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FORCED CONVECTION BY AN IMPLICIT TURBULENCE
MODEL FOR LARGE EDDY SIMULATION

Wu-Shung Fu1, Chung-Gang Li2, Makoto Tsubokura2,
Yun Huang1, and J. A. Domaradzki3
1Department of Mechanical Engineering, National Chiao Tung University,
Taiwan, Republic of China
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An investigation of compressible turbulent forced convection in a three-dimensional channel

flow is studied numerically by an implicit turbulence model for large eddy simulation

(LES). Because of a high temperature difference between two walls and turbulent flow,

the compressibility and viscosity of fluid should be taken into consideration simultaneously.

Methods of the Roe scheme, preconditioning, and dual time stepping coordinating an

implicit turbulence model for LES are used for resolving the effect of the compressibility

of fluid on a low speed flow field. The magnitudes of Res based on the friction velocity

changing from 180 to 940, with the high temperature difference of two walls of 500 k are

conducted. The results of the mean velocity profiles and turbulent intensities are in good

agreement with the benchmark DNS data obtained by spectral codes from a low Reynolds

number (Res¼ 180) to a high Reynolds number (Res¼ 940). Besides, the larger the Res is,

with the exception of acquirement of larger average Nusselt number, the more drastic

variation of local instantaneous Nusselt number is observed.

1. INTRODUCTION

Recently, compressible turbulent flows at extremely lowMach numbers, such as
encountered in aeroacoustics, combustion, and semiconductor manufacturing pro-
cesses, etc., have attracted much attention. A method for resolving forced convection
problems under a compressible turbulent flow condition is then demanded urgently.

For resolving compressible fluids in a low speed flow correctly, several related
numerical methods had been proposed. For a low speed compressible flow, in an explicit
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numericalmethod, the limitation ofCFL conditionwould cause an inefficient calculation
due to the extremely small time step. In this article, an implicit method is used and then a
magnitude of the time step can be slightly larger than that limited by CFL condition and
used in an explicit method. In an implicit numerical method, the stiff situation causes an
inefficiencyof calculation to occur easily. For overcoming thesedefectsmentioned above,
Briley et al. [1] used a preconditioningmethod to improve the efficiency of calculation for
a low Mach number flow, and adopted the implicit numerical method to resolve the
convergent problem of the Navier-Stokes equation. Turkel [2] developed and applied a
preconditioning matrix into problems of compressible and incompressible flows. Choi
andMerkel [3] investigated convergent problems induced by the stiff situation and factor-
ization error when an implicit numerical method was used to solve inviscid flow under a
lowMach number flow.Moreover, the convergent problem of theMach number of 0.05
was successfully resolved by using the precondition matrix. Afterward Choi andMerkel
[4] proposed an adaptable preconditioning matrix to solve convergent problems of a vis-
cous flow under a low Mach number situation. Roe [5] developed average variables
method for a compressible flow to solve discontinuous phenomenon occurring at a cell
interface. Thismethod has beenwidely used in solving compressible flows recently.Weiss
and Smith [6] extended the research of Choi andMerkel [4] and applied the Roe scheme
mentioned above with the preconditioning method into the solution method of
three-dimensional Navier-Stokes equations, and added a dual time stepping to resolve
transient states of a low Mach number flow. Thornber and Drikakis [7] modified the
Roe scheme to reduce the excess dissipation of kinetic energy in Godunov-type methods
at low Mach numbers. It had been shown that this modification for Kelvin–Helmholtz
instability problems could work efficiently at Ma¼ 0.0002. Dellacherie [8] investigated
the inaccurate phenomena when using the Godunov type schemes applied at low Mach
numbers and proposed a new modification on the Roe–Turkel and the AUSMþ-up
schemes.Thisnewmodification showed that it couldobtain stableandaccuratenumerical
results at a low Mach number on quadrangular and triangular meshes.

NOMENCLATURE

J Jacobian matrix

k thermal conductivity,

W=mK

l1, l2, l3 the length, height and width of

channel, m

Ma local Mach number

Nu local Nusselt number defined in

Eq. (52)

Nu average Nusselt number defined in

Eqs. (53) and (54)

P pressure, Pa

P0 surrounding pressure, Pa

Pr Prandtl number

R gas constant, J=kg=K

Re Raynolds number based on average

main flow velocity, ¼ �uu1 �ðl2=2Þ
n

� �

Res Raynolds number based on friction

velocity, ¼ us �ðl2=2Þ
n

� �
t physical time, s

T temperature, K

T0 temperature of surroundings and

cold wall, K

Th temperature of heat surface, K

u1, u2, u3 velocities in x1, x2, and x3 directions,

m=s

us friction velocity, m=s

x1, x2, x3 cartesian coordinates, m

q density, kg=m3

q0 surrounding density, kg=m3

m viscosity, N � s=m2

c specific heat ratio

s artificial times, s
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However, due to the complicated numerical scheme of the compressible turbulence
in low speed regions, there is comparatively minimal literature adopting the methods of
LES and preconditioning simultaneously. Lessani et al. [9] applied the preconditioning
method with the multigrid skill into the LES method to simulate a channel and cavity
flows. The results showed that the convergence speed is increased 4–7 times compared
with an explicit method. Xiaofeng et al. [10] used the finite volume and LES methods
to calculate a pipe flow. The results compared with the results of experimental and
DNS methods showed good agreement. Alkishriwi et al. [11] calculated a channel and
a circular flow by the LES method matching the methods of preconditioning and
multigrid under different Mach numbers and time intervals. This synthetic method
had wonderful efficiency, and improved the calculating convergence of compressible
problems of low Mach numbers remarkably. The convergent speed of this method
was quicker than that of the method of the fifth order Runge-Kutta about 4–60 times.
In the referenced literature, although the combinations of methods of preconditioning
and LES have been implemented successfully, the Reynolds numbers are still not high
enough for practical applications. Also, there is not much discussion about the effects
of the turbulence model on low speed compressible flows.

In order to broaden the practical applications widely, the turbulence model
which is easily programmable at higher Reynolds numbers, is needed urgently. In
a review article of Domaradzki and Adams [12] a concept was proposed with appro-
priate neglect of the nonlinear terms which were under-resolved, the application of
deconvolution in the LES was the same with solving the truncated Navier-Stokes
(TNS) equations for the de-filtered velocity. By this concept, the LES equations
could be enclosed by the results of the subgrid scale (SGS) terms computed explicitly
by the TNS equations. This method, named estimation model, could predict turbu-
lent flows accurately. However, the original estimation model was not efficient
enough due to the necessity of computing the LES and TNS equations simul-
taneously. In order to overcome the low efficiency, Domaradzki et al. [13] simplified
the estimation model by dispensing with the LES equations entirely in favor of only
using the TNS equations. Such a simplification came from the observation that large
scales of the flow were already contained in the TNS velocity on the fine meshes so
that the LES equations could be eliminated. Besides, because of the under-resolved
DNS, the accumulation of the energy in small scales caused the incorrectness of the
dynamics; the secondary filter was used by a periodic filtering to remove this kind of
energy. Stolz and Adam [14] computed the SGS directly from the defiltered velocity
filtered by using the approximate deconvolution model (ADM). Fureby and
Grinstein [15] proposed a new method named the monotonically integrated large
eddy simulation (MILES) to simulate the free shear flows. By using the high-
resolution monotone algorithms with the limiting flux, the phenomena in the subgrid
scale could be modeled by numerical truncation error. However, Domaradzki and
Radhakrishnan [16] indicated that MILES was not suitable for the decaying high
Reynolds number turbulence. From above, the fact was recognized that no matter
which turbulence model is adopted, all would try to dissipate the unphysical energy
which was under-resolved and accumulated in small scales.

Therefore, the aim of this study is to propose a new implicit turbulence model
of LES to investigate heat transfer mechanisms of a three-dimensional channel flow
under fully developed compressible turbulent flows. In this new turbulence model,
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the Roe upwinding dissipation term acts as an implicit turbulence model for LES.
Besides, in order to capture the turbulence structure as small as possible, the grid dis-
tribution near the wall is arranged densely by a curvilinear transformation method.
With the excellent advantages of easy implementation in the curvilinear coordinate,
this model is used to study heat transfer mechanisms of the fully developed com-
pressible turbulent channel flows, which vary from a low Reynolds number
(Res¼ 180) to a high Reynolds number (Res¼ 940). The results show that a cluster
of big lumps made of isothermal surface of fluids are observed under a situation of
small magnitude of Res. Accompanying the increment of Res, the lumps are gradu-
ally torn into an aggregation of small fragments of isothermal surface due to the
drastic fluctuating velocities existing in a large magnitude of Res. The larger the
Res is, the larger the averaged Nusselt number is. Also, the variation of the local
instantaneous Nusselt number under a large magnitude of Res is much more drastic
than that under a small magnitude of Res. Finally, for the purpose of practical appli-
cations, the average Nusselt number obtained from the numerical results can be
expressed as a function of the Reynolds numbers, the trend of which is similar to
the experimental data.

2. PHYSICAL MODEL

A three-dimensional situation of a fully developed compressible turbulent
forced convection in a channel flow is investigated, and the physical model is shown
in Figure 1. The streamwise, vertical, and spanwise directions are x1, x2, and x3,
respectively, and the corresponding velocities are u1, u2, and u3, respectively. The
length, height, and width are l1, l2, and l3, respectively. Fluids which possess mean
velocity �uu1 and temperature T0 flow into parallel plates. The temperatures of the bot-
tom and upper surfaces are Th and T0, respectively. In the spanwise direction, a per-
iodical condition is adopted on the both sides. In the streamwise direction, fully
developed conditions of flowing and thermal fields are used at the end of compu-
tation processes. The LES with the implicit turbulence model is adopted to solve heat
transfer mechanisms of the above situation, and then the Navier-Stokes equations
have no necessity to be modeled.

For facilitating the analysis, the following assumptions are made.

1. The fluid is an ideal gas and follows the state of equation.
2. The effect of gravity is neglected due to the magnitude of Gr=Re2 is very small.

Figure 1. Physical model.
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The governing equations are expressed as Eq. (1).

qU
qt

þ qF1

qx1
þ qF2

qx2
þ qF3

qx3
¼ 0 ð1Þ

The quantities included in U and Fi are separately shown in the following equations.

U ¼

q
qu1
qu2
qu3
qe

0
BBBB@

1
CCCCA ð2Þ

and

Fi ¼

qui
quiu1 þ Pdi1 � mAi1

quiu2 þ Pdi2 � mAi2

quiu3 þ Pdi3 � mAi3

ðqeþ PÞui � mAijuj � k qT
qxi

0
BBBB@

1
CCCCA; 8i ¼ 1; 2; 3 ð3Þ

where Aij ¼ quj
qxi

þ qui
qxj

� 2
3 ðr � uÞdij and e is the internal energy. The state equation of

ideal gas is written by Eq. (4)

P ¼ qRT ð4Þ

The viscosity and thermal conductivity of the fluid are based upon Sutherland’s
law and are shown as follows.

mðTÞ ¼ m0
T

T0

� �2
3T0 þ 110

T þ 110
ð5Þ

kðTÞ ¼ mðTÞcR
ðc� 1ÞPr ð6Þ

Where, q0¼ 1.1842 kg=m3, m0¼ 1.85� 10�5N � s=m2, T0¼ 298.0592K, c¼ 1.4,
R¼ 287 J=kg=K, and Pr¼ 0.72.

3. NUMERICAL METHOD

In order to accurately obtain compressible turbulent forced convection
phenomena by the LES method, a high order differentiation for the derivative term
of MUSCL scheme is necessary. Besides, for satisfying the characteristics of
three-dimensional eddy motions of the turbulent flow, based on Tankitul and
Domaradzki [17], the half height of the channel is regarded as a characteristic length,
and the length and width of the channel shown in Figure 1 being 2.5p and 0.5p times
the magnitude of the characteristic length are adopted in the streamwise and span-
wise directions, respectively.
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Except usage of Roe and preconditioningmethods, two effectivemethods are used
to avoid the occurrence of inefficiency and inaccuracy in computing processes. One is the
method of transformation of three-dimensional curvilinear coordinates (n, g, f) to be
used; then, near the wall the smallest eddy scale of turbulent flow can be captured. A
dual time stepping process is the other way to improve the efficiency of convergence.
The original governing equation (Eq. 1) is then transformed into the following equation.

C
qUp

qs
þ qU

qt
þ qF1

qn
þ qF2

qg
þ qF 3

qf
¼ 0 ð7Þ

where C is the preconditioning matrix derived by Weiss and Smith [6], and Up is the

primitive form [P, u1, u2, u3, T]=J in which J is the Jacobian matrix. s and t are the arti-

ficial and physical times, respectively, andU is the conservative form of (q, qu1, qu2, qu3,
qe)=J. The preconditioning parameter b according to Weiss and Smith [6] is chosen as

b¼max(min(M2, 1.0), bmin), whereM is the local Mach number and bmin � 3M2
1.M1

is the approaching Mach number.

To discretize Eq. (7), Eq. (8) is obtained. The terms of
qUp

qs and qU
qt are differentiated

by the first order forward difference and the second order backward difference, respect-

ively, and the terms of qF1

qn ,
qF 2

qg , and
qF3

qf are differentiated by the central difference.

C
U

kþ1

p �U
k

p

Ds
þ 3U

kþ1 � 4U
n þU

n�1

2Dt

þ 1

Dn
F

kþ1

1
iþ1

2
;j;k

� F
kþ1

1
i�1

2
;j;k

� �
þ 1

Dg
F

kþ1

2
i;jþ1

2
;k
� F

kþ1

2
i;j�1

2
;k

� �

þ 1

Df
F

kþ1

3
i;j;kþ1

2

� F
kþ1

3
i;j;k�1

2

� �
¼ 0 ð8Þ

In which superscripts of k and n indicate the iteration numbers of artificial time and

proceeding step of real time, respectively. When the term of artificial time
qUp

qs is con-

vergent to e(¼ 10�2), Eq. (8) is automatically transferred into the Navier-Stokes equa-
tion and the values at the iteration number of (kþ 1) of the artificial time in Eq. (8)
substantially become the values at the proceeding step of (nþ 1) of the real time.

Afterward, the terms of U
kþ1

and F
kþ1

i in Eq. (8) are necessary to be linearized
and expressed as follows, respectively.

U
kþ1 ¼ U

k þMDUp ð9Þ

Where M ¼ qU
qUp

and DUp ¼ U
kþ1

p �U
k

p

F
Kþ1

1 ¼ F
K

1 þ ApDUp ð10Þ

Where Ap ¼ qF
k

1

qUp
is the flux Jacobian and the same method for Bp ¼ qF

k

2

qUp
and Cp ¼ qF

k

3

qUp

is used in linearization of F
Kþ1

2 and F
Kþ1

3 , respectively.
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To substitute Eqs. (9) and (10) into Eq. (11), the following equation is obtained.

C
DUp

Ds
þ 3ðUk þMDUpÞ � 4U

n þU
n�1

2Dt

þ dn F
k

1 þ ApDUp

� �
þ dg F

k

2 þ BpDUp

� �
þ df F

k

3 þ CpDUp

� �
¼ 0 ð11Þ

where dn, dg, and d1 are central-difference operators.
Equation (11) can be rearranged as the following form.

C
I

Ds
þM

3

2Dt
þ dnAp þ dgBp þ dfCp

� �� �
DUp ¼ Rk ð12Þ

Where Rk ¼ � 3U
k�4U

nþU
n�1

2Dt

� �
� dnF

k

1 þ dgF
k

2 þ dfF
k

3

� �
, I is the unit matrix.

To divide the C in both sides, the following equation is obtained.

I

Ds
þ C�1M

3

2Dt
þ C�1 dnA

k
p þ dgB

k
p þ dfC

k
p

� �� �
DUp ¼ C�1Rk ð13Þ

The solver of Eq. (14) is the LUSGS implicit method originally proposed by Yoon
and Jameson [18]. However, the original method is not suitable for Eq. (13) due to a
lack of the preconditioning matrix. In order to improve the LUSGS method to solve
Eq. (13), the following complicated procedures are used.

~AAp ¼ C�1Ak
p

~BBp ¼ C�1Bk
p

~CCp ¼ C�1Ck
p ð14Þ

There ~AAp; ~BBp; and ~CCp are divided into two parts, respectively.

~AAp ¼ ~AA
þ
p þ ~AA

�
p

~BBp ¼ ~BB
þ
p þ ~BB

�
p

~CCp ¼ ~CC
þ
p þ ~CC

�
p ð15Þ

where

~AA
�
p ¼ 1

2
ð~AAp � jk~AAjIÞ

~BB
�
p ¼ 1

2
ð~BBp � jk~BBjIÞ

~CC
�
p ¼ 1

2
ð~CCp � jk~CC jIÞ ð16Þ

k~AA; k~BB; and k~CC are the largest eigenvalues of ~AAp; ~BBp; and ~CCp, respectively.
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To substitute Eqs. (14) and (16) into Eq. (13), the following equation is
obtained.

�
I

Ds
þ C�1M

3

2Dt
þ dn ~AA

þ
p þ ~AA

�
p

� �
þ dg ~BB

þ
p þ ~BB

�
p

� �

þ df ~CC
þ
p þ ~CC

�
p

� ��
DUp ¼ C�1Rk ð17Þ

The convective terms of dn ~AA
þ
p þ ~AA

�
p

� �
can be solved by a high order scheme as the

following equation.

dnð~AA
þ
p þ ~AA

�
p Þ ¼ d�n ~AA

þ
p þ dþn ~AA

�
p ¼

~AA
þ
p;i � ~AA

þ
p;i�1

Dn
þ

~AA
�
p;iþ1 � ~AA

�
p;i

Dn
ð18Þ

Where the backward difference approximation d�n is adopted for ~AA
þ
p , and the for-

ward difference dþn approximation is adopted for ~AA
�
p .

To substitute Eq. (18) into Eq. (17), the following equation can be derived.

�
I

Ds
þ C�1M

3

2Dt
þ

~AA
þ
p;i � ~AA

þ
p;i�1

Dn
þ

~AA
�
p;iþ1 � ~AA

�
p;i

Dn

þ
~BB
þ
p;j � ~BB

þ
p;j�1

Dg
þ

~BB
�
p;jþ1 � ~BB

�
p;j

Dg

þ
~CC
þ
p;k � ~CC

þ
p;k�1

Df
þ

~CC
�
p;kþ1 � ~CC

�
p;k

Df

�
DUp ¼ C�1Rk ð19Þ

Eq. (19) can be arranged as the following equation.

ðLþDþUÞDUp ¼ C�1Rk ð20Þ

Where

L ¼ � 1

Dn
ð~AAþ

p Þi�1;j;k þ
1

Dg
ð~BBþ

p Þi;j�1;k þ
1

Df
ð~CCþ

p Þi;j;k�1

� �
ð21Þ

D ¼ I

Ds
þ C�1M

3

2Dt
þ
�

1

Dn
ðð~AAþ

p Þi;j;k � ð~AA�
p Þi;j;kÞ

þ 1

Dg
ðð~BBþ

p Þi;j;k � ð~BB�
p Þi;j;kÞ þ

1

Df
ðð~CCþ

p Þi;j;k � ð~CC�
p Þi;j;kÞ

�
ð22Þ

U ¼ 1

Dn
ð~AA�

p Þiþ1;j;k þ
1

Dg
ð~BB�

p Þi;jþ1;k þ
1

Df
ð~CC�

p Þi;j;kþ1

� �
ð23Þ
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As for the computation of Rk ¼ � 3U
k�4U

nþU
n�1

2Dt

� �
� dnF

k

1 þ dgF
k

2 þ dfF
k

3

� �
on

the right-hand side (RHS) of Eq. (13), the terms of Fi in Eq. (4) based on the
Cartesian coordinate can be divided into two parts. One is the inviscid term Finviscid.

Finviscid ¼

qui
quiu1 þ Pdi1
quiu2 þ Pdi2
quiu3 þ Pdi3
ðqeþ PÞui

0
BBBB@

1
CCCCA ð24Þ

The other is viscous term Fviscous.

Fviscous ¼ �

0
mAi1

mAi2

mAi3

mAijuj þ k qT
qxi

0
BBBB@

1
CCCCA ð25Þ

The Roe upwind difference scheme [5] is employed in discretion of the term of

Finviscid at the cells interface i þ 1
2

� �
, and is expressed as follows at a low Mach

number situation.

Finviscid ;iþ1
2
¼ 1

2
ðFR þ FLÞ �

1

2
e C�1Ap

		 		DUP


 �
ð26Þ

In the Roe scheme [5], the Roe upwinding dissipation term 1
2 e C�1Ap

		 		DUP


 �
is used

to tackle with the discontinuous problem, so e is always set to 1 to stabilize the
numerical scheme. The Roe upwinding dissipation term might remove some turbu-
lent kinetic energy, which is composed of jumps of properties of work fluids. In terms
of numerical simulation, an appropriate magnitude of e could make the Roe upwind-
ing dissipation term be an implicit turbulence model. According to Tong [19] and
tests of this study shown in the next section, the optimal value of e for turbulence
simulation is 0.1.

The fifth order MUSCL scheme proposed by Abalakin et al. [20] is used to
compute Eq. (26), and solution procedures of DUP are indicated as follows.

DUP ¼ uLiþ1=2 � uRiþ1=2 ð27Þ

uLiþ1=2 ¼ ui þ 1=2 DuLiþ1=2 ð28Þ

uRiþ1=2 ¼ ui � 1=2 DuRiþ1=2 ð29Þ

DuLiþ1=2 ¼ ð1� bÞðuiþ1 � uiÞ þ bðui � ui�1Þ
þ hcð�ui�1 þ 3ui � 3uiþ1 þ uiþ2Þ
þ hdð�ui�2 þ 3ui�1 � 3ui þ uiþ1Þ ð30Þ
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DuRiþ1=2 ¼ ð1� bÞðuiþ1 � uiÞ þ bðuiþ2 � uiþ1Þ
þ hcð�ui�1 þ 3ui � 3uiþ1 þ uiþ2Þ
þ hdð�ui þ 3uiþ1 � 3uiþ2 þ uiþ3Þ ð31Þ

Where b, hc, and hd are tabulated in Table 1. The fifth order scheme is adopted
to reduce the dissipation. When a high order scheme is executed, a limiter function is
usually used to suppress occurrence of numerical oscillations. However, to prevent
the decay of the turbulent intensities of flow the limiter function is then not adopted.

The derivative terms of Aij ¼ quj
qxi

þ qui
qxj

� 2
3 ðr � uÞdij in Eq. (25) are computed by

the fourth order central difference.

qu
qx

¼ ui�2 � 8ui�1 þ 8uiþ1 � uiþ2

12Dx
þ oðDx4Þ ð32Þ

In order to compute the terms of F
k

1 ;F
k

2 ; and F
k

3 of Rk shown in Eq. (12) in the

curved linear coordinates (n, g, f), the F
k

1 ;F
k

2 ; and F
k

3 can be expressed in terms
of Fi indicated as follows, respectively.

F
k

1 ¼ ðnx1F1 þ nx2F2 þ nx3F3Þ=J

F
k

2 ¼ ðgx1F1 þ gx2F2 þ gx3F3Þ=J

F
k

3 ¼ ð1x1F1 þ 1x2F2 þ 1x3F3Þ=J ð33Þ

Then,
Rk ¼ � 3Uk � 4Un þUn�1

2Dt

� �
� fdn½ðnx1F1 þ nx2F2 þ nx3F3Þ=J�

þ dg½ðgx1F1 þ gx2F2 þ gx3F3Þ=J� þ df½ð1x1F1 þ 1x2F2 þ 1x3F3Þ=J�g
.

To substitute Eq. (33) into Rk of Eq. (20), Eq. (20) can be expressed as the
following equation.

Lði�1;j;kÞDU
k
p;ði�1;j;kÞ þ Lði;j�1;kÞDU

k
p;ði;j�1;kÞ

þ Lði;j;k�1ÞDU
k
p;ði;j;k�1Þ þDði;j;kÞDU

k
p;ði;j;kÞ

þUðiþ1;j;kÞDU
k
p;ðiþ1;j;kÞ þUði;jþ1;kÞDU

k
p;ði;jþ1;kÞ

þUði;j;kþ1ÞDU
k
p;ði;j;kþ1Þ ¼ C�1Rk

ði;j;kÞ ð34Þ

Table 1. Parameters used in Eqs. (30) and (31)

b hc hd Order

1=3 0 0 3

1=3 �1=6 0 4

1=3 0 �1=6 4

1=3 �1=10 �1=15 5
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Based onYoon and Jameson [18] andmodification, Eq. (20) can be expressed as follows.

ðLþDÞD�1ðDþUÞDUk

p ¼ C�1Rk ð35Þ

The solving procedures of Eq. (35) are briefly shown in the following processes.

1. To derive the following equations and execute a forward sweep process.

ðLþDÞDU�
p ¼ C�1Rk ð36Þ

Where DU�
p ¼ D�1ðDþUÞDUk

p

To rearrange Eq. (36) as the following equations.

LDU�
p þDDU�

p ¼ C�1Rk ð37Þ
DDU�

p ¼ C�1Rk � LDU�
p ð38Þ

To obtain DU�
p as follows.

DU�
p ¼ D�1ðC�1Rk � LDU�

p Þ ð39Þ

To expand Eq. (39) and execute a forward sweep process.

DU�
p;ði;j;kÞ ¼ Dði;j;kÞ½C�1Rk

ði;j;kÞ � Lði�1;j;kÞDU
�
p;ði�1;j;kÞ

� Lði;j�1;kÞDU
�
p;ði;j�1;kÞ � Lði;j;k�1ÞDU

�
p;ði;j;k�1Þ� ð40Þ

when i¼ 1 or j¼ 1 or k¼ 1, the DU�
p in RHS can be obtained from boundary

conditions.
2. To derive the following equations and execute a backward sweep process.

To express DUk
p in Eq. (36) as the following equation.

ðDþUÞDUk

p ¼ DDU�
p ð41Þ

To rearrange Eq. (41) as the following equation.

DU
k

p ¼ DU�
p �D�1UDU

k

p ð42Þ

To expand DU
k

p and calculate the following equation.

DUk
p;ði;j;kÞ ¼ DU�

p;ði;j;kÞ �D�1
ði;j;kÞ½Uðiþ1;j;kÞDU

k
p;ðiþ1;j;kÞ

þUði;jþ1;kÞDU
k
p;ði;jþ1;kÞ þUði;j;kþ1ÞDU

k
p;ði;j;kþ1Þ� ð43Þ

At i¼ nx or j¼ ny or k¼ nz, to obtain the DUp in RHS from boundary conditions.
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3. To solve U
kþ1

p as follows.

U
kþ1

p ¼ U
k

p þ DU
k

p

4. To repeat steps 1–3 until
U

kþ1

p �U
k

p

Ds � 0 To use the condition of U
nþ1

p ¼ U
kþ1

p , and

obtain the next time step U
nþ1

p .

The advantages of usage of LUSGS implicit method are to improve efficiency
and decrease artificial dissipation.

The isothermal and no slip conditions are adopted on the wall. The conditions
are given as follows.

Pði; 0; kÞ ¼ Pði; 1; kÞ
u1ði; 0; kÞ ¼ �u1ði; 1; kÞ
u2ði; 0; kÞ ¼ �u2ði; 1; kÞ
u3ði; 0; kÞ ¼ �u3ði; 1; kÞ
Tði; 0; kÞ ¼ 2Th � Tði; 1; kÞ ð44Þ

Where Th is wall temperature with a constant of 500 k. 0 indicates the ghost cell, and
1 indicates the cell most near the wall.

The computational domain used along the streamwise direction is periodical
and the inlet and outlet conditions can be expressed as the following equations,
respectively.

Pð0; j; kÞ ¼ Pðnx; j; kÞ
u1ð0; j; kÞ ¼ u1ðnx; j; kÞ
u2ð0; j; kÞ ¼ u2ðnx; j; kÞ
u3ð0; j; kÞ ¼ u3ðnx; j; kÞ
Tð0; j; kÞ ¼ Tðnx; j; kÞ ð45Þ

Pðnxþ 1; j; kÞ ¼ Pð1; j; kÞ
u1ðnxþ 1; j; kÞ ¼ u1ð1; j; kÞ
u2ðnxþ 1; j; kÞ ¼ u2ð1; j; kÞ
u3ðnxþ 1; j; kÞ ¼ u3ð1; j; kÞ
Tðnxþ 1; j; kÞ ¼ Tð1; j; kÞ ð46Þ

0 indicates the cell at the inlet, and nxþ 1 indicates the cell at the outlet.
The pressure gradient is the driving force to keep the continuous flow of chan-

nel. The local pressure gradient qPði;j;kÞ
qx1

includes two parts. One is the mean pressure

gradient qPmean

qx1
, which mainly drives the flow, and the other is the fluctuating pressure
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gradient
qPp

qx1
which, is a variable and induced by the turbulent flow. Then, it can be

shown as follows.

qP
qx1

¼ qPmean

qx1
þ qPp

qx1
¼ Bþ qPp

qx1
ð47Þ

The B is a source term in computing processes, and the periodic pressure conditions at
the inlet and outlet are indicated as follows.

Ppð0; j; kÞ ¼ Ppðnx; j; kÞ ð48Þ

Ppðnxþ 1; j; kÞ ¼ Ppð1; j; kÞ ð49Þ

The mass flow rate in the channel flow is not easily kept conservative due to the
viscous friction along the walls and the numerical dissipation. Therefore, Eq. (50)
derived by Xu et. al [21]. is adopted to adjust the magnitude of B to keep the mass
flow rate to be a constant during computation.

Bnþ1 ¼ Bn � 1

Dt

_mm

AC

� �0

�2
_mm

AC

� �n

þ _mm

AC

� �n�1
" #

ð50Þ

Where AC is the cross-flow area of channel, Dt is the physical time step, and _mm is the
mass flow rate of the channel flow.

4. RESULTS AND DISCUSSION

In this work, air is the working fluid and the Prandtl number is 0.72. In order to
validate the program, the turbulent channel flow resolved by the DNS method is per-
formed at Reynolds number, based on the friction velocity of 940. Because of the wall
effect, the dense grid distribution near the wall is needed and obtained by a curvilinear
transformation, and the related equation proposed by [22] is shown in the following
equation.

x2 ¼ h
ð2aþ bÞ bþ1

b�1

� �g�a
1�aþ2a� b

ð2aþ 1Þ 1þ bþ1
b�1

� �g�a
1�a

� � ð51Þ

In which, a¼ 0.5 means the densities of grid distribution on both the top and bottom
walls are equal. The more the magnitude of b is close to 1, the more the difference of
the intervals of grids is remarkable and b¼ 1.04 is assigned. As a result, the smallest

magnitude of interval Dxþ2 , which is the closest to the channel wall and equal to 1.5,

is able to capture the turbulence scales as smaller as possible, and the largest magnitude

of interval Dxþ2 is located at the center and equal to 40. As for the other two directions of

x1 and x3, the uniform grid distributions are selected and the magnitudes of the two

intervals are Dxþ1 ¼ 46:63 and Dxþ3 ¼ 23:32, respectively. The figure of grid distribution
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in x1 and x2 directions is shown in Figure 2, and the grid distribution in x1, x2, and x3
directions are 160� 96� 64. Besides, the initial conditions also influence the results of
the turbulent flow apparently and should be taken into consideration carefully. In this
study, the turbulent initial conditions are generated by a brilliant and practical method
proposed by Klein et al. [23]. Figures 3 and 4 show the comparisons of the mean velocity
profiles of <u1>, and root-mean-square (r.m.s.) values of fluctuating velocities of
u01;rms; u

0
2;rms; and u03;rms for e¼ 0.1 with the benchmark solutions of the DNS data del

Alamo et al. [24] obtained by spectral codes at Res¼ 940 situation, respectively. The
results are consistent so it can be inferred that e¼ 0.1 is the optimal value. For lower
Reynolds number, such as Res¼ 550 and Res¼ 180, the results of comparisons with

Figure 2. Grid distributions near the wall.

Figure 3. Comparison of mean velocities of u1 [24] with present results for Res¼ 940 (Reffi 20000).
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the DNS data are still consistent for e¼ 0.1. Due to the limitation of pages, the
related results are not shown in the study. From the results mentioned above, it
can be known that the Roe upwinding dissipation term can become an implicit
turbulence model for LES as long as e is set to 0.1. With the excellent advantages
of easy implementation in the curvelinear coordinate and the validation from a
low Reynolds number (Res¼ 180) to a high Reynolds number (Res¼ 940), this model
can be used to study heat transfer mechanisms in the following.

The magnitudes of 180, 500, and 940 selected in this study are almost equiva-
lent to the magnitudes of Reynolds number, of which the inlet velocity is regarded as
the characteristic velocity of 2,700, 10,000, 20,000, respectively. The corresponding
Mach numbers for these three cases are around 0.005, 0.014, and 0.026, respectively.

Phenomena shown in the following figures are at certain instants of fully
developed turbulent flows. In Figure 5, temperature contours are indicated for situa-
tions of Res¼ 180, 500, and 940, respectively. In Figure 5a, a turbulent flow begins to
be formed and the characteristics of turbulent flow are not remarkable. As a result,

the temperature contour shown in Figure 5a of x1x3 plane, of which the distance (xþ2 )
away from the bottom heat wall is 1.5, is almost uniform except several small
regions. This phenomenon means the alternate mixture of different temperature
layers to be slight. On x1x2 and x2x3 planes, the magnitudes of temperature distri-
bution from the bottom heat wall to the upper region gradually decrease, and
phenomena of alternate mixture of different temperature layers near the wall region
are scarcely found because of the weakness of fluctuating velocity in x2 direction.

Figure 4. Comparisons of root-mean-square values of fluctuation velocities of u0i;rms [22] with present

results for Res¼ 940.
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In Figure 5b, the magnitude of Res is increased to 500, and the behaviors of
characteristics of turbulent flow naturally become apparent. Motions of alternate
mixture of different temperature layers are drastic because fluctuation velocities in
each direction become large. As a result, the presence of fluids having different

temperatures is remarkably indicated on the horizontal plane of x1x3ðxþ2 ¼ 1:5Þ.
On the vertical planes of x1x2 and x2x3, accompanying characteristic motions of ejec-
tion and swept of turbulent flow, fluids possessing different temperatures move up
and down drastically near the wall region; therein, the possibility of cooling fluids
directly impinging on the bottom heat wall increases. This is the main reason for
the heat transfer rate of turbulent flow being superior.

Figure 5. Temperature contours on x1x2, x1x3 and x2x3 planes under different magnitudes of Res of a) 180

(Reffi 2700 ), b) 500 (Reffi 10000 ), and c) 940 (Reffi 20000 ).
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In Figure 5c, the magnitude of Res is equal to 940. Certainly, the behaviors of
turbulent flow become more apparent than those of the two previous situations.
Then, on the x1x3 plane, streaks of light color interlace along the x1 direction to
be observed, and spots of dark color are irregularly distributed. This phenomenon
indicates the occurrence of drastic alternate mixture of different temperature layers
near the wall region. On the planes of x1x2 and x2x3, the temperature layer near the
wall region is irregularly invaded by fluids possessing different temperatures, the
complete temperature layer near the wall similar to that of Figure 5a no longer exists.

In Figure 6, different isothermal surfaces of fluids in the space near the wall
under different magnitudes of Res of 180, 500, and 940 are indicated, respectively.
Due to the indication of the three-dimensional geometry shown in the figures,

Figure 6. Isothermal surfaces of fluids for Res¼ a) 180, b) 500, and c) 940 situations.
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outward appearances of isothermal surfaces of fluids are observed from a certain vis-
ual angle. In Figure 6a, the initial stage of turbulent flow is formed, and the charac-
teristic behaviors of turbulent flow are not apparent. The fluctuation velocity is weak
that causes a cluster of big lumps of fluids possessing different isothermal surfaces to
be observed. Accompanying the increment of magnitude of Res, the characteristic
behaviors of turbulent flow become remarkable. The fluctuating velocities are
enlarged in each direction that results in a cluster of big lumps of fluids mentioned
above being torn into an aggregation of small fragments of fluids possessing different
isothermal surfaces, shown in Figures 6b and 6c, respectively.

In Figure 7, density contours in three different planes of x1x2, x1x3, and x2x3
are shown, respectively, for the Res¼ 940 situation. The contour of density shown

in the x1x3 plane is very close to the bottom heat wall and xþ2 ¼ 1:5. Because of

the consideration of compressibility of fluid, the density of fluid becomes a variable.
The darker the color is, the lighter the density is indicated. Then, most regions of this
plane filled with fluids of light density are observed. However, a few slightly bright
regions composed of fluids having slightly heavy density irregularly mixing in dark
regions are founded out. This phenomenon is mainly caused by the fluctuation
velocity in the x2 direction. This characteristic phenomenon certainly appears in
the boundary layer of turbulent flow. Similar phenomena are observed in planes
of x1x2 and x2x3. Part of the fluids of light density distributed in the bottom region
of the thermal boundary layer irregularly flee up to the upper region, and the density
becomes heavy, gradually, because of it accompanying the decrement of temperature
in the x2 direction. Meanwhile part of the fluids which are located at slightly upper
regions away from the heated bottom surface possess a relatively heavy density rap-
idly implemented in the space vacated by the escape of the fluids of light density
mentioned above. As a result, an irregular distribution of densities is indicated in
the whole near wall region.

In Figure 8, local instantaneous Nusselt numbers on the central cross-section
of the x1x3 plane and average Nusselt numbers of the x1x3 plane of three situations

Figure 7. Density contour (Res¼ 940).
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are indicated, respectively. The local instantaneous Nusselt number Nu and average

Nusselt number Nu are defined as follows, respectively.

Nu ¼ l2
k0ðTh � TcÞ

kðTÞ qT
qx2

� �
wall

ð52Þ

Nu ¼ 1

A

Z Z
l2

k0ðTh � TcÞ
kðTÞ qT

qx2

� �
wall

dx1dx3 ð53Þ

Where A is the area of the heat surface.
The larger the magnitude of Res is, the magnitudes of the main stream and

fluctuating velocities are faster. As a result, accompanying with the increment of

Figure 8. Local instantaneous Nusselt number distributions on the wall along the central cross-section of

the x1x3 plane and average Nusselt numbers on the x1x3 plane.

Figure 9. Comparison of present results with existing results.
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Res, the magnitude of the average Nusselt number becomes larger and the variation
of local instantaneous Nusselt number becomes drastic. In terms of practical applica-
tions, it also means that the possibility of the unexpected failure, such as a thermal
shock at the high Reynolds number, is much higher than that at the low Reynolds
number.

The average Nusselt number obtained from this study can be expressed as a
function of the Reynolds number, which is based on the average flow velocity and
the height of channel, and shown in the following equation.

Nu ¼ 0:0245�Re0:8: ð54Þ

The relationship between the average Nusselt number and Reynolds number
presents an exponential form. Figure 9 shows that the trend of Eq. (54) is similar
to the Dittus-Boelter correlation [25] for smooth tubes and the Gnielinski equation
[26] is tailored to forced convection in a turbulent pipe flow.

5. CONCLUSION

A numerical study of compressible turbulent forced convection in a channel
flow is performed. Several conclusions are summarized as follows.

1. An implicit turbulence model for LES is developed to investigate heat transfer
rates of a three-dimensional channel. An appropriately empirical formula can
be derived.

2. The increment of Reynolds number causes the strength of the Reynolds stress to
be stronger that leads to a cluster of big lumps, composing different isothermal
surfaces of fluids, and are gradually torn into an aggregation of fragments of
different isotheral surfaces of fluids.

3. Variations of instantaneous local Nusselt numbers are very drastic under high
Reynolds number situations. This phenomenon should be avoided in order to
get rid of the heat damage caused by thermal shock.

4. With the excellent advantages of easy implementation, the numerical method
developed in this study is promising for turbulence simulation in the future.

REFERENCES

1. W. R. Briley, H. McDonald, and S. J. Shamroth, At Low Mach Number Euler
Formulation, and Application to Time Iterative LBI Schemes, AIAA, vol. 21, no. 10,
pp. 1467–1469, 1983.

2. E. Turkel, Preconditioned Methods for Solving the Incompressible and Low Speed
Compressible Equations, J. Comput. Phys., vol. 72, pp. 277–298, 1987.

3. D. Choi and C. L. Merkel, Application of Time-Iterative Schemes to Incompressible
Flow, AIAA, vol. 25, no. 6, pp. 1518–1524, 1985.

4. D. Choi and C. L. Merkel, The Application of Preconditioning in Viscous Flows,
J. Comput. Phys., vol. 105, pp. 207–223, 1993.

5. P. L. Roe, Approximation Riemann Solver, Parameter Vectors, and Difference Schemes,
J. Comput. Phys., vol. 43, pp. 357–372, 1981.

COMPRESSIBLE TURBULENT FORCED CONVECTION 877

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
48

 2
4 

A
pr

il 
20

14
 



6. J. M. Weiss and W. A. Smith, Preconditioning Applied to Variable, and Constants
Density Flows, AIAA, vol. 33, pp. 2050–2056, 1995.

7. B. J. R. Thornbe and D. Drikakis, Numerical Dissipation of Upwind Schemes in Low
Mach Flow, Int. J. Numer. Meth. Fluids, vol. 56, pp. 1535–1541, 2008.

8. S. Dellacherie, Analysis of Godunov Type Schemes Applied to the Compressible Euler
System at Low Mach Number, J. Comput. Phys., vol. 229, pp. 978–1016, 2010.

9. B. Lessani, J. Ramboer, and C. Lacor, Efficient Large-Eddy Simulations of Low Mach
Number Flows using Preconditioning, and Multigrid, J. Comput. Phys., vol. 18, pp.

221–233, 2002.
10. X. Xiaofeng, J. S. Lee, and R. H. Pletcher, A Compressible Finite Volume Formulation

for Large Eddy Simulation of Turbulent Pipe Flows at Low Mach Number in Cartesian
Coordinates, J. Comput. Phys., vol. 203, pp. 22–48, 2005.

11. N. Alkishriwi, M. Meinke, and W. Schroder, A Large-Eddy Simulation Method for Low
Mach Number Flows using Precondition, and Multigrid, Computers & Fluids, vol. 35,
pp. 1126–1136, 2005.

12. J. A. Domaradzki and N. A. Adams, Direct Modeling of Subgrid Scales of Turbulence in
Large Eddy Simulations, J. of Turbulence, vol. 3, pp. 1–19, 2002.

13. J. A. Domaradzki, K. C. Loh, and P. Y. Patrick, Large Eddy Simulations using the
Subgrid-Scale Estimation Model, and Truncated Navier-Stokes Dynamics, Theor.
Comput. Fluid Dyn., vol. 15, pp. 421–450, 2002.

14. S. Stolz and N. A. Adam, An Approximate Deconvolution Procedure for Large-Eddy
Simulation, Phys. Fluids, vol. 11, pp. 1699–1701, 1999.

15. C. Fureby and F. F. Grinstein, Monotonically Integrated Large Eddy Simulation of Free
Shear Flows, AIAA, vol. 37, pp. 544–556, 1999.

16. J. A. Domaradzki and S. Radhakrishnan, Effective Eddy Viscosities in Implicit Modeling
of Decaying High Reynolds Number Turbulence with and without Rotation, Fluid Dyn.
Res., vol. 36, pp. 385–406, 2005.

17. T. Tankitul and J. A. Domaradzki, Large Eddy Simulations using Truncated
Navier-Stokes Equations with the Automatic Filtering Criterion, J. of Turbulence,
vol. 11, pp. 1468–5248, 2010.

18. S. Yoon and S. Jameson, Lower-Upper Symmetric-Gauss-Seidel Method for the Euler
and Navier-Stokes Equations, AIAA, vol. 26, pp. 1025–1026, 1988.

19. T. B. Tong, A Parallel Finite-Volume Algorithm for Large-Eddy Simulation of
Turbulence Flows, Computers & Fluids, vol. 29, pp. 877–915, 2000.

20. I. Abalakin, A. Dervieux, and T. Kozubskaya, A Vertex Centered High Order MUSCL
Scheme Applying to Linearized Euler Acoustics, INRIA, no. 4459, 2002.

21. X. F. Xu, J. S. Lee, and R. H. Pletcher, A Compressible Finite Volume Formulation for
Large Eddy Simulation of Turbulent Pipe Flows at Low Mach Number in Cartesian
Coordinates, J. Comput. Phys., vol. 203, pp. 22–48, 2005.

22. K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics for Engineers,
Engineering Education System, Wichita, Kansas, 1993.

23. M. Klein, A. Sadiki, and J. Janicka, A Digital Filter Based Generation of Inflow Data for
Spatially Developing Direct Numerical or Large Eddy Simulation, J. Comput. Phys.,
vol. 186, pp. 652–665, 2003.

24. J. C. del Alamo, J. Jimenez, P. Zandonade, and R. D. Moser, Scaling of the Energy
Spectra of Turbulent Channels, J. Fluid Mech., vol. 500, pp. 135–144, 2004.

25. P. I. Frank, P. D. David, L. B. Theodore, and S. L. Adrienne, Fundamentals of Heat and
Mass Transfer, 6th ed., pp. 490–515, 2006.

26. P. I. Frank and P. D. David, Fundamentals of Heat and Mass Transfer, 4th ed., p. 493,
1996.

878 W.-S. FU ET AL.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
48

 2
4 

A
pr

il 
20

14
 


