49],
and the structure of a discrete interval type-2 fuzzy system by
fuzzy c-means (FCM) clustering has been proposed in [50].

In industry, most plants are susceptible to uncertainties in
internal and external disturbances and focus on time-varying
technique. Therefore, the purpose of this study is to develop
an interval type-2 FNN, i.e., a TSK-type-based self-evolving
compensatory interval type-2 FNN (TSCIT2FNN), for sys-
tem modeling, problem for forecasting, and noise cancella-
tion. The self-evolving property means that the TSCIT2FNN
can automatically evolve the required network structure (rule
number and initial fuzzy set shape) and parameters accord-
ing to pieces of training data. In addition, the self-evolving
property enables the efficient handling of the time-varying
characteristic problem. In this paper, the major contributions
of the TSCIT2FNN are twofold. The first is the proposal of
a compensatory operator in the type-2 inference mechanism.
To use the compensatory operator, an inference mechanism
in the TSCIT2FNN is more flexible for optimizing the fuzzy
reasoning via a gradient descent algorithm. For our second
contribution, this paper proposes a variable-expansive Kalman
filter algorithm for the learning of consequent weights in order
to reinforce the learning accuracy.

The rest of this paper is organized as follows. Section II
introduces the TSCIT2FNN structure, which combines a com-
pensatory operation in the inference mechanism and a crisp
TSK function in the consequent part. Section III presents the
structure learning of the TSCIT2FNN and its parameter update
rules. Section IV describes five simulation examples, including
three types of system identification, adaptive noise cancellation
(ANC), and time-series prediction. Section V contains our
conclusions.

II. TSCIT2FNN STRUCTURE

This section introduces the structure of a multiple-input
single-output TSCIT2FNN. Fig. 1 shows the proposed six-
layered TSCIT2FNN structure. The premise parts of the
TSCIT2FNN utilize the interval type-2 fuzzy sets having un-
certain means and fixed STDs, and the consequent part of each
compensatory fuzzy rule is of the TSK type and executes a crisp
linear model. The proposed TSCIT2FNN realizes the fuzzy if-
then rules in the following form:

Rule i :IF
(
x1 is Ã

i
1 and . . . and xn is Ãi

n

)1−γi+ γi

n

THEN y is ai0 +

n∑
j=1

aijxj i = 1, . . . ,M (1)

Fig. 1. Proposed six-layer TSCIT2FNN structure, where each compensatory
rule in layer 4 formulates a compromise between the optimistic and the
pessimistic operator and each node in layer 5 performs a linear combination
of current input states.

Fig. 2. Interval type-2 fuzzy set with uncertain mean.

where xj , j = 1, . . . , n, denotes input variables and y is the
output variable. Ãi

n denotes type-2 MFs used by the Gaussian
MF. γi ∈ [0, 1] is a compensatory degree, which can not only
adaptively adjust fuzzy MFs but also dynamically optimize the
adaptive fuzzy reasoning. ai0 and aij for the ith rule of the jth
input are TSK-type consequent part parameters, and M is the
total number of rules. The detailed mathematical functions of
each layer are introduced hereinafter.

Layer 1 (input layer): Each node in this layer is a crisp input
variable. Only input variables are fed into this layer. Note
that there are no weights to be adjusted in this layer.

Layer 2 (MF layer): Each node in this layer utilizes an interval
type-2 MF to perform the fuzzification operation. As stated
earlier, the interval type-2 fuzzy set Ãi

j uses a Gaussian
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primary MF having a fixed STD σ and an uncertain mean
that takes values in [m1,m2] (see Fig. 2), i.e.,

μÃi
j
= exp

⎧⎨
⎩−1

2

(
xj −mi

j

σi
j

)2
⎫⎬
⎭

≡N
(
mi

j , σ
i
j ;xj

)
, mi

j ∈
[
mi

j1,m
i
j2

]
. (2)

The footprint of uncertainty (FoU) of this MF can be
represented as a bounded interval in terms of an upper MF,
μ̄i
j , and a lower MF, μi

j
, where

μi
j(xj) =

⎧⎨
⎩

N
(
mi

j1, σ
i
j ;xj

)
, xj < mi

j1

1, mi
j1 ≤ xjm

i
j2

N
(
mi

j2, σ
i
j ;xj

)
, xj > mi

j2

(3)

μi
j
(xj) =

⎧⎨
⎩N

(
mi

j2, σ
i
j ;xj

)
, xj ≤

mi
j1+mi

j2

2

N
(
mi

j1, σ
i
j ;xj

)
, xj >

mi
j1+mi

j2

2 .
(4)

That is, the output of each node can be represented as an
interval [μi

j
, μ̄i

j ].
Layer 3 (firing layer): Each node in this layer represents its

fuzzy rule and functions. To acquire firing strength F i,
each node performs a fuzzy meet operation with inputs
from layer 2 using an algebraic product operation. The fir-
ing strength is an interval type-1 fuzzy set and is computed
as follows [27]:

F i = [f i, f
i
], i = 1, . . . ,M (5)

f
i
=

n∏
j=1

μi
j , f i =

n∏
j=1

μi
j
. (6)

Layer 4 (compensatory firing layer): Each node in this layer has
its corresponding firing strength, which may be reinforced
or weakened. The t-norm fuzzy operation is a pessimistic
operation as the min or product operation. The t-conorm
fuzzy operation is an optimistic operation as the max
operation. Therefore, the use of a compensatory operation
can map the pessimistic input x1 and the optimistic input
x2 to give a relative compromise for superior and inferior
situations. For example, c(x1, x2) = x1−γ

1 xγ
2 , where γ is

a compensatory degree. Here, the pessimistic value x1

denotes f , and the optimistic value x2 denotes f1/n. As a
result, each node in this layer is performed by a pessimistic
and optimistic operation, which is called the compensatory
operator. Here, the output function of the compensatory
operation is denoted as

ψi(P,O) =
[
ψi
(
p(t), o(t)

)
, ψ

i
(p(t), o(t))

]
, i = 1, . . . ,M

(7)
where

ψi
(
p(t), o(t)

)
= pi(t)1−γi(t) × oi(t)γ

i(t)

= f i(t)1−γi(t)+
γi(t)

n (8)

ψ
i
(p(t), o(t)) = pi(t)1−γi(t) × oi(t)γ

i(t)

= f
i
(t)1−γi(t)+

γi(t)
n . (9)

The pessimistic operation of P = [p(t), p(t)] at time t is
expressed as

pi(t) = f i(t), pi(t) = f
i
(t) (10)

and the optimistic operation of O = [o(t), o(t)] at time t is
expressed as

oi(t) =
(
f i(t)

) 1
n , oi(t) =

(
f
i
(t)
) 1

n

. (11)

Here, γi(t) = c2i (t)/c
2
i (t) + d2i (t) ∈ [0, 1] is called the

compensatory degree, and ci, di ∈ [−1, 1]. The update
parameters ci and di are used to enhance the adaptive
compensatory operator.

Layer 5 (consequent layer): Each node in this layer is called
a consequent node and describes a linear model with
exogenous inputs. Each compensatory rule node in layer 4
has a corresponding consequent node in layer 5. The output
of a consequent node is a linear combination of external
input states denoted by

yiTSK = ai0 +
n∑

j=1

aijxj

= ai0x0 + ainx1 + · · ·+ ainxn (12)

where x0 ≡ 1, x1, . . . , xn are input variables, and the
consequent part parameters are described by (1).

Layer 6 (output layer): Nodes in this layer correspond to one
output linguistic variable. The output function combines
the output of layers 3 and 4, and the design factor q enables
us to share the upper and the lower values in the final
output. Thus, there is no need to apply the Karnik–Mendel
(KM) iterative procedure [42] to find the end points. The
defuzzified output is given by

y′ = qy′ + (1− q)y′ =

q
M∑
i=1

ψiyiTSK

M∑
i=1

ψi

+

(1− q)
M∑
i=1

ψ
i
yiTSK

M∑
i=1

ψ
i

(13)

where ψi and ψ
i

are computed by (8) and (9), and the
design factor q can adjust the proportion of the upper and
the lower, depending on the certainty of the system.

III. TSCIT2FNN LEARNING

This section explicitly introduces the structure and parameter
learning algorithm. Initially, the rule base is empty in the
TSCIT2FNN. All of the rules and free parameters are generated
and derived based on simultaneous structure and parameter
learning.

A. Structure Learning

The online structure learning is generated by a type-2 fuzzy
clustering method. A previous study [3] proposed the criterion
of type-1 rule generation according to the rule firing strength.
This idea protocol is extended to type-2 fuzzy clustering as
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a criterion of rule generation in the TSCIT2FNN. The firing
strength F i in (5) is used to determine whether a new rule
should be generated. The type-2 rule firing strength is an
interval, with the center of the firing interval (the criterion for
rule generation) denoted as

fc =
1

2

(
f
i
+ f i

)
. (14)

Next, we discuss the structure-learning algorithm of the
TSCIT2FNN. On the arrival of the first incoming data x, the
new fuzzy rule is generated immediately. The first uncertain
means and fixed width of MFs associated with this rule are
set as

[
m1

j1,m
1
j2

]
= [xj −Δx, xj +Δx]

σ =σfixed, j = 1, . . . , n (15)

where σfixed is a predefined value (we use σfixed = 0.4 in this
paper) that determines the width of the memberships associated
with a new rule. Subsequently, for each new incoming data item
x(t), we find

I = arg max
1≤i≤M(t)

f i
c(t) (16)

where M(t) is the number of existing rules at time t. If f I
c (t) ≤

fth (fth is a prespecified threshold), then a new fuzzy rule is
generated. The idea is that the present data point is distinct from
any of the existing rules, and hence, a new rule is generated.
We use the same procedure to assign the uncertain means and
width of the generated MF of a new rule. The uncertain means
of corresponding type-2 fuzzy sets are defined as[

m
M(t)+1
j1 ,m

M(t)+1
j2

]
= [xj(t)−Δx, xj(t) + Δx] . (17)

The width of the new rule is defined as follows:

σ
M(t)+1
j = β ·

∣∣∣∣∣xj −
(
mI

j1 +mI
j2

2

)∣∣∣∣∣ . (18)

Equations (15) and (17) indicate that Δx means the width of
the uncertain region where the proper uncertainty region can
adapt to the network input range. If the uncertainty associated
with the mean is too small, then the type-2 fuzzy sets become
similar to type-1 fuzzy sets. On the other hand, if the width of
the uncertain region is too large, then the uncertain mean covers
most of the input domain. Equation (18) uses the Euclidean
distance between the current input data x and the center of the
best matching rule for this data point multiplied by an over-
lapping parameter β to compute the width of the new type-2
fuzzy sets. In this paper, β is set to 0.5 so that the width of a
new type-2 fuzzy set is half the Euclidean distance from the
best matching center, and a suitable overlap between adjacent
rules is realized. As a result, the overlapping parameter setting
is significant for the rule generation procedure.

B. Parameter Learning

Parameter learning is performed simultaneously to the
structure-learning process. The gradient descent algorithm and
variable-expansive Kalman filter algorithm are performed once
each time that incoming data are derived. The antecedent parts
and relative compensatory parameters in the TSCIT2FNN are
adjusted for incoming data by the gradient descent algorithm,
which is suitable for a supervised method. When we consider
only the single-output case for clarity, the aim is to minimize
the error function

E =
1

2
[y′(t+ 1)− yd(t+ 1)]

2 (19)

where y′(t+ 1) and yd(t+ 1) represent the actual network
output and the desired output, respectively. Next, we describe
the consequent learning of details in the TSCIT2FNN based
on the variable-expansive Kalman filter algorithm. In previous
studies [42], the consequent part parameters must be reordered
in ascending order, according to the KM iterative procedure,
in order to find accurate end points, i.e., L and R points.
Moreover, the design factor q enables to efficiently adjust the
proportion of the upper and lower in the final output, and thus,
we reduce the computational complexity as well as the problem
of computation time without the KM iterative procedure in the
TSCIT2FNN. The variable-expansive Kalman filter algorithm
tunes the consequent part parameters. Therefore, (13) can be
reexpressed as

y′ =
⇀

φ
T

TSK
⇀
yTSK (20)

where

⇀
yTSK

=
[
a10, . . . , a

1
n, . . . , a

M
0 , . . . , aMn

]T
(21)

⇀

φ
T

TSK

=

⎡
⎢⎢⎢⎢⎢⎢⎣

qφ1x0+(1− q)φ
1
x0, . . . , qφ

1xn+(1− q)φ
1
xn︸ ︷︷ ︸

n+1

...
qφMx0+(1− q)φ

M
x0, . . . , qφ

Mxn+(1− q)φ
M
xn︸ ︷︷ ︸

n+1

⎤
⎥⎥⎥⎥⎥⎥⎦

T

∈ �1×M(n+1). (22)

Let φ and φ̄ be defined as follows:

φ =
ψ

M∑
i=1

ψi(t)

, φ =
ψ

M∑
i=1

ψ
i
(t)

. (23)

The consequent parameter vector is updated by executing the
following variable-expansive Kalman filter algorithm:

⇀
yTSK(t+ 1)

=
⇀
yTSK(t) + S(t+ 1)

⇀

φTSK(t+ 1)
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×
(
yd(t+ 1)−

⇀

φ
T

TSK(t+ 1)
⇀
yTSK(t)

)
S(t+ 1)

=
1

λ

⎡
⎣S(t)− S(t)

⇀

φTSK(t+ 1)
⇀

φ
T

TSK(t+ 1)S(t)

λ+
⇀

φ
T

TSK(t+ 1)S(t)
⇀

φTSK(t+ 1)

⎤
⎦ (24)

where λ is a forgetting factor (0 < λ ≤ 1). The dimension
of the vectors �yTSK and �φTSK, and the matrix S, increases
whenever a new rule evolves. When a new rule evolves, we
express the argument S(t) in the TSCIT2FNN as

S(t)=block diag [S(t), C ·I]∈�(M+1)(n+1)×(M+1)(n+1) (25)

where C is a large positive constant. The important problem
in this algorithm is theoretical convergence. Many researchers
have reported on and analyzed [52], [53] the Kalman filter al-
gorithm with a fixed input dimension. Moreover, the theoretical
convergence analysis concerning varying input dimensions is
an issue for another investigation. In order to experimentally
address this problem, the matrix S must be reset to C · I . The
aim of this resetting operation is to keep S bounded.

We now describe the antecedent parameter and compen-
satory coefficient learning of the TSCIT2FNN based on the
gradient descent algorithm as follows.

Let wi
j denote the antecedent parameters, m1, m2, and σ, in

the ith interval type-2 set in input variable xj

wi
j(t+ 1) = wi

j(t)− η
∂E

∂wi
j(t)

(26)

where

∂E

∂wi
j

=(y′ − yd)

[(
∂y′

∂ψi

∂ψi

∂f i

∂f i

∂μi
j

∂μi
j

∂wi
j

)
+

(
∂y′

∂ψ
i

∂ψ
i

∂f
i

∂f
i

∂μi
j

∂μi
j

∂wi
j

)]
(27)

and η is a learning coefficient in the range [0,1].

∂y′

∂ψi
= q

yiTSK−y′

M∑
i=1

ψi

∂y′

∂ψ
i
= (1−q)

yiTSK−y′

M∑
i=1

ψ
i

y′ = qy′+(1−q)y′ = q

M∑
i=1

ψiyiTSK

M∑
i=1

ψi

+(1−q)

M∑
i=1

ψ
i
yiTSK

M∑
i=1

ψ
i

.

(28)

In (28), yiTSK represents the consequent value, which can be
seen in (12).

If wi
j = mi

j1, then we have

∂ψi

∂mi
j1

=
∂ψi

∂f i

∂f i

∂μi
j

∂μi
j

∂mi
j1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1− γi + γi

n

)
(f i)−γi+ γi

n

×(f i)

(
xj−mi

j1

(σi
j)

2

)
, xj >

mi
j1+mi

j2

2

0, otherwise

(29)

∂ψ
i

∂mi
j1

=
∂ψ

i

∂f
i

∂f
i

∂μi
j

∂μi
j

∂mi
j1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1− γi + γi

n

)
(f

i
)−γi+ γi

n

×(f
i
)

(
xj−mi

j1

(σi
j)

2

)
, xj ≤ mi

j1

0, otherwise.

(30)

Similarly, if wi
j = mi

j2, then we have

∂ψi

∂mi
j2

=
∂ψi

∂f i

∂f i

∂μi
j

∂μi
j

∂mi
j2

=

⎧⎪⎪⎨
⎪⎪⎩
(
1− γi + γi

n

)
×(f i)−γi+ γi

n (f i)

(
xj−mi

j2

(σi
j)

2

)
, xj ≤

mi
j1+mi

j2

2

0, otherwise
(31)

∂ψ
i

∂mi
j2

=
∂ψ

i

∂f
i

∂f
i

∂μi
j

∂μi
j

∂mi
j2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1− γi + γi

n

)
(f

i
)−γi+ γi

n

×(f
i
)

(
xj−mi

j2

(σi
j)

2

)
, xj > mi

j1

0, otherwise.

(32)

If wi
j = σi

j , then we have

∂ψi

∂σi
j

=
∂ψi

∂f i

∂f i

∂μi
j

∂μi
j

∂σi
j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− γi + γi

n

)
(f i)−γi+ γi

n

×(f i)
(xj−mi

j2)
2

(σi
j)

3 , xj ≤
mi

j1+mi
j2

2(
1− γi + γi

n

)
(f i)−γi+ γi

n

×(f i)
(xj−mi

j1)
2

(σi
j)

3 , xj >
mi

j1+mi
j2

2

(33)

∂ψ
i

∂σi
j

=
∂ψ

i

∂f
i

∂f
i

∂μi
j

∂μi
j

∂σi
j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− γi + γi

n

)
(f

i
)−γi+ γi

n

×(f
i
)
(xj−mi

j1)
2

(σi
j)

3 , xj < mi
j1(

1− γi + γi

n

)
(f

i
)−γi+ γi

n

×(f
i
)
(xj−mi

j2)
2

(σi
j)

3 , xj > mi
j2

0, otherwise.

(34)

As mentioned earlier, the design factor q allows us to adjust the
lower and upper portions in the final output according to the
following formulas:

q(t+ 1) = q(t)− η
∂E

∂q

∂E

∂q
=(y′ − yd)

⎛
⎜⎜⎜⎝

M∑
i=1

ψiyiTSK

M∑
i=1

ψi

−

M∑
i=1

ψ
i
yiTSK

M∑
i−1

ψ
i

⎞
⎟⎟⎟⎠ . (35)
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Next, we describe the relative compensatory coefficient γi that
is updated by the gradient descent algorithm

∂E

∂γi
=

∂E

∂y′

[(
∂y′

∂ψi

∂ψi

∂γi

)
+

(
∂y′

∂ψ
i

∂ψ
i

∂γi

)]

=
∂E

∂y′

[(
∂y′

∂ψi

)(
ln |f i|

)
(ψi)

(
1

n
− 1

)

+

(
∂y′

∂ψ
i

)(
ln |f i|

)
(ψ

i
)

(
1

n
− 1

)]
. (36)

Then, the parameters ci and di are the relative coefficients of
the compensatory degree γi

ci(t+ 1) = ci(t) + ηc

{
2ci(t)d

2
i (t)

[c2i (t) + (d2i (t)]
2

}
∂E

∂γi
(37)

di(t+ 1) = di(t)− ηd

{
2c2i (t)di(t)

[c2i (t) + (d2i (t)]
2

}
∂E

∂γi
(38)

γi(t+ 1) =
c2i (t+ 1)

c2i (t+ 1) + d2i (t+ 1)
(39)

where the different learning rates, i.e., ηc and ηd, enable us to
adapt the compensatory degree more efficiently.

The gradient descent algorithm is used in a TSCIT2FNN for
online learning, although it may have defective characteristics
in terms of learning convergence and the local minimum prob-
lem. Convergence is guaranteed by the following condition:

0 < η(t) <
2(

max
t

∥∥∥∂y′(t)
∂W

∥∥∥) .
The derivation of this condition can be found in [48] and [65]
and is given in the Appendix.

The learning rate η is within the range [0, 1]. A large
value results in extreme oscillations of the updated parameters.
On the other hand, a small learning rate makes the learning
convergence slower. It is important that the proper learning rate
be chosen to adapt the system.

IV. SIMULATIONS

This section describes five examples to evaluate the perfor-
mance of the TSCIT2FNN. These simulation studies include
three types of system identification, ANC, and prediction of the
Mackey–Glass time series. As a result, the performance of our
TSCIT2FNN is compared with that of other existing type-1 and
type-2 FNNs.

A. Example 1 (System Identification)

The TSCIT2FNN is applied to the identification of a non-
linear system, which has been presented in [3]. The process is
described by the difference equation

yd(t+ 1) =
yd(t)

1 + y2d(t)
+ u3(t). (40)

The training signal is generated with u(t) = sin(2πt/100),
t = 1, . . . , 200. The TSCIT2FNN inputs are u(t) and yd(t), and

Fig. 3. Simulation curve of the relative weights of compensatory operation
during learning.

Fig. 4. Identification result of the TSCIT2FNN.

TABLE I
PERFORMANCE COMPARISON FOR EXAMPLE 1

the desired output is yd(t+ 1). As a performance criterion, we
evaluate the root-mean-square error (rmse)

rmse =

√√√√ 1

200

200∑
t=1

[y′(t+ 1)− yd(t+ 1)] (41)

where y′(t+ 1) is the TSCIT2FNN output. The learning rate
η is set to 0.075. The structure threshold fth determines the
number of rules. When fth is set to 0.02, three fuzzy rules
are constructed. Training is performed for 500 epochs with 200
steps. After training, the rmse obtained is 0.0078. All networks
use the identical training, test data, and number of training
epochs as the TSCIT2FNN. Fig. 3 shows the relative coef-
ficients of a compensatory operation during training epochs.
Fig. 4 shows the TSCIT2FNN results for the test.

This example also computes the performance of
TSCIT2FNN with different models as shown in Table I.
Table I shows the network performance, including the network
size, training rmse, and test rmse, and compares them with
other type-1 and type-2 FNNs presented in [3], [44], and [48].
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The feedforward type-1 FNN that we use for comparison is
a SONFIN [3], a powerful network with both structure and
parameter learning abilities. The consequent part of the SON-
FIN is of the Mamdani type. All free parameters in SONFIN
are learned using the gradient descent algorithm. The original
interval type-2 FNN for comparison is presented in [39], where
the type-2 FLS structure is fixed and assigned in advance. In an
attempt to have similar network size for comparison, the total
number of parameters in a feedforward type-1 FNN is designed
to be close to that in a feedforward type-2 FNN.

The type-2 TSK FNS [48] has fewer parameters than other
type-2 FNNs because the type-2 TSK FNS uses a crisp linear
function in the consequent part, as does the TSCIT2FNN.
The feedforward type-2 FNN, being of the TSK type in the
consequent part, is similar to the SEIT2FNN structure because
they use simultaneous structure and parameter learning online.
However, the feedforward type-2 FNN uses a gradient descent
algorithm to tune the free parameters. As can be seen in Table I,
the performance of the feedforward type-2 FNN is inferior
to that of the SEIT2FNN using gradient descent and Kalman
filter algorithms. The type-2 TSK FLS must define rules in
advance and uses the FCM to construct rules. For parameter
learning, the type-2 TSK FLS and type-2 TSK FNS use the
gradient descent algorithm to achieve the optimal values. In
comparison with the type-2 models, the SEIT2FNN achieves
a smaller test rmse than the other models. This is because the
SEIT2FNN has distinguishing characteristics for obtaining a
better performance, including a self-evolving ability and the
use of a rule-ordered Kalman filter algorithm to tune interval
weights in the consequent part.

In general, the type-reduction process in the feedforward
type-2 models, i.e., the type-2 TSK FLS and the SEIT2FNN
[44], is more difficult and time consuming. We now analyze the
practical computational cost of constructing a TSCIT2FNN. All
simulations are performed on an Intel 2.53-GHz dual central
processing unit, and the programs are written in Visual C++.
The execution time for the learning process of the TSCIT2FNN
is 1.14 s. The learning times of three representative models,
SONFIN, type-2 TSK FLS, and SEIT2FNN, take 0.7, 1.55, and
1.42 s, respectively. The results show that the computational
cost of our TSCIT2FNN is less than that of two type-2 models.

We now compare the performance of SEIT2FNN and type-2
TSK FNS with our approach. The test error of TSCIT2FNN is
close to that of SEIT2FNN but has fewer parameters. In contrast
to the type-2 TSK FNS [48], our network yields a lower test
rmse, as can be seen in Table I. Both TSCIT2FNN and type-2
TSK FNS obtain their final output based on design factor q. The
results show that the TSCIT2FNN rmse is smaller than that of
the other type-2 models, except the SEIT2FNN.

For the further simulation studies, the modification plant is
described by

yd(t+ 1) =
α(t)yd(t)

1 + y2d(t)
+ u3(t) (42)

where

α(t) =

{
1, 1 ≤ t ≤ 1000
sin(t/100), t > 1000.

(43)

Fig. 5. RMSE values obtained from online learning.

Fig. 6. Online identification results of the actual output and the TSCIT2FNN.

The signal u(t) = sin(2πt/100) is applied to the system in (42)
as input, and then, three rules are generated after 1000 time
steps of online learning. The time-varying system continuously
changes after 1000 time steps, and additional five rules are
generated and cover the following new inputs. Fig. 5 shows
the TSCIT2FNN rmses that are accumulated over 100 adjacent
time steps. Fig. 6 shows the learning result of the actual output
and the TSCIT2FNN. The results demonstrate the TSCIT2FNN
can efficiently handle time-varying system with better
performance.

B. Example 2 (Second-Order System Identification)

This example uses the TSCIT2FNN to identify a second-
order time-varying system, a problem that was introduced in
[48] and [64]. The dynamic system is described by the follow-
ing difference equation:

yp(t+ 1)=f (yp(t), yp(t−1), yp(t−2), u(t), u(t−1)) (44)

where

f(x1, x2, x3, x4, x5) =
x1x2x3x5(x3 − b) + cx4

a+ x2
2 + x2

3

. (45)

The time-varying parameters a(t), b(t), and c(t) are given by

a(t) = 1.2− 0.2 cos(2πt/T ) (46)

b(t) = 1.0− 0.4 sin(2πt/T ) (47)

c(t) = 1.0 + 0.4 sin(2πt/T ) (48)

where T is the maximum time step.
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Fig. 7. Identification result of the TSCIT2FNN using three rules.

TABLE II
PERFORMANCE COMPARISON FOR EXAMPLE 2

The dynamic system output depends on three previous out-
puts and one previous input. In this example, only two current
values, u(t) and yp(t), are fed as input to the TSCIT2FNN
input layer. In the training procedure of the TSCIT2FNN, we
follow the same computational protocols as in [48]. After 100
epochs of training, three rules are generated when the structure-
learning threshold is set to 0.04. The learning coefficient is
set to 0.07. To evaluate the identification result, the following
signal is used for the test:

u(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin
(
πt
25

)
, t<250

1.0, 250≤ t<500
−1.0, 500≤ t<750
0.3 sin

(
πt
25

)
+0.1 sin

(
πt
32

)
+0.6 sin

(
πt
10

)
, 750≤ t<1000.

(49)

Fig. 7 shows the outputs of the plant and the TSCIT2FNN for
these test inputs.

The three models, type-1 and type-2 TSK FNSs and the
SEIT2FNN, use an identical number of input variables, training
data, test data, and training epochs as the TSCIT2FNN. For
comparison with test rmse, they are almost identical. Neither
the type-2 TSK FNS nor the SEIT2FNN use the compen-
satory operation. The parameter learning of the type-1 TSK
FNS is trained using gradient descent-based optimization. Al-
though the feedforward models were unable to effectively
handle dynamic systems, the results in Table II indicate that
the TSCIT2FNN achieves similar performance with fewer
rules.

Fig. 8. Simulation curve of the TSCIT2FNN output.

Fig. 9. Simulation curve of absolute relative error between actual output and
the TSCIT2FNN.

TABLE III
PERFORMANCE COMPARISON FOR EXAMPLE 3

C. Example 3 (Nonlinear Function Identification)

To assess the validity of the TSCIT2FNN, a data synthesis is
made with the following function:

y =
√
64− 81 · ((x1 − 0.6)2 + (x2 − 0.5)2/9− 0.5. (50)

This plant has two inputs (x1 and x2) and one output y, so
the two input variables are fed as inputs to the TSCIT2FNN
input layer. As in [54], the inputs are randomly generated within
[0, 1]. To generate 1100 patterns, the first 1000 patterns are
used for training, and the remaining 100 patterns are used for
testing. The structure threshold fth, learning rate η, and design
factor q are set to 0.05, 0.075, and 0.3, respectively. After 100
epochs of training, three rules are generated. Fig. 8 depicts
the actual output and the TSCIT2FNN output response for the
test patterns. The absolute relative error of the TSCIT2FNN is
also shown in Fig. 9. Table III shows the maximum, minimum,
and average relative error. The average relative error of the
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TSCIT2FNN is less than 2%. We also compare the performance
of the SEIT2FNN [44] and TSCIT2FNN. As can be seen from
Table III, the average relative error of the TSCIT2FNN is
similar to that of the SEIT2FNN. Indeed, the results in Table III
reveal the advantage of the TSCIT2FNN. As mentioned ear-
lier, the combination of technologies in the TSCIT2FNN, like
compensatory operation and the use of a design factor to adjust
portions of the lower and upper, provides more accurate results,
which is not the case with SEIT2FNN.

Table III compares the performance of the TSCIT2FNN
with that of existing type-1 FNNs, including an Elman-style
recurrent network (ENN) [55], a fuzzy-rule radial basis function
neural network [54], a recurrent FNN (RFNN) [56], and a
wavelet FNN (WFNN) [12]. These models used an identical
number of training epochs, rules, and training and test samples
as the TSCIT2FNN. Of the type-1 FNNs, the WFNN achieves
the smallest relative error. This is because the consequent part
of the WFNN consists of wavelet basis functions, which have
the ability to localize both in the time and frequency domains.
The results indicate that the TSCIT2FNN obtains better perfor-
mance than the other networks.

D. Example 4 (ANC)

In this example, we consider noise tolerance and system
recovery. The TSCIT2FNN is applied to the ANC problem
presented in [57] and [58]. ANC is concerned with the enhance-
ment of noise corrupted signals and has been used successfully
in various areas, such as interference cancellation in elec-
trocardiograms, echo elimination on long-distance telephone
transmission lines, and antenna interference canceling.

ANC is based on the availability of a primary input source
and an auxiliary (reference) input source located at the noise
field that contains little or none, as shown in Fig. 10. In this
figure, the primary input source contains the desired output s
and the noise n0 generated from the noise source n in order to
corrupt the desired output. The received signal is thus

x(t) = s(t) + n0(t). (51)

The secondary or auxiliary (reference) input source receives the
noise n1, which is correlated with the corrupting noise n0.
The purpose of ANC techniques is to adaptively process the
reference noise n0, which is generated as a replica of noise n1,
and then subtract this from the primary input x to recover the
desired signal s. The TSCIT2FNN output y represents a replica
of n0. In [58], the assumptions are made that s, n0, and n1

are stationary zero-mean processes, s is independent, and n0

and n1 are dependent. Therefore, the reference input source is
situated in such a position that it detects only the noise but not
the signal s. From Fig. 10, we can suppose that

e(t) = s(t) + n0(t)− y(t) (52)

where

s(t) = 0.6 sin(0.06t) cos(0.01t) (53)

Fig. 10. ANC using the TSCIT2FNN.

Fig. 11. (a) Original signal source s. (b) Corrupted signal x. (c) Recovered
signal e.

and the noise source n is white noise with a uniform distribution
in [−1.5, 1.5]. The relation between the noise source n and the
corrupting noise n1 is a nonlinear function that is expressed as

n0 = 0.6 (n(t))3 . (54)

The reference input is placed in front of the noise source so
that n = n1. The reference input n1 is fed as input, and then,
the actual output of the TSCIT2FNN is derived. The learning
coefficient η is set to 0.01. The TSCIT2FNN generates seven
rules during the online training process when the structure-
learning threshold fth is set to 0.5. Fig. 11 shows the de-
tailed training process from time step 48 000 to 50 000, where
Fig. 11(a)–(c) shows the original, corrupted, and recovered
signals, respectively. The performance of the TSCIT2FNN is
compared to that of the adaptive neural fuzzy filter (AFNN)
[57] and the SEIT2FNN [44]. The AFNN is a type-1 fuzzy
structure with both structure and parameter learning abilities.
Both AFNN and SEIT2FNN generate seven rules during the
online training process.

The square errors between the recovered and original sig-
nals are computed such that each plotted error value is the
sum of square errors over 60 adjacent time steps for each
network, as shown in Fig. 12. This figure illustrates that the
TSCIT2FNN has faster convergence than the other models. The
result shows that the two type-2 structures, i.e., SEIT2FNN
and TSCIT2FNN, are better than the type-1 structure (AFNN)
with identical fuzzy rules. Fig. 12 illustrates that the TSK-
type models with interval weights in the consequent part are
susceptible to noisy environments.
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Fig. 12. Square error compared with the different models.

Fig. 13. Prediction results using the TSCIT2FNN.

E. Example 5 (Prediction of a Chaotic Time Series)

This example considers a prediction problem that has been
used in [44] and [59]–[63]. The proposed TSCIT2FNN model
is applied to the Mackey–Glass time series that is generated
from the following delay differential equation:

dx(t)

dt
=

0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t). (55)

For τ = 17, the system response is chaotic, and simulation data
are obtained using the initial conditions x(0) = 1.2 and τ = 17,
as in the previous literature. We generate 1000 input–output
data points from t = 124 to 1123, with the first 500 patterns
being used for training and the remaining 500 for testing. Four
past values are used to predict x(t), and the input–output data
format is [x(t− 24), x(t− 18), x(t− 12), x(t− 6);x(t)].

The structure-learning threshold fth, learning factor η, and
design factor q are set to 0.2, 0.075, and 0.3, respectively.
After 500 training epochs, seven rules are generated. Fig. 13
shows the prediction result of the TSCIT2FNN. Fig. 14 depicts
the prediction error between the actual result and that of the
TSCIT2FNN, which shows that there is an excellent match
between them.

A comparison of the TSCIT2FNN model with different
models, including the radial based adaptive fuzzy system (RBF-
AFS) [59], hybrid neural fuzzy inference system (HyFIS) [60],
a neuro-fuzzy function approximator (NEFPROX) [61], dy-
namic FNN (DFNN) [62], FWNN [11], local linear wavelet
neural network with hybrid model (LLWNN+hybrid) [63], and
SEIT2FNN [44], is illustrated in Table IV. For a fair com-
parison, the proposed approach is compared with SEIT2FNN,
which also uses a type-2 fuzzy set with uncertain means in

Fig. 14. Test error of the chaotic time-series prediction using the
TSCIT2FNN.

TABLE IV
PERFORMANCE COMPARISON FOR EXAMPLE 5

the antecedent part. The result indicates that the SEIT2FNN
performs better than the proposed approach. The reason for
this is that the SEIT2FNN achieves better performance in
the consequent parts using interval type-1 sets. However, the
proposed approach has fewer parameters than the SEIT2FNN
and is thus less computationally expensive.

The performance of the TSCIT2FNN is also comparable to
that of recently developed type-1 FNNs. As can be seen from
Table IV, the FWNN is one of the best models in terms of low
test rmse. For their consequent parts, both the FWNN and the
LLWNN are composed of wavelet basis functions, which have
the ability to localize both in the time and frequency domains.
A hybrid algorithm of particle swarm optimization and gradient
descent is used for training the LLWNN. A fast gradient-based
training algorithm, the Broyden–Fletcher–Goldfarb–Shanno
method, is used to find optimal values for free parameters of the
FWNN models. However, the performance of the TSCIT2FNN
is close to the FWNN’s performance, due in part to having
fewer rules. Finally, the results indicate that the TSCIT2FNN
achieves a smaller prediction error and has fewer rules than
type-1 fuzzy models.

We now analyze the practical computational cost of con-
structing a TSCIT2FNN. The execution time for the learning
process of the TSCIT2FNN is 9.26 s. The SEIT2FNN takes
37.3 s. The results show that the computational cost of the
TSCIT2FNN is much less than that of the SEIT2FNN.

V. CONCLUSION

In this paper, a TSK-type-based compensatory interval
type-2 FNN with a self-evolving structure and parameter
learning was proposed. The FoU of type-2 fuzzy sets in the
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TSCIT2FNN enables the system to handle the numerical un-
certainty as well as uncertain information. To obtain the optimal
type-2 fuzzy logic reasoning and select the optimal type-2 fuzzy
operation, we have exploited a compensatory operator. Thus,
our TSCIT2FNN can adaptively tune the type-2 fuzzy MF and
efficiently optimize the fuzzy operator. In terms of structure
learning, there is no need to decide the TSCIT2FNN rules in
advance. The TSCIT2FNN provides the self-evolving ability to
structure itself online, which is especially useful for handling
industrial problems with temporally varying characteristics.
The premise and consequent parameters are learned as gradient
descent and variable-expansive Kalman filter algorithms to
improve the learning accuracy. Finally, the TSCIT2FNN has
potential to deal with noisy data, as verified in the simulation
results. In summary, the TSCIT2FNN variance system achieved
a better performance than existing type-1 or type-2 FNNs in
identification, prediction, and ANC.

APPENDIX

This appendix derives the optimal learning rate using a
Lyapunov function by following the previous studies [48],
[65]. Let η(t) be the learning rate at discrete time t for the
update formula of the TSCIT2FNN weights. The convergence
is guaranteed if η(t) is satisfied by the following condition:

0 < η(t) <
2(

max
t

∥∥∥∂y′(t)
∂W

∥∥∥) . (A1)

The statement in (A1) can be proved by choosing the following
Lyapunov function:

V (t) =
1

2
e2(t), e(t) = (yd(t)− y′(t)) . (A2)

The change in the Lyapunov function is obtained as

ΔV (t) =V (t+ 1)− V (t) =
1

2

(
e2(t+ 1)− e2(t)

)
=

1

2

(
(e(t) + Δe(t))2 − e2(t)

)

=
1

2

(
2e(t) ·Δe(t) + Δe2(t)

)
=

1

2
Δe(t) (2e(t) + Δe(t)) . (A3)

The error difference can be represented as

Δe(t) =

(
∂e(t)

∂W

)T

ΔW =

[
∂ (yd(t)− y′(t))

∂W

]T

ΔW = −
[
∂y′(t)

∂W

]
ΔW. (A4)

From the update formulas, we get

ΔW = −η
∂E

∂W
= ηe(t)

∂y′(t)

∂W

where

∂E

∂W
=

∂

∂W

[
1

2
e2(t)

]
= e(t)

∂e(t)

∂W
= −e(t)

∂y′(t)

∂W
(A5)

ΔV (t) =
1

2
Δe(t) (2e(t) + Δe(t))

=
1

2
η(t)e2(t)

∥∥∥∥∂y′(t)∂W

∥∥∥∥2
(
η(t)

∥∥∥∥∂y′(t)∂W

∥∥∥∥2 − 2

)
. (A6)

From the Lyapunov stability theorem, asymptotic stability is
guaranteed under the following sufficient condition:

0 < η(t) <
2(

max
t

∥∥∥∂y′(t)
∂W

∥∥∥) . (A7)
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